ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9/M 07.0421(462)
    In: Geological Society Special Publication
    Description / Table of Contents: Abstract The Himalaya mountains contain not only one of the largest concentrations of ice outside the polar regions, but contribute to the hydrological requirements of large populations spread over seven nations. The exceptionally high elevations of this low-latitude cryosphere presents a natural laboratory and archives to study climate–tectonics interactions as well as regional v. global climate influences. The existing base-level data on the Himalayan cryosphere are highly variable. Several climate fluctuations occurred during the late Quaternary (MIS1–MIS5, especially the last c. 100 ka), which led to the evolution of the Himalayan landscape. Detailed studies of these archives, along with those of the present cryosphere and related hydrosphere, are essential for understanding the controls on present and future hydrology of the glacial-fed mountain rivers. This volume, a follow-up of the XII International Symposium on Antarctic Earth Science, Goa (A SCAR symposium), provides new data from locales spread over the entire Himalaya region and from Tibet. It provides a glimpse of the late Quaternary cryosphere, as well as a discussion in the last section on sustainability in the context of geohazard mitigations as well as the hydrological budget.
    Type of Medium: Monograph available for loan
    Pages: 210 Seiten , Illustrationen, farbige Abbildungen
    ISBN: 9781786203243
    Series Statement: Geological Society Special Publication 462
    Classification:
    Regional Geology
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-08
    Description: The functions of RNAs, like proteins, are determined by their structures, which, in turn, are determined by their sequences. Comparison/alignment of RNA molecules provides an effective means to predict their functions and understand their evolutionary relationships. For RNA sequence alignment, most methods developed for protein and DNA sequence alignment can be directly applied. RNA 3-dimensional structure alignment, on the other hand, tends to be more difficult than protein structure alignment due to the lack of regular secondary structures as observed in proteins. Most of the existing RNA 3D structure alignment methods use only the backbone geometry and ignore the sequence information. Using both the sequence and backbone geometry information in RNA alignment may not only produce more accurate classification, but also deepen our understanding of the sequence–structure–function relationship of RNA molecules. In this study, we developed a new RNA alignment method based on elastic shape analysis (ESA). ESA treats RNA structures as three dimensional curves with sequence information encoded on additional dimensions so that the alignment can be performed in the joint sequence–structure space. The similarity between two RNA molecules is quantified by a formal distance, geodesic distance. Based on ESA, a rigorous mathematical framework can be built for RNA structure comparison. Means and covariances of full structures can be defined and computed, and probability distributions on spaces of such structures can be constructed for a group of RNAs. Our method was further applied to predict functions of RNA molecules and showed superior performance compared with previous methods when tested on benchmark datasets. The programs are available at http://stat.fsu.edu/ ~jinfeng/ESA.html.
    Keywords: Nucleic acid structure, RNA characterisation and manipulation, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-30
    Description: Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1–Csm3 fork protection complex is essential for PFA by...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-17
    Description: The synthesis of a new series of 4-aryl-3-chloro-2-oxo- N -[3-(10 H -phenothiazin-10-yl)propyl]azetidine-1-carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH 2 ) 3 Br at room temperature gave 10-(3-chloropropyl)-10 H -phenothiazine ( 1 ), and the latter reacted with urea to yield 1-[3-(10 H -phenothiazin-10-yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N -(arylmethylidene)- N′ -[3-(phenothiazin-10-yl)propyl]ureas 3a – 3m , which, on treatment with ClCH 2 COCl in the presence of Et 3 N, furnished the desired racemic trans -2-oxoazetidin-1-carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1 H- and 13 C-NMR spectroscopy, FAB mass spectrometry, and chemical methods.
    Print ISSN: 0018-019X
    Electronic ISSN: 1522-2675
    Topics: Chemistry and Pharmacology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-21
    Description: Mahogunin-mediated α-tubulin ubiquitination via noncanonical K6 linkage regulates microtubule stability and mitotic spindle orientation Cell Death and Disease 5, e1064 (February 2014). doi:10.1038/cddis.2014.1 Authors: D Srivastava & O Chakrabarti
    Keywords: spindle misorientationnoncanonical polyubiquitinationtubulin polymerization
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-02-19
    Description: Microdeletions of chromosome 22q11 are the most common genetic defects associated with cardiac and craniofacial anomalies in humans. A screen for mouse genes dependent on dHAND, a transcription factor implicated in neural crest development, identified Ufd1, which maps to human 22q11 and encodes a protein involved in degradation of ubiquitinated proteins. Mouse Ufd1 was specifically expressed in most tissues affected in patients with 22q11 deletion syndrome. The human UFD1L gene was deleted in all 182 patients studied with 22q11 deletion, and a smaller deletion of approximately 20 kilobases that removed exons 1 to 3 of UFD1L was found in one individual with features typical of 22q11 deletion syndrome. These data suggest that UFD1L haploinsufficiency contributes to the congenital heart and craniofacial defects seen in 22q11 deletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamagishi, H -- Garg, V -- Matsuoka, R -- Thomas, T -- Srivastava, D -- R01HL57181-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1158-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Division of Cardiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Room NA8.124, Dallas, TX 75235-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024240" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta, Thoracic/abnormalities/embryology/metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cell Cycle Proteins/genetics ; Chromosomes, Human, Pair 22/*genetics ; Craniofacial Abnormalities/*genetics ; DNA-Binding Proteins/genetics/physiology ; Embryo, Mammalian/metabolism ; *Gene Deletion ; Gene Expression Regulation, Developmental ; Heart/embryology ; Heart Defects, Congenital/*genetics ; Humans ; Mice ; Neural Crest/cytology/embryology ; Phenotype ; Proteins/*genetics/physiology ; Transcription Factors/genetics/physiology ; Ubiquitins/metabolism ; Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-07-07
    Description: MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cordes, Kimberly R -- Sheehy, Neil T -- White, Mark P -- Berry, Emily C -- Morton, Sarah U -- Muth, Alecia N -- Lee, Ting-Hein -- Miano, Joseph M -- Ivey, Kathryn N -- Srivastava, Deepak -- C06 RR018928/RR/NCRR NIH HHS/ -- HL091168/HL/NHLBI NIH HHS/ -- HL62572/HL/NHLBI NIH HHS/ -- R01 HL062572/HL/NHLBI NIH HHS/ -- R01 HL062572-12/HL/NHLBI NIH HHS/ -- R01 HL091168/HL/NHLBI NIH HHS/ -- R01 HL091168-01A1/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Aug 6;460(7256):705-10. doi: 10.1038/nature08195. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Lineage ; Cell Proliferation ; Female ; Gene Expression Regulation ; Homeodomain Proteins/metabolism ; Male ; Mice ; Mice, Transgenic ; MicroRNAs/genetics/*metabolism ; Models, Biological ; Myocardium/metabolism ; Myocytes, Smooth Muscle/*cytology/*metabolism ; Transcription Factors/metabolism ; Transcription, Genetic ; Vascular Diseases/metabolism ; ets-Domain Protein Elk-4/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-24
    Description: The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts,which represent 50%of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became binucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast-activating peptide, thymosin b4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369107/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3369107/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Li -- Huang, Yu -- Spencer, C Ian -- Foley, Amy -- Vedantham, Vasanth -- Liu, Lei -- Conway, Simon J -- Fu, Ji-dong -- Srivastava, Deepak -- C06RR018928/RR/NCRR NIH HHS/ -- K08 HL101989/HL/NHLBI NIH HHS/ -- K08HL101989/HL/NHLBI NIH HHS/ -- R01 HL060714/HL/NHLBI NIH HHS/ -- R01 HL060714-13/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Lineage ; *Cell Transdifferentiation ; *Cellular Reprogramming ; Cicatrix/pathology/therapy ; Female ; Fibroblasts/*cytology/drug effects/metabolism/pathology ; GATA4 Transcription Factor/genetics/metabolism ; Gene Expression Regulation ; Genetic Vectors/genetics ; Heart/physiology/physiopathology ; MEF2 Transcription Factors ; Male ; Mice ; Myocardial Infarction/drug therapy/pathology/physiopathology/therapy ; Myocardium/cytology/pathology ; Myocytes, Cardiac/*cytology/drug effects/metabolism/*physiology ; Myogenic Regulatory Factors/genetics/metabolism ; Regenerative Medicine/*methods ; T-Box Domain Proteins/genetics/metabolism ; Thymosin/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-03
    Description: Heart formation requires complex interactions among cells from multiple embryonic origins. Recent studies have begun to reveal the genetic pathways that control cardiac morphogenesis. Many of the genes within these pathways are conserved across vast phylogenetic distances, which has allowed cardiac development to be dissected in organisms ranging from flies to mammals. Studies of cardiac development have also revealed the molecular defects underlying several congenital cardiac malformations in humans and may ultimately provide opportunities for genetic testing and intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olson, E N -- Srivastava, D -- New York, N.Y. -- Science. 1996 May 3;272(5262):671-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, 75235-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8614825" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Gene Expression Regulation, Developmental ; Genes ; Genes, Regulator ; Heart/*embryology ; Heart Conduction System/embryology ; Heart Defects, Congenital/embryology/*genetics/pathology ; Humans ; Morphogenesis ; Mutation ; Myocardium/cytology ; Neural Crest/cytology ; Transcription Factors/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...