ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowman, Alan F -- Tonkin, Christopher J -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):409-10. doi: 10.1126/science.1201692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. cowman@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273475" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/*metabolism ; Cell Division ; Cell Membrane/metabolism ; Membrane Proteins/metabolism ; Phosphorylation ; Protozoan Proteins/*metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-02-01
    Description: Transit peptides mediate protein targeting into plastids and are only poorly understood. We extracted amino acid features from transit peptides that target proteins to the relict plastid (apicoplast) of malaria parasites. Based on these amino acid characteristics, we identified 466 putative apicoplast proteins in the Plasmodium falciparum genome. Altering the specific charge characteristics in a model transit peptide by site-directed mutagenesis severely disrupted organellar targeting in vivo. Similarly, putative Hsp70 (DnaK) binding sites present in the transit peptide proved to be important for correct targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Foth, Bernardo J -- Ralph, Stuart A -- Tonkin, Christopher J -- Struck, Nicole S -- Fraunholz, Martin -- Roos, David S -- Cowman, Alan F -- McFadden, Geoffrey I -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560551" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/metabolism ; Algorithms ; Amino Acid Sequence ; Amino Acid Substitution ; Amino Acids/analysis/chemistry ; Animals ; Asparagine/analysis ; Binding Sites ; Computational Biology ; Green Fluorescent Proteins ; HSP70 Heat-Shock Proteins/metabolism ; Heat-Shock Proteins/metabolism ; Luminescent Proteins/metabolism ; Lysine/analysis ; Models, Biological ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neural Networks (Computer) ; Organelles/*metabolism ; Plasmodium falciparum/*metabolism ; Protein Binding ; *Protein Sorting Signals ; *Protein Transport ; Protozoan Proteins/*chemistry/*metabolism ; Vacuoles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-08-27
    Description: The malaria parasite, Plasmodium falciparum, exploits multiple ligand-receptor interactions, called invasion pathways, to invade the host erythrocyte. Strains of P. falciparum vary in their dependency on sialated red cell receptors for invasion. We show that switching from sialic acid-dependent to -independent invasion is reversible and depends on parasite ligand use. Expression of P. falciparum reticulocyte-binding like homolog 4 (PfRh4) correlates with sialic acid-independent invasion, and PfRh4 is essential for switching invasion pathways. Differential activation of PfRh4 represents a previously unknown mechanism to switch invasion pathways and provides P. falciparum with exquisite adaptability in the face of erythrocyte receptor polymorphisms and host immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stubbs, Janine -- Simpson, Ken M -- Triglia, Tony -- Plouffe, David -- Tonkin, Christopher J -- Duraisingh, Manoj T -- Maier, Alexander G -- Winzeler, Elizabeth A -- Cowman, Alan F -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1384-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123303" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Erythrocytes/*parasitology ; Gene Expression Profiling ; Gene Silencing ; Genes, Protozoan ; Humans ; Ligands ; Membrane Proteins/analysis/genetics/*physiology ; Neuraminidase/pharmacology ; Oligonucleotide Array Sequence Analysis ; Plasmodium falciparum/genetics/growth & development/metabolism/*pathogenicity ; Polymerase Chain Reaction ; Protozoan Proteins/analysis/genetics/*physiology ; Recombinant Fusion Proteins/metabolism ; Sialic Acids/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...