ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-01
    Description: Myosin Va (myoV) is a processive molecular motor that transports intracellular cargo along actin tracks with each head taking multiple 72-nm hand-over-hand steps. This stepping behavior was observed with a constitutively active, truncated myoV, in which the autoinhibitory interactions between the globular tail and motor domains (i.e., heads) that regulate the full-length molecule no longer exist. Without cargo at near physiologic ionic strength (100 mM KCl), full-length myoV adopts a folded (approximately 15 S), enzymatically-inhibited state that unfolds to an extended (approximately 11 S), active conformation at higher salt (250 mM). Under conditions favoring the folded, inhibited state, we show that Quantum-dot-labeled myoV exhibits two types of interaction with actin in the presence of MgATP. Most motors bind to actin and remain stationary, but surprisingly, approximately 20% are processive. The moving motors transition between a strictly gated and hand-over-hand stepping pattern typical of a constitutively active motor, and a new mode with a highly variable stepping pattern suggestive of altered gating. Each head of this partially inhibited motor takes longer-lived, short forward (35 nm) and backward (28 nm) steps, presumably due to globular tail-head interactions that modify the gating of the individual heads. This unique mechanical state may be an intermediate in the pathway between the inhibited and active states of the motor.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-24
    Description: Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-28
    Description: The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Previs, M J -- Beck Previs, S -- Gulick, J -- Robbins, J -- Warshaw, D M -- 8P20GM103449/GM/NIGMS NIH HHS/ -- HL007647/HL/NHLBI NIH HHS/ -- HL059408/HL/NHLBI NIH HHS/ -- P01 HL059408/HL/NHLBI NIH HHS/ -- P20 GM103449/GM/NIGMS NIH HHS/ -- R01 HL086728/HL/NHLBI NIH HHS/ -- T32 HL007647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923435" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actomyosin/metabolism ; Amino Acid Motifs ; Animals ; Carrier Proteins/chemistry/*metabolism ; Mice ; Mice, Transgenic ; *Myocardial Contraction ; Myocardium/*metabolism/ultrastructure ; Myofibrils/*metabolism ; Myosins/*metabolism ; Phosphorylation ; Proteolysis ; Sarcomeres/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2016-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warshaw, David M -- HL059408/HL/NHLBI NIH HHS/ -- HL126909/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 5;351(6273):556-7. doi: 10.1126/science.aaf1636.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405, USA. david.warshaw@med.uvm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912685" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-03-25
    Description: Tension transients were recorded in a single smooth muscle cell. The transient contains a linear elastic response and a biphasic recovery that appear to originate from the cross-bridges. A comparison of transients in smooth and fast skeletal muscle fibers suggests that the cross-bridge in smooth muscle is more compliant than the cross-bridge in striated muscle and that transitions between several cross-bridge states occur more slowly in smooth muscle than in striated muscle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warshaw, D M -- Fay, F S -- HL 05770/HL/NHLBI NIH HHS/ -- HL 14523/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1983 Mar 25;219(4591):1438-41.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6828870" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; In Vitro Techniques ; Kinetics ; *Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth/*physiology ; Muscles/physiology ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-06-12
    Description: The slower and more economical contraction of smooth muscle as compared to that of skeletal muscle may relate to the arrangement of its contractile apparatus. Because the arrangement of the contractile apparatus determines the manner in which a single smooth muscle cell shortens, shortening of a contracting cell was examined by tracking of marker bead movements on the cell surface by means of digital video microscopy. Smooth muscle cells were observed to freely shorten in a unique corkscrew-like fashion with a pitch of 1.4 cell lengths (that is, the length change required for one complete rotation of cell) at a rate of 27 degrees per second. Corkscrew-like shortening was interpreted in terms of a structural model in which the contractile apparatus or cytoskeleton (or both) are helically oriented within the cell. Such an arrangement of these cytoarchitectural elements may help to explain in part the contractile capabilities of smooth muscle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warshaw, D M -- McBride, W J -- Work, S S -- AR34872/AR/NIAMS NIH HHS/ -- HL35684/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 Jun 12;236(4807):1457-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3109034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bufo marinus ; Cell Membrane/physiology ; *Muscle Contraction ; Muscle, Smooth/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 18 (1997), S. 17-30 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Numerous biological processes, including muscular contraction, depend upon the mechanical properties of actin filaments. One such property is resistance to bending (flexural rigidity, EI). To estimate EI, we attached the ends of fluorescently labelled actin filaments to two microsphere‘handles’ captured in independent laser traps. The positions of the traps were manipulated to apply a range of tensions (0--8 pN)to the filaments via the microsphere handles. With increasing filament tension, the displacement of the microspheres was inconsistent with a microsphere-filament system that is rigid. We maintain that this inconsistency is due to the microspheres rotating in the trap and the filaments bending near their attachments to accommodate this rotation. Fitting the experimental data to a simple model of this phenomena, we estimate actin's EI to be ×15 × 103 pN nm2, a value within the range of previously reported results, albeit using a novel method. These results both: support the idea that actin filaments are more compliant than historically assumed; and, indicate that without appropriately pretensioning the actin filament in similar laser traps, measurements of unitary molecular events (e.g. myosin displacement) may be significantly underestimated
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Differences in the mechanical properties of mammalian smooth, skeletal, and cardiac muscle have led to the proposal that the myosin isozymes expressed by these tissues may differ in their molecular mechanics. To test this hypothesis, mixtures of fast skeletal, V1 cardiac, V3 cardiac and smooth muscle (phosphorylated and unphosphorylated) myosin were studied in an in vitro motility assay in which fluorescently-labelled actin filaments are observed moving over a myosin coated surface. Pure populations of each myosin produced actin filament velocities proportional to their actin-activated ATPase rates. Mixtures of two myosin species produced actin filament velocities between those of the faster and slower myosin alone. However, the shapes of the myosin mixture curves depended upon the types of myosins present. Analysis of myosin mixtures data suggest that: (1) the two myosins in the mixture interact mechanically and (2) the same force-velocity relationship describes a myosin's ability to operate over both positive and negative forces. These data also allow us to rank order the myosins by their average force per cross-bridge and ability to resist motion (phosphorylated smooth 〉 skeletal = V3 cardiac 〉 V1 cardiac). The results of our study may reflect the mechanical consequence of multiple myosin isozyme expression in a single muscle cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-07-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-12-20
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...