ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-14
    Description: Journal of the American Chemical Society DOI: 10.1021/jacs.5b02878
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-03
    Description: Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid–inducible gene I)–like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKK (IB kinase ) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKK activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKK complex, targeted both MAVS and TBK1/IKK for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a –/– mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-19
    Description: A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiation ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-06
    Description: Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields Scientific Reports, Published online: 5 February 2016; doi:10.1038/srep20598
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-27
    Description: Journal of the American Chemical Society DOI: 10.1021/ja301765v
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉Quantum walks are the quantum analogs of classical random walks, which allow for the simulation of large-scale quantum many-body systems and the realization of universal quantum computation without time-dependent control. We experimentally demonstrate quantum walks of one and two strongly correlated microwave photons in a one-dimensional array of 12 superconducting qubits with short-range interactions. First, in one-photon quantum walks, we observed the propagation of the density and correlation of the quasiparticle excitation of the superconducting qubit and quantum entanglement between qubit pairs. Second, when implementing two-photon quantum walks by exciting two superconducting qubits, we observed the fermionization of strongly interacting photons from the measured time-dependent long-range anticorrelations, representing the antibunching of photons with attractive interactions. The demonstration of quantum walks on a quantum processor, using superconducting qubits as artificial atoms and tomographic readout, paves the way to quantum simulation of many-body phenomena and universal quantum computation.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-12
    Description: We describe a microchip designed to quantify the levels of a dozen cytoplasmic and membrane proteins from single cells. We use the platform to assess protein–protein interactions associated with the EGF-receptor-mediated PI3K signaling pathway. Single-cell sensitivity is achieved by isolating a defined number of cells (n = 0–5) in 2 nL volume chambers, each of which is patterned with two copies of a miniature antibody array. The cells are lysed on-chip, and the levels of released proteins are assayed using the antibody arrays. We investigate three isogenic cell lines representing the cancer glioblastoma multiforme, at the basal level, under EGF stimulation, and under erlotinib inhibition plus EGF stimulation. The measured protein abundances are consistent with previous work, and single-cell analysis uniquely reveals single-cell heterogeneity, and different types and strengths of protein–protein interactions. This platform helps provide a comprehensive picture of altered signal transduction networks in tumor cells and provides insight into the effect of targeted therapies on protein signaling networks.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-13
    Description: The influence of transverse magnetic field on the liquid-solid interface stability and morphology has been investigated in directionally solidified Al-0.85wt%Cu alloy. Experimental results show that the transverse magnetic field causes the interface to be instable and the interface shape to be depressed on one side along the radius. The interface instability increases with increasing magnetic field. Increasing the solidification velocity reduced extent of interface destabilization by the magnetic field. The depression of the interface with the magnetic field is more dramatic at low solidification velocities. These phenomena are attributed to the thermoelectromagnetic convection (TEMC) on the interface and cellular scale.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-14
    Description: A bstract :  Little is known about land-to-sea sediment transport and deposition in polar regimes with multi-year sea ice such as at the mouth of the Taylor Valley, one of the Dry Valleys in Antarctica. This study integrates textural analysis of 574 coastal subaerial and nearshore submarine sediment samples with data from sediment traps and with published grain-size analyses of offshore sea-ice surface and submarine sediments to reconstruct transport and depositional processes from the shoreline to ~ 8 km offshore. Sediment, primarily sand sized, is transferred into the marine environment via two processes: 1) erosion, transport, and deposition of till by ephemeral meltwater streams that deliver sediment to the subaqueous part of the delta built over the last ~ 7,500 years, and 2) onshore to sea-ice sediment transport by wind during rare but powerful foehn wind events. Because the distributaries flow into quiet water beneath the sea ice, most of their load is dropped close to shore, but a small amount of fine-grained sediment, mostly silt, is carried kilometers offshore, probably by low-density, low-salinity plumes. Wind deposits sediment on the sea ice with median grain size decreasing from medium to fine sand within 1.5 km of the shoreline; even offshore sea-ice sediment contains very little silt and almost no clay. Nearshore the sea-ice sediment is coarser than that on the underlying seafloor, but in a few kilometers offshore the median grain sizes of the seafloor and sea-ice sediments are similar; this reflects a mixture of sea-ice-rafted eolian sediment and fine-grained delta-derived sediment transported beneath the sea ice. This system is unusual in the relative effectiveness of the transport systems. The feeble distributaries deposit their sediment load immediately upon entering the quiet water, and only a minor amount of silt and clay is carried seaward under the ice. In contrast, winds deposit coarser sediment on the nearshore sea ice and carry fine sand 〉 7 km offshore, although the amount and grain size of sediment is attenuated within 1.5 km of shore. Melting of the sea ice drops sediment onto the seafloor, where it mixes with the delta-derived silt and clay. Similar combinations of eolian and fluvial transport processes may have operated in polar regimes dominated by multi-year sea ice in the past. Understanding of the modern processes in Explorers Cove may aid recognition of ancient sediments deposited under multi-year sea ice, as well as help predict future changes in processes around Antarctica as the distribution of multi-year sea ice shifts in response to climate change.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-18
    Description: Eclogite facies cataclasite is recognized at Yangkou in the Chinese Su-Lu ultrahigh-pressure metamorphic belt. The cataclasite dykes (5−15 cm wide) are bounded by mylonite/ultramylonite zones, cutting through unfoliated metagabbro and/or eclogite. The cataclasite veins (generally 2−4 cm wide) are free of mylonite boundary zones, cutting through the foliation of the high-pressure host rock. The dykes and veins are dominated by eclogite fragments consisting of debris of omphacite, garnet, quartz, phengite and kyanite, in a matrix of variable amounts of a schist rich in quartz, phengite and kyanite. Garnet clasts in the fragments are welded and overgrown by more Ca-rich garnet containing different mineral inclusions than those in the garnet cores. The micropoikilitic texture of garnet is typical of eclogitic pseudotachylytes. Crack-sealing K-feldspar veinlets in the cataclasite dykes also imply frictional or shock induced melting of K-mica. The modal abundances in the cataclasite and the schist imply that the dykes formed by flow of the omphacite and garnet-dominated cataclasites into the fractures during seismic faulting, while the lower density minerals (quartz, phengite and kyanite) were largely left in the ultramylonite boundary zones. The dykes have the same composition as their host rocks, except for slightly lower Si and large ion lithophile elements and higher Mg, Ca, Cr, Co and Ni. Chromite, probably spurted from the nearby ultramafic rock, is found as rare particles in the cataclasite fragments. This implies that material exchange occurred by mechanical mixing between the dykes and the ultramafic rock during seismic faulting. The Cr-rich eclogite minerals grown on the chromite are evidence for coseismic high-pressure crystallization. Short-lived crystal growth is implied by the fine grain sizes of the eclogite minerals and very limited element diffusion between the garnet clasts and their overgrowths. The fact that the host rocks are more hydrated implies that the dyke formation was not related to fluid infiltration. It appears, therefore, that stress was the key factor inducing the high-pressure metamorphic reactions in the dykes. Both the stress and the temperature were only transiently high in the dykes, which have been metastable since they were formed. This article is protected by copyright. All rights reserved.
    Print ISSN: 0263-4929
    Electronic ISSN: 1525-1314
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...