ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-13
    Description: Type IV pili mediate the initial interaction of many bacterial pathogens with their host cells. In Neisseria meningitidis, the causative agent of cerebrospinal meningitis, type IV pili-mediated adhesion to brain endothelial cells is required for bacteria to cross the blood-brain barrier. Here, type IV pili-mediated adhesion of N. meningitidis to human brain endothelial cells was found to recruit the Par3/Par6/PKCzeta polarity complex that plays a pivotal role in the establishment of eukaryotic cell polarity and the formation of intercellular junctions. This recruitment leads to the formation of ectopic intercellular junctional domains at the site of bacteria-host cell interaction and a subsequent depletion of junctional proteins at the cell-cell interface with opening of the intercellular junctions of the brain-endothelial interface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coureuil, Mathieu -- Mikaty, Guillain -- Miller, Florence -- Lecuyer, Herve -- Bernard, Christine -- Bourdoulous, Sandrine -- Dumenil, Guillaume -- Mege, Rene-Marc -- Weksler, Babette B -- Romero, Ignacio A -- Couraud, Pierre-Olivier -- Nassif, Xavier -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):83-7. doi: 10.1126/science.1173196. Epub 2009 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universite Paris Descartes, Faculte de Medecine, INSERM (U-570), 75015 Paris, France. mathieu.coureuil@inserm.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520910" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Antigens, CD/metabolism ; *Bacterial Adhesion ; Blood-Brain Barrier/metabolism/*microbiology ; Brain/*blood supply/cytology/microbiology ; Cadherins/metabolism ; Catenins ; Cell Adhesion Molecules/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Polarity ; Endothelial Cells/metabolism/microbiology ; Endothelium, Vascular/metabolism/*microbiology/ultrastructure ; Fimbriae, Bacterial/*physiology ; Humans ; Intercellular Junctions/*metabolism/microbiology/ultrastructure ; Membrane Proteins/metabolism ; Neisseria meningitidis/pathogenicity/*physiology ; Phosphoproteins/metabolism ; Protein Kinase C/metabolism ; cdc42 GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-12
    Description: The Gram-negative bacterium Neisseria meningitidis asymptomatically colonizes the throat of 10 to 30% of the human population, but throat colonization can also act as the port of entry to the blood (septicemia) and then the brain (meningitis). Colonization is mediated by filamentous organelles referred to as type IV pili, which allow the formation of bacterial aggregates associated with host cells. We found that proliferation of N. meningitidis in contact with host cells increased the transcription of a bacterial gene encoding a transferase that adds phosphoglycerol onto type IV pili. This unusual posttranslational modification specifically released type IV pili-dependent contacts between bacteria. In turn, this regulated detachment process allowed propagation of the bacterium to new colonization sites and also migration across the epithelium, a prerequisite for dissemination and invasive disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamot-Rooke, Julia -- Mikaty, Guillain -- Malosse, Christian -- Soyer, Magali -- Dumont, Audrey -- Gault, Joseph -- Imhaus, Anne-Flore -- Martin, Patricia -- Trellet, Mikael -- Clary, Guilhem -- Chafey, Philippe -- Camoin, Luc -- Nilges, Michael -- Nassif, Xavier -- Dumenil, Guillaume -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):778-82. doi: 10.1126/science.1200729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Polytechnique, Laboratoire des Mecanismes Reactionnels, Palaiseau F-91128, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311024" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Adhesion ; Cell Line, Tumor ; Epithelial Cells/microbiology ; Fimbriae Proteins/chemistry/*metabolism ; Fimbriae, Bacterial/chemistry/*metabolism ; Gene Expression Regulation, Bacterial ; Glycerol/metabolism ; Humans ; Models, Molecular ; Neisseria meningitidis/genetics/growth & development/*pathogenicity ; Phosphorylation ; Phosphotransferases/*genetics/*metabolism ; *Protein Processing, Post-Translational ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...