ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-03
    Description: It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trondelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andoya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parducci, Laura -- Jorgensen, Tina -- Tollefsrud, Mari Mette -- Elverland, Ellen -- Alm, Torbjorn -- Fontana, Sonia L -- Bennett, K D -- Haile, James -- Matetovici, Irina -- Suyama, Yoshihisa -- Edwards, Mary E -- Andersen, Kenneth -- Rasmussen, Morten -- Boessenkool, Sanne -- Coissac, Eric -- Brochmann, Christian -- Taberlet, Pierre -- Houmark-Nielsen, Michael -- Larsen, Nicolaj Krog -- Orlando, Ludovic -- Gilbert, M Thomas P -- Kjaer, Kurt H -- Alsos, Inger Greve -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1083-6. doi: 10.1126/science.1216043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383845" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Chloroplast/genetics ; DNA, Mitochondrial/genetics ; *Ecosystem ; Europe ; *Fossils ; Geologic Sediments ; Haplotypes ; *Ice Cover ; Molecular Sequence Data ; Mutation ; Norway ; *Picea/genetics ; *Pinus/genetics ; Scandinavian and Nordic Countries ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-07
    Description: Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willerslev, Eske -- Davison, John -- Moora, Mari -- Zobel, Martin -- Coissac, Eric -- Edwards, Mary E -- Lorenzen, Eline D -- Vestergard, Mette -- Gussarova, Galina -- Haile, James -- Craine, Joseph -- Gielly, Ludovic -- Boessenkool, Sanne -- Epp, Laura S -- Pearman, Peter B -- Cheddadi, Rachid -- Murray, David -- Brathen, Kari Anne -- Yoccoz, Nigel -- Binney, Heather -- Cruaud, Corinne -- Wincker, Patrick -- Goslar, Tomasz -- Alsos, Inger Greve -- Bellemain, Eva -- Brysting, Anne Krag -- Elven, Reidar -- Sonstebo, Jorn Henrik -- Murton, Julian -- Sher, Andrei -- Rasmussen, Morten -- Ronn, Regin -- Mourier, Tobias -- Cooper, Alan -- Austin, Jeremy -- Moller, Per -- Froese, Duane -- Zazula, Grant -- Pompanon, Francois -- Rioux, Delphine -- Niderkorn, Vincent -- Tikhonov, Alexei -- Savvinov, Grigoriy -- Roberts, Richard G -- MacPhee, Ross D E -- Gilbert, M Thomas P -- Kjaer, Kurt H -- Orlando, Ludovic -- Brochmann, Christian -- Taberlet, Pierre -- England -- Nature. 2014 Feb 6;506(7486):47-51. doi: 10.1038/nature12921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark [2]. ; 1] Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai Street, 51005 Tartu, Estonia [2]. ; 1] Laboratoire d'Ecologie Alpine (LECA) CNRS UMR 5553, University Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France [2]. ; 1] Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK [2]. ; 1] Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark [2] Department of Integrative Biology, University of California Berkeley, 1005 Valley Life Sciences Building, Berkeley, 94720 California, USA [3]. ; 1] National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway [2] Department of Botany, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia [3]. ; 1] Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark [2] Ancient DNA Laboratory, Veterinary and Life Sciences School, Murdoch University, 90 South Street, Perth, 6150 Western Australia, Australia [3]. ; Division of Biology, Kansas State University, Manhattan, 66506-4901 Kansas, USA. ; Laboratoire d'Ecologie Alpine (LECA) CNRS UMR 5553, University Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France. ; 1] National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway [2] Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, NO-0318 Oslo, Norway (S.B.); Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A 43, 14473 Potsdam, Germany (L.S.E.); SpyGen, Savoie Technolac, 17 allee du lac Saint Andre, BP 274, 73375 Le Bourget-du-Lac Cedex, France (E.B.). ; Landscape Dynamics Unit, Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland. ; Institut des Sciences de l'Evolution de Montpellier, UMR 5554 Universite Montpellier 2, Bat.22, CC061, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France. ; University of Alaska Museum of the North, Fairbanks, 99775-6960 Alaska, USA. ; Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, NO-9037 Tromso, Norway. ; Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK. ; Genoscope, Institut de Genomique du Commissariat a l'Energie Atomique (CEA), 91000 Evry, France. ; 1] Adam Mickiewicz University, Faculty of Physics, Umultowska 85, 61-614 Poznan, Poland [2] Poznan Radiocarbon Laboratory, Poznan Science and Technology Park, Rubiez 46, 61-612 Poznan, Poland. ; Tromso University Museum, NO-9037 Tromso, Norway. ; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway. ; National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway. ; Permafrost Laboratory, Department of Geography, University of Sussex, Brighton BN1 9QJ, UK. ; 1] Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia [2]. ; Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark. ; Department of Biology, Terrestrial Ecology, Universitetsparken 15, DK- 2100 Copenhagen O, Denmark. ; Australian Centre for Ancient DNA, School of Earth & Environmental Sciences, University of Adelaide, Adelaide, 5005 South Australia, Australia. ; Department of Geology/Quaternary Sciences, Lund University Solvegatan 12, SE-223 62 Lund, Sweden. ; Department of Earth and Atmospheric Sciences, University of Alberta, T6G 2E3 Edmonton, Alberta, Canada. ; Government of Yukon, Department of Tourism and Culture, Yukon Palaeontology Program, PO Box 2703 L2A, Y1A 2C6 Whitehorse, Yukon Territory, Canada. ; INRA, UMR1213 Herbivores, F-63122 Saint-Genes-Champanelle, France. ; Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint-Petersburg, Russia. ; Institute of Applied Ecology of the North of North-Eastern Federal University, Belinskogo Street 58, 677000 Yakutsk, Republic of Sakha (Yakutia), Russia. ; Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, 2522 New South Wales, Australia. ; Division of Vertebrate Zoology/Mammalogy, American Museum of Natural History, New York, 10024 New York, USA. ; 1] National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; *Biodiversity ; Bison/physiology ; Cold Climate ; *Diet ; Freezing ; *Herbivory ; High-Throughput Nucleotide Sequencing ; Horses/physiology ; Mammoths/physiology ; *Nematoda/classification/genetics/isolation & purification ; *Plants/classification/genetics ; Poaceae/genetics/growth & development ; Soil ; Time Factors ; Yukon Territory
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 4 (1990), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Phage MudIIPR13 insertional mutagenesis of Erwinia amylovora CFBP1430 allowed us to isolate 6900 independent CmR mutants. The frequencies of different auxotrophs in this population indicated that MudIIPR13 had inserted randomly in E. amylovora. Screening of 3500 CmR mutants on (i) apple calli and (ii) pear and apple seedlings led to the isolation of 19 non-pathogenic prototrophic single mutants, four of which expressed a LacZ+ hybrid protein. Expression of the fusion proteins was temperature sensitive. The 19 mutants could be separated into two classes according to their behaviour on tobacco: 13 were unable to elicit the hypersensitive response on tobacco (Hrp−) while six still could (Dsp−). The 19 MudIIPR13 insertions all mapped in the same virulence region. The MudIIPR13 insertions of Hrp− mutants were all clustered on the left part of this region, white the MudIIPR13 insertions of Dsp− mutants were located on the right part. All of the mutants except one, which proved to have a large deletion of the entire virulence region, could be complemented functionally by cosmids from an E amylovora CFBP1430 genomic library. No hybridization was observed between the cosmid pPV130, which complemented 12 hrp::MudIIPR13 mutations, and the hrp genes from Pseudomonas syringae pv. phaseolicola (Lindgren et al., 1986), P. syringae pv. tomato (N. J. Panopoulos, unpublished data) or P. solanacearum (Boucher et al., 1987). Further analysis of the large virulence region will allow mapping of the border of the virulence region and facilitate the study of the function and regulation of the hrp and dsp genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-22
    Description: Reconstructing past vegetation and species diversity from arctic lake sediments can be challenging because of low pollen and plant macrofossil concentrations. Information may be enhanced by metabarcoding of sedimentary ancient DNA ( sed aDNA). We developed a Holocene record from Lake Skartjørna, Svalbard, using sed aDNA, plant macrofossils and sediment properties, and compared it with published records. All but two genera of vascular plants identified as macrofossils in this or a previous study were identified with sed aDNA. Six additional vascular taxa were found, plus two algal and 12 bryophyte taxa, by sed aDNA analysis, which also detected more species per sample than macrofossil analysis. A shift from Salix polaris -dominated vegetation, with Koenigia islandica , Ranunculaceae and the relatively thermophilic species Arabis alpina and Betula , to Dryas octopetala -dominated vegetation ~6600–5500 cal. BP suggests a transition from moist conditions 1–2°C warmer than today to colder/drier conditions. This coincides with a decrease in runoff, inferred from core lithology, and an independent record of declining lacustrine productivity. This mid-Holocene change in terrestrial vegetation is broadly coincident with changes in records from marine sediments off the west coast of Svalbard. Over the Holocene sed aDNA records little floristic change, and it clearly shows species persisted near the lake during time intervals when they are not detected as macrofossils. The flora has shown resilience in the presence of a changing climate, and, if future warming is limited to 2°C or less, we might expect only minor floristic changes in this region. However, the Holocene record provides no analogues for greater warming.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2006-10-11
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-01-26
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-10-01
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-05-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-05-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...