ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (1,200)
  • Models, Molecular  (672)
  • Phosphorylation  (537)
  • American Association for the Advancement of Science (AAAS)  (2,248)
  • American Institute of Physics (AIP)
  • Oxford University Press
  • 2010-2014  (392)
  • 1995-1999  (871)
  • 1990-1994  (985)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-15
    Description: Evolutionary changes in traits involved in both ecological divergence and mate choice may produce reproductive isolation and speciation. However, there are few examples of such dual traits, and the genetic and molecular bases of their evolution have not been identified. We show that methyl-branched cuticular hydrocarbons (mbCHCs) are a dual trait that affects both desiccation resistance and mate choice in Drosophila serrata. We identify a fatty acid synthase mFAS (CG3524) responsible for mbCHC production in Drosophila and find that expression of mFAS is undetectable in oenocytes (cells that produce CHCs) of a closely related, desiccation-sensitive species, D. birchii, due in part to multiple changes in cis-regulatory sequences of mFAS. We suggest that ecologically influenced changes in the production of mbCHCs have contributed to reproductive isolation between the two species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Henry -- Loehlin, David W -- Dufour, Heloise D -- Vaccarro, Kathy -- Millar, Jocelyn G -- Carroll, Sean B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1148-51. doi: 10.1126/science.1249998. Epub 2014 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24526311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Desiccation ; Drosophila/*genetics/physiology ; Ecosystem ; Evolution, Molecular ; Fatty Acid Synthases/*genetics/physiology ; *Genes, Insect ; *Genetic Variation ; Hydrocarbons/*metabolism ; *Mating Preference, Animal ; Molecular Sequence Data ; *Reproductive Isolation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-05
    Description: Metaphase chromosomes are visible hallmarks of mitosis, yet our understanding of their structure and of the forces shaping them is rudimentary. Phosphorylation of histone H3 serine 10 (H3 S10) by Aurora B kinase is a signature event of mitosis, but its function in chromatin condensation is unclear. Using genetically encoded ultraviolet light-inducible cross-linkers, we monitored protein-protein interactions with spatiotemporal resolution in living yeast to identify the molecular details of the pathway downstream of H3 S10 phosphorylation. This modification leads to the recruitment of the histone deacetylase Hst2p that subsequently removes an acetyl group from histone H4 lysine 16, freeing the H4 tail to interact with the surface of neighboring nucleosomes and promoting fiber condensation. This cascade of events provides a condensin-independent driving force of chromatin hypercondensation during mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilkins, Bryan J -- Rall, Nils A -- Ostwal, Yogesh -- Kruitwagen, Tom -- Hiragami-Hamada, Kyoko -- Winkler, Marco -- Barral, Yves -- Fischle, Wolfgang -- Neumann, Heinz -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):77-80. doi: 10.1126/science.1244508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Free Floater (Junior) Research Group "Applied Synthetic Biology," Institute for Microbiology and Genetics, Georg-August University Gottingen, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385627" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Chromatin/*metabolism ; Chromosomes, Fungal/genetics/metabolism ; Cross-Linking Reagents/chemistry/radiation effects ; DNA-Binding Proteins/metabolism ; Histones/*metabolism ; Lysine/metabolism ; *Mitosis ; Multiprotein Complexes/metabolism ; Phosphorylation ; Protein Interaction Mapping ; *Protein Processing, Post-Translational ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Serine/*metabolism ; Sirtuin 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-23
    Description: Ribonucleotide reductase (RNR) supplies the balanced pools of deoxynucleotide triphosphates (dNTPs) necessary for DNA replication and maintenance of genomic integrity. RNR is subject to allosteric regulatory mechanisms in all eukaryotes, as well as to control by small protein inhibitors Sml1p and Spd1p in budding and fission yeast, respectively. Here, we show that the metazoan protein IRBIT forms a deoxyadenosine triphosphate (dATP)-dependent complex with RNR, which stabilizes dATP in the activity site of RNR and thus inhibits the enzyme. Formation of the RNR-IRBIT complex is regulated through phosphorylation of IRBIT, and ablation of IRBIT expression in HeLa cells causes imbalanced dNTP pools and altered cell cycle progression. We demonstrate a mechanism for RNR regulation in higher eukaryotes that acts by enhancing allosteric RNR inhibition by dATP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnaoutov, Alexei -- Dasso, Mary -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1512-5. doi: 10.1126/science.1251550.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. arnaouta@mail.nih.gov. ; Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237103" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalytic Domain ; Deoxyadenine Nucleotides/*metabolism ; HeLa Cells ; Humans ; Immunoprecipitation ; Lectins, C-Type/genetics/*metabolism ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Ribonucleotide Reductases/*antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-13
    Description: In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000x coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gire, Stephen K -- Goba, Augustine -- Andersen, Kristian G -- Sealfon, Rachel S G -- Park, Daniel J -- Kanneh, Lansana -- Jalloh, Simbirie -- Momoh, Mambu -- Fullah, Mohamed -- Dudas, Gytis -- Wohl, Shirlee -- Moses, Lina M -- Yozwiak, Nathan L -- Winnicki, Sarah -- Matranga, Christian B -- Malboeuf, Christine M -- Qu, James -- Gladden, Adrianne D -- Schaffner, Stephen F -- Yang, Xiao -- Jiang, Pan-Pan -- Nekoui, Mahan -- Colubri, Andres -- Coomber, Moinya Ruth -- Fonnie, Mbalu -- Moigboi, Alex -- Gbakie, Michael -- Kamara, Fatima K -- Tucker, Veronica -- Konuwa, Edwin -- Saffa, Sidiki -- Sellu, Josephine -- Jalloh, Abdul Azziz -- Kovoma, Alice -- Koninga, James -- Mustapha, Ibrahim -- Kargbo, Kandeh -- Foday, Momoh -- Yillah, Mohamed -- Kanneh, Franklyn -- Robert, Willie -- Massally, James L B -- Chapman, Sinead B -- Bochicchio, James -- Murphy, Cheryl -- Nusbaum, Chad -- Young, Sarah -- Birren, Bruce W -- Grant, Donald S -- Scheiffelin, John S -- Lander, Eric S -- Happi, Christian -- Gevao, Sahr M -- Gnirke, Andreas -- Rambaut, Andrew -- Garry, Robert F -- Khan, S Humarr -- Sabeti, Pardis C -- 095831/Wellcome Trust/United Kingdom -- 1DP2OD006514-01/OD/NIH HHS/ -- 1U01HG007480-01/HG/NHGRI NIH HHS/ -- 260864/European Research Council/International -- DP2 OD006514/OD/NIH HHS/ -- GM080177/GM/NIGMS NIH HHS/ -- HHSN272200900049C/AI/NIAID NIH HHS/ -- HHSN272200900049C/PHS HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 HG007480/HG/NHGRI NIH HHS/ -- U19 AI110818/AI/NIAID NIH HHS/ -- U19 AI115589/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1369-72. doi: 10.1126/science.1259657. Epub 2014 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. ; Kenema Government Hospital, Kenema, Sierra Leone. Eastern Polytechnic College, Kenema, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Tulane University Medical Center, New Orleans, LA 70112, USA. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Redeemer's University, Ogun State, Nigeria. ; University of Sierra Leone, Freetown, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214632" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Disease Outbreaks ; Ebolavirus/*genetics/isolation & purification ; *Epidemiological Monitoring ; Genetic Variation ; Genome, Viral/genetics ; Genomics/methods ; Hemorrhagic Fever, Ebola/epidemiology/*transmission/*virology ; Humans ; Mutation ; Sequence Analysis, DNA ; Sierra Leone/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-18
    Description: The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor required for normal cortical development and is expressed in cortical progenitor cells. GPR56 expression levels regulate progenitor proliferation. GPR56 splice forms are highly variable between mice and humans, and the regulatory element of gyrencephalic mammals directs restricted lateral cortical expression. Our data reveal a mechanism by which control of GPR56 expression pattern by multiple alternative promoters can influence stem cell proliferation, gyral patterning, and, potentially, neocortex evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bae, Byoung-Il -- Tietjen, Ian -- Atabay, Kutay D -- Evrony, Gilad D -- Johnson, Matthew B -- Asare, Ebenezer -- Wang, Peter P -- Murayama, Ayako Y -- Im, Kiho -- Lisgo, Steven N -- Overman, Lynne -- Sestan, Nenad -- Chang, Bernard S -- Barkovich, A James -- Grant, P Ellen -- Topcu, Meral -- Politsky, Jeffrey -- Okano, Hideyuki -- Piao, Xianhua -- Walsh, Christopher A -- 2R01NS035129/NS/NINDS NIH HHS/ -- G0700089/Medical Research Council/United Kingdom -- GR082557/Wellcome Trust/United Kingdom -- HHSN275200900011C/PHS HHS/ -- N01-HD-9-0011/HD/NICHD NIH HHS/ -- R01 NS035129/NS/NINDS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- U01MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):764-8. doi: 10.1126/science.1244392.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Broad Institute of MIT and Harvard, and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531968" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Base Sequence ; Biological Evolution ; Body Patterning/*genetics ; Cats ; Cell Proliferation ; Cerebral Cortex/anatomy & histology/cytology/*embryology ; Codon, Nonsense ; Frontal Lobe/anatomy & histology/cytology/embryology ; Genetic Variation ; Haplotypes ; Humans ; Mice ; Molecular Sequence Data ; Neural Stem Cells/cytology/*physiology ; Pedigree ; Promoter Regions, Genetic/genetics ; Receptors, G-Protein-Coupled/*genetics ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-26
    Description: The hierarchical packaging of eukaryotic chromatin plays a central role in transcriptional regulation and other DNA-related biological processes. Here, we report the 11-angstrom-resolution cryogenic electron microscopy (cryo-EM) structures of 30-nanometer chromatin fibers reconstituted in the presence of linker histone H1 and with different nucleosome repeat lengths. The structures show a histone H1-dependent left-handed twist of the repeating tetranucleosomal structural units, within which the four nucleosomes zigzag back and forth with a straight linker DNA. The asymmetric binding and the location of histone H1 in chromatin play a role in the formation of the 30-nanometer fiber. Our results provide mechanistic insights into how nucleosomes compact into higher-order chromatin fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Feng -- Chen, Ping -- Sun, Dapeng -- Wang, Mingzhu -- Dong, Liping -- Liang, Dan -- Xu, Rui-Ming -- Zhu, Ping -- Li, Guohong -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):376-80. doi: 10.1126/science.1251413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/*ultrastructure ; Cryoelectron Microscopy ; DNA/chemistry/*ultrastructure ; Histones/*chemistry/metabolism ; Imaging, Three-Dimensional ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleosomes/*ultrastructure ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism ; Xenopus Proteins/chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-13
    Description: Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goto, Yoshiyuki -- Obata, Takashi -- Kunisawa, Jun -- Sato, Shintaro -- Ivanov, Ivaylo I -- Lamichhane, Aayam -- Takeyama, Natsumi -- Kamioka, Mariko -- Sakamoto, Mitsuo -- Matsuki, Takahiro -- Setoyama, Hiromi -- Imaoka, Akemi -- Uematsu, Satoshi -- Akira, Shizuo -- Domino, Steven E -- Kulig, Paulina -- Becher, Burkhard -- Renauld, Jean-Christophe -- Sasakawa, Chihiro -- Umesaki, Yoshinori -- Benno, Yoshimi -- Kiyono, Hiroshi -- 1R01DK098378/DK/NIDDK NIH HHS/ -- R01 DK098378/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1254009. doi: 10.1126/science.1254009. Epub 2014 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka 567-0085, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Nippon Institute for Biological Science, Tokyo 198-0024, Japan. ; Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Yakult Central Institute, Tokyo 186-8650, Japan. ; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan. ; Department of Obstetrics and Gynecology, Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, MI 48109-5617, USA. ; Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland. ; Ludwig Institute for Cancer Research and Universite Catholique de Louvain, Brussels B-1200, Belgium. ; Nippon Institute for Biological Science, Tokyo 198-0024, Japan. Division of Bacterial Infection, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan. ; Benno Laboratory, Innovation Center, RIKEN, Wako, Saitama 351-0198, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Fucose/*metabolism ; Fucosyltransferases/genetics/metabolism ; Germ-Free Life ; Glycosylation ; Goblet Cells/enzymology/immunology/microbiology ; Ileum/enzymology/immunology/microbiology ; *Immunity, Innate ; Interleukins/immunology ; Intestinal Mucosa/enzymology/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Molecular Sequence Data ; Paneth Cells/enzymology/immunology/microbiology ; Salmonella Infections/*immunology/microbiology ; *Salmonella typhimurium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-17
    Description: Some HIV-infected individuals develop broadly neutralizing antibodies (bNAbs), whereas most develop antibodies that neutralize only a narrow range of viruses (nNAbs). bNAbs, but not nNAbs, protect animals from experimental infection and are likely a key component of an effective vaccine. nNAbs and bNAbs target the same regions of the viral envelope glycoprotein (Env), but for reasons that remain unclear only nNAbs are elicited by Env immunization. We show that in contrast to germline-reverted (gl) bNAbs, glnNAbs recognized diverse recombinant Envs. Moreover, owing to binding affinity differences, nNAb B cell progenitors had an advantage in becoming activated and internalizing Env compared with bNAb B cell progenitors. We then identified an Env modification strategy that minimized the activation of nNAb B cells targeting epitopes that overlap those of bNAbs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McGuire, Andrew T -- Dreyer, Anita M -- Carbonetti, Sara -- Lippy, Adriana -- Glenn, Jolene -- Scheid, Johannes F -- Mouquet, Hugo -- Stamatatos, Leonidas -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI094419-01/AI/NIAID NIH HHS/ -- U19 19AI109632-01/AI/NIAID NIH HHS/ -- U19 AI109632/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1380-3. doi: 10.1126/science.1259206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, WA 98109, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur and CNRS-URA 1961, 75015 Paris, France. ; Seattle Biomedical Research Institute, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98109, USA. lstamata@fhcrc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504724" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Antibodies, Neutralizing/*immunology ; Antibody Affinity ; B-Lymphocytes/immunology ; Binding, Competitive ; Epitopes/immunology ; HIV Antibodies/genetics/*immunology ; HIV-1/*immunology ; Humans ; Lymphocyte Activation ; Models, Molecular ; Receptors, Antigen, B-Cell/genetics/immunology ; Recombinant Proteins/immunology ; env Gene Products, Human Immunodeficiency Virus/chemistry/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-03-15
    Description: Ecological specialization should minimize niche overlap, yet herbivorous neotropical flies (Blepharoneura) and their lethal parasitic wasps (parasitoids) exhibit both extreme specialization and apparent niche overlap in host plants. From just two plant species at one site in Peru, we collected 3636 flowers yielding 1478 fly pupae representing 14 Blepharoneura fly species, 18 parasitoid species (14 Bellopius species), and parasitoid-host associations, all discovered through analysis of molecular data. Multiple sympatric species specialize on the same sex flowers of the same fly host-plant species-which suggests extreme niche overlap; however, niche partitioning was exposed by interactions between wasps and flies. Most Bellopius species emerged as adults from only one fly species, yet evidence from pupae (preadult emergence samples) show that most Bellopius also attacked additional fly species but never emerged as adults from those flies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Condon, Marty A -- Scheffer, Sonja J -- Lewis, Matthew L -- Wharton, Robert -- Adams, Dean C -- Forbes, Andrew A -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1240-4. doi: 10.1126/science.1245007.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Cornell College, Mount Vernon, IA 52314, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biodiversity ; Cucurbitaceae/*parasitology ; Flowers/parasitology ; *Food Chain ; *Herbivory ; Molecular Sequence Data ; Peru ; Pupa/parasitology ; Tephritidae/embryology/*parasitology ; Wasps/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-08-30
    Description: The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raghavan, Maanasa -- DeGiorgio, Michael -- Albrechtsen, Anders -- Moltke, Ida -- Skoglund, Pontus -- Korneliussen, Thorfinn S -- Gronnow, Bjarne -- Appelt, Martin -- Gullov, Hans Christian -- Friesen, T Max -- Fitzhugh, William -- Malmstrom, Helena -- Rasmussen, Simon -- Olsen, Jesper -- Melchior, Linea -- Fuller, Benjamin T -- Fahrni, Simon M -- Stafford, Thomas Jr -- Grimes, Vaughan -- Renouf, M A Priscilla -- Cybulski, Jerome -- Lynnerup, Niels -- Lahr, Marta Mirazon -- Britton, Kate -- Knecht, Rick -- Arneborg, Jette -- Metspalu, Mait -- Cornejo, Omar E -- Malaspinas, Anna-Sapfo -- Wang, Yong -- Rasmussen, Morten -- Raghavan, Vibha -- Hansen, Thomas V O -- Khusnutdinova, Elza -- Pierre, Tracey -- Dneprovsky, Kirill -- Andreasen, Claus -- Lange, Hans -- Hayes, M Geoffrey -- Coltrain, Joan -- Spitsyn, Victor A -- Gotherstrom, Anders -- Orlando, Ludovic -- Kivisild, Toomas -- Villems, Richard -- Crawford, Michael H -- Nielsen, Finn C -- Dissing, Jorgen -- Heinemeier, Jan -- Meldgaard, Morten -- Bustamante, Carlos -- O'Rourke, Dennis H -- Jakobsson, Mattias -- Gilbert, M Thomas P -- Nielsen, Rasmus -- Willerslev, Eske -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1255832. doi: 10.1126/science.1255832.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, PA 16802, USA. ; Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. ; Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark. ; Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada. ; Arctic Studies Center, Post Office Box 37012, Department of Anthropology, MRC 112, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. ; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark. ; AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark. ; Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark. ; Department of Earth System Science, University of California, Irvine, CA 92697, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark. ; Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. ; Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada. Department of Anthropology, University of Western Ontario, 1151 Richmond Street North, London N6A 5C2, Canada. ; Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK. ; Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK. ; National Museum of Denmark, Frederiksholms kanal 12, 1220 Copenhagen, Denmark. School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK. ; Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia. ; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. School of Biological Sciences, Washington State University, Post Office Box 644236, Pullman, WA 99164, USA. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. Ancestry.com DNA LLC, San Francisco, CA 94107, USA. ; Informatics and Bio-computing, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada. ; Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark. ; Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan 450074, Russia. ; State Museum for Oriental Art, 12a, Nikitsky Boulevard, Moscow 119019, Russia. ; Greenland National Museum and Archives, Post Office Box 145, 3900 Nuuk, Greenland. ; Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA. Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. ; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA. ; Research Centre for Medical Genetics of Russian Academy of Medical Sciences, 1 Moskvorechie, Moscow 115478, Russia. ; Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden. ; Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. ; Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS 66045, USA. ; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. ; Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ewillerslev@snm.ku.dk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170159" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska/ethnology ; Arctic Regions/ethnology ; Base Sequence ; Bone and Bones ; Canada/ethnology ; DNA, Mitochondrial/genetics ; Genome, Human/*genetics ; Greenland/ethnology ; Hair ; History, Ancient ; *Human Migration ; Humans ; Inuits/ethnology/*genetics/history ; Molecular Sequence Data ; Siberia/ethnology ; Survivors/history ; Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-08-26
    Description: The ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)-responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding-response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV. EutV is known to regulate the eut messenger RNAs by binding dual-hairpin structures that overlap terminators and thus prevent transcription termination. In the presence of AdoCbl, EutV cannot bind to EutX and, instead, causes transcriptional read through of multiple eut genes. This work introduces riboswitch-mediated control of protein sequestration as a posttranscriptional mechanism to coordinately regulate gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DebRoy, Sruti -- Gebbie, Margo -- Ramesh, Arati -- Goodson, Jonathan R -- Cruz, Melissa R -- van Hoof, Ambro -- Winkler, Wade C -- Garsin, Danielle A -- P30 DK056338/DK/NIDDK NIH HHS/ -- R01 AI076406/AI/NIAID NIH HHS/ -- R01 AI110432/AI/NIAID NIH HHS/ -- R01 GM099790/GM/NIGMS NIH HHS/ -- R01AI076406/AI/NIAID NIH HHS/ -- R01GM099790/GM/NIGMS NIH HHS/ -- R56 AI110432/AI/NIAID NIH HHS/ -- R56AI110432/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):937-40. doi: 10.1126/science.1255091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, TX 77030, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. danielle.a.garsin@uth.tmc.edu wwinkler@umd.edu. ; Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, TX 77030, USA. danielle.a.garsin@uth.tmc.edu wwinkler@umd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146291" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cobamides/*metabolism ; Enterococcus faecalis/*genetics/metabolism ; Ethanolamine/*metabolism ; *Gene Expression Regulation, Bacterial ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Messenger/chemistry/genetics/*metabolism ; *Response Elements ; Riboswitch/genetics/*physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-08-30
    Description: The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carneiro, Miguel -- Rubin, Carl-Johan -- Di Palma, Federica -- Albert, Frank W -- Alfoldi, Jessica -- Barrio, Alvaro Martinez -- Pielberg, Gerli -- Rafati, Nima -- Sayyab, Shumaila -- Turner-Maier, Jason -- Younis, Shady -- Afonso, Sandra -- Aken, Bronwen -- Alves, Joel M -- Barrell, Daniel -- Bolet, Gerard -- Boucher, Samuel -- Burbano, Hernan A -- Campos, Rita -- Chang, Jean L -- Duranthon, Veronique -- Fontanesi, Luca -- Garreau, Herve -- Heiman, David -- Johnson, Jeremy -- Mage, Rose G -- Peng, Ze -- Queney, Guillaume -- Rogel-Gaillard, Claire -- Ruffier, Magali -- Searle, Steve -- Villafuerte, Rafael -- Xiong, Anqi -- Young, Sarah -- Forsberg-Nilsson, Karin -- Good, Jeffrey M -- Lander, Eric S -- Ferrand, Nuno -- Lindblad-Toh, Kerstin -- Andersson, Leif -- 095908/Wellcome Trust/United Kingdom -- U54 HG003067/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1074-9. doi: 10.1126/science.1253714.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich, UK. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt. ; Wellcome Trust Sanger Institute, Hinxton, UK. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. ; Institut National de la Recherche Agronomique (INRA), UMR1388 Genetique, Physiologie et Systemes d'Elevage, F-31326 Castanet-Tolosan, France. ; Labovet Conseil, BP539, 85505 Les Herbiers Cedex, France. ; INRA, UMR1198 Biologie du Developpement et Reproduction, F-78350 Jouy-en-Josas, France. ; Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy. ; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA. ; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA. ; ANTAGENE, Animal Genomics Laboratory, Lyon, France. ; INRA, UMR1313 Genetique Animale et Biologie Integrative, F- 78350, Jouy-en-Josas, France. ; Wellcome Trust Sanger Institute, Hinxton, UK. ; Instituto de Estudios Sociales Avanzados, (IESA-CSIC) Campo Santo de los Martires 7, Cordoba, Spain. ; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre sn. 4169-007 Porto, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/anatomy & histology/*genetics/psychology ; Animals, Wild/anatomy & histology/*genetics/psychology ; Base Sequence ; Behavior, Animal ; Breeding ; Evolution, Molecular ; Gene Frequency ; Genetic Loci ; Genome/genetics ; Molecular Sequence Data ; Phenotype ; Polymorphism, Single Nucleotide ; Rabbits/anatomy & histology/*genetics/psychology ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-06
    Description: The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species. Selection has created a dynamic repertoire of sRNA-target interactions by jointly acting on sRNA genes and their target sites, which has resulted in a complex system of regulation among alleles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Durand, Eleonore -- Meheust, Raphael -- Soucaze, Marion -- Goubet, Pauline M -- Gallina, Sophie -- Poux, Celine -- Fobis-Loisy, Isabelle -- Guillon, Eline -- Gaude, Thierry -- Sarazin, Alexis -- Figeac, Martin -- Prat, Elisa -- Marande, William -- Berges, Helene -- Vekemans, Xavier -- Billiard, Sylvain -- Castric, Vincent -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1200-5. doi: 10.1126/science.1259442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. ; Reproduction et Developpement des Plantes, Institut Federatif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Claude Bernard Lyon I, Ecole Normale Superieure de Lyon, F-69364 Lyon, Cedex 07, France. ; Department of Biology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland. ; UDSL Universite Lille 2 Droit et Sante, and Plate-forme de genomique fonctionnelle et structurale IFR-114, F-59000 Lille, France. ; Centre National des Ressources Genomiques Vegetales, INRA UPR 1258, Castanet-Tolosan, France. ; Laboratoire Genetique et Evolution des Populations Vegetales, CNRS UMR 8198, Universite Lille 1, F-59655 Villeneuve d'Ascq cedex, France. vincent.castric@univ-lille1.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477454" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics ; *Biological Evolution ; *Gene Expression Regulation, Plant ; *Gene Regulatory Networks ; *Genes, Dominant ; *Genes, Recessive ; Genetic Loci ; Models, Molecular ; Phylogeny ; Pollination ; RNA, Small Untranslated/classification/*genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-06-07
    Description: After light-induced nuclear translocation, phytochrome photoreceptors interact with and induce rapid phosphorylation and degradation of basic helix-loop-helix transcription factors, such as PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), to regulate gene expression. Concomitantly, this interaction triggers feedback reduction of phytochrome B (phyB) levels. Light-induced phosphorylation of PIF3 is necessary for the degradation of both proteins. We report that this PIF3 phosphorylation induces, and is necessary for, recruitment of LRB [Light-Response Bric-a-Brack/Tramtrack/Broad (BTB)] E3 ubiquitin ligases to the PIF3-phyB complex. The recruited LRBs promote concurrent polyubiqutination and degradation of both PIF3 and phyB in vivo. These data reveal a linked signal-transmission and attenuation mechanism involving mutually assured destruction of the receptor and its immediate signaling partner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414656/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, Weimin -- Xu, Shou-Ling -- Tepperman, James M -- Stanley, David J -- Maltby, Dave A -- Gross, John D -- Burlingame, Alma L -- Wang, Zhi-Yong -- Quail, Peter H -- 2R01 GM-047475/GM/NIGMS NIH HHS/ -- 5R01GM066258/GM/NIGMS NIH HHS/ -- 8P41GM103481/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- R01 GM047475/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- T32 GM008284/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1160-4. doi: 10.1126/science.1250778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA. ; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. ; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Plant Gene Expression Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Albany, CA 94710, USA. quail@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904166" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Nucleus/metabolism ; Cullin Proteins/*metabolism ; Gene Expression Regulation, Plant ; HeLa Cells ; Humans ; *Light Signal Transduction ; Nuclear Proteins/genetics/metabolism ; Phosphorylation ; Phytochrome B/*metabolism ; Polyubiquitin/metabolism ; Proteolysis ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-11-15
    Description: Cellular memory is crucial to many natural biological processes and sophisticated synthetic biology applications. Existing cellular memories rely on epigenetic switches or recombinases, which are limited in scalability and recording capacity. In this work, we use the DNA of living cell populations as genomic "tape recorders" for the analog and distributed recording of long-term event histories. We describe a platform for generating single-stranded DNA (ssDNA) in vivo in response to arbitrary transcriptional signals. When coexpressed with a recombinase, these intracellularly expressed ssDNAs target specific genomic DNA addresses, resulting in precise mutations that accumulate in cell populations as a function of the magnitude and duration of the inputs. This platform could enable long-term cellular recorders for environmental and biomedical applications, biological state machines, and enhanced genome engineering strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farzadfard, Fahim -- Lu, Timothy K -- 1DP2OD008435/OD/NIH HHS/ -- 1P50GM098792/GM/NIGMS NIH HHS/ -- DP2 OD008435/OD/NIH HHS/ -- P50 GM098792/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 14;346(6211):1256272. doi: 10.1126/science.1256272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA. MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA. MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ; Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA. MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA. MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. timlu@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25395541" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Bioengineering ; Cells ; DNA, Single-Stranded/*genetics ; Escherichia coli/genetics ; *Genetic Code ; Genomics/methods ; Information Storage and Retrieval/*methods ; Memory ; Molecular Sequence Data ; Synthetic Biology ; *Tape Recording ; Transcription, Genetic ; *Writing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-03-01
    Description: Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Je Hyuk -- Daugharthy, Evan R -- Scheiman, Jonathan -- Kalhor, Reza -- Yang, Joyce L -- Ferrante, Thomas C -- Terry, Richard -- Jeanty, Sauveur S F -- Li, Chao -- Amamoto, Ryoji -- Peters, Derek T -- Turczyk, Brian M -- Marblestone, Adam H -- Inverso, Samuel A -- Bernard, Amy -- Mali, Prashant -- Rios, Xavier -- Aach, John -- Church, George M -- GM080177/GM/NIGMS NIH HHS/ -- MH098977/MH/NIMH NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2HL102815/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 MH098977/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cells, Cultured ; DNA, Complementary ; Fluorescence ; Gene Expression Profiling/*methods ; Humans ; Induced Pluripotent Stem Cells ; RNA, Messenger/genetics/metabolism ; Sequence Analysis, RNA/*methods ; Single-Cell Analysis ; Transcription Initiation Site ; *Transcriptome ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-04-26
    Description: Mutations in the mitochondrial genome are associated with multiple diseases and biological processes; however, little is known about the extent of sequence variation in the mitochondrial transcriptome. By ultra-deeply sequencing mitochondrial RNA (〉6000x) from the whole blood of ~1000 individuals from the CARTaGENE project, we identified remarkable levels of sequence variation within and across individuals, as well as sites that show consistent patterns of posttranscriptional modification. Using a genome-wide association study, we find that posttranscriptional modification of functionally important sites in mitochondrial transfer RNAs (tRNAs) is under strong genetic control, largely driven by a missense mutation in MRPP3 that explains ~22% of the variance. These results reveal a major nuclear genetic determinant of posttranscriptional modification in mitochondria and suggest that tRNA posttranscriptional modification may affect cellular energy production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodgkinson, Alan -- Idaghdour, Youssef -- Gbeha, Elias -- Grenier, Jean-Christophe -- Hip-Ki, Elodie -- Bruat, Vanessa -- Goulet, Jean-Philippe -- de Malliard, Thibault -- Awadalla, Philip -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):413-5. doi: 10.1126/science.1251110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CHU Sainte-Justine Research Centre, Department of Pediatrics, Faculty of Medicine, Universite de Montreal, 3175 Chemin de la Cote-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763589" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Base Sequence ; DNA, Mitochondrial/chemistry/genetics ; Female ; *Genetic Variation ; *Genome, Mitochondrial ; Genome-Wide Association Study ; High-Throughput Nucleotide Sequencing ; Humans ; Male ; Methylation ; Middle Aged ; Mutation, Missense ; Polymorphism, Single Nucleotide ; RNA/chemistry/*genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA, Transfer/chemistry/*genetics/metabolism ; Ribonuclease P/*genetics/metabolism ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-08-16
    Description: In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulepati, Sabin -- Heroux, Annie -- Bailey, Scott -- GM097330/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41GM103473/GM/NIGMS NIH HHS/ -- P41RR012408/RR/NCRR NIH HHS/ -- R01 GM097330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1479-84. doi: 10.1126/science.1256996. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. ; Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA. ; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA. scott.bailey@jhu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25123481" target="_blank"〉PubMed〈/a〉
    Keywords: CRISPR-Associated Proteins/*chemistry ; *CRISPR-Cas Systems ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Crystallography, X-Ray ; DNA Helicases/chemistry ; DNA, Single-Stranded/*chemistry ; Escherichia coli/*genetics ; Escherichia coli Proteins/*chemistry ; Models, Molecular ; RNA, Bacterial/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-03-22
    Description: Biological oscillations are observed at many levels of cellular organization. In the social amoeba Dictyostelium discoideum, starvation-triggered multicellular development is organized by periodic cyclic adenosine 3',5'-monophosphate (cAMP) waves, which provide both chemoattractant gradients and developmental signals. We report that GtaC, a GATA transcription factor, exhibits rapid nucleocytoplasmic shuttling in response to cAMP waves. This behavior requires coordinated action of a nuclear localization signal and reversible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor-mediated phosphorylation. Although both are required for developmental gene expression, receptor occupancy promotes nuclear exit of GtaC, which leads to a transient burst of transcription at each cAMP cycle. We demonstrate that this biological circuit filters out high-frequency signals and counts those admitted, thereby enabling cells to modulate gene expression according to the dynamic pattern of the external stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061987/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cai, Huaqing -- Katoh-Kurasawa, Mariko -- Muramoto, Tetsuya -- Santhanam, Balaji -- Long, Yu -- Li, Lei -- Ueda, Masahiro -- Iglesias, Pablo A -- Shaulsky, Gad -- Devreotes, Peter N -- GM 28007/GM/NIGMS NIH HHS/ -- GM 34933/GM/NIGMS NIH HHS/ -- HD 039691/HD/NICHD NIH HHS/ -- P01 HD039691/HD/NICHD NIH HHS/ -- R01 GM028007/GM/NIGMS NIH HHS/ -- R01 GM034933/GM/NIGMS NIH HHS/ -- R37 GM028007/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1249531. doi: 10.1126/science.1249531.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653039" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Nucleus/*metabolism ; Cyclic AMP/metabolism/pharmacology ; Cytoplasm/*metabolism ; Dictyostelium/growth & development/*metabolism ; GATA Transcription Factors/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/metabolism ; Nuclear Localization Signals ; Phosphorylation ; Protozoan Proteins/chemistry/genetics/*metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-03-29
    Description: Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATalpha allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033833/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033833/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Annaluru, Narayana -- Muller, Heloise -- Mitchell, Leslie A -- Ramalingam, Sivaprakash -- Stracquadanio, Giovanni -- Richardson, Sarah M -- Dymond, Jessica S -- Kuang, Zheng -- Scheifele, Lisa Z -- Cooper, Eric M -- Cai, Yizhi -- Zeller, Karen -- Agmon, Neta -- Han, Jeffrey S -- Hadjithomas, Michalis -- Tullman, Jennifer -- Caravelli, Katrina -- Cirelli, Kimberly -- Guo, Zheyuan -- London, Viktoriya -- Yeluru, Apurva -- Murugan, Sindurathy -- Kandavelou, Karthikeyan -- Agier, Nicolas -- Fischer, Gilles -- Yang, Kun -- Martin, J Andrew -- Bilgel, Murat -- Bohutski, Pavlo -- Boulier, Kristin M -- Capaldo, Brian J -- Chang, Joy -- Charoen, Kristie -- Choi, Woo Jin -- Deng, Peter -- DiCarlo, James E -- Doong, Judy -- Dunn, Jessilyn -- Feinberg, Jason I -- Fernandez, Christopher -- Floria, Charlotte E -- Gladowski, David -- Hadidi, Pasha -- Ishizuka, Isabel -- Jabbari, Javaneh -- Lau, Calvin Y L -- Lee, Pablo A -- Li, Sean -- Lin, Denise -- Linder, Matthias E -- Ling, Jonathan -- Liu, Jaime -- Liu, Jonathan -- London, Mariya -- Ma, Henry -- Mao, Jessica -- McDade, Jessica E -- McMillan, Alexandra -- Moore, Aaron M -- Oh, Won Chan -- Ouyang, Yu -- Patel, Ruchi -- Paul, Marina -- Paulsen, Laura C -- Qiu, Judy -- Rhee, Alex -- Rubashkin, Matthew G -- Soh, Ina Y -- Sotuyo, Nathaniel E -- Srinivas, Venkatesh -- Suarez, Allison -- Wong, Andy -- Wong, Remus -- Xie, Wei Rose -- Xu, Yijie -- Yu, Allen T -- Koszul, Romain -- Bader, Joel S -- Boeke, Jef D -- Chandrasegaran, Srinivasan -- 092076/Wellcome Trust/United Kingdom -- GM077291/GM/NIGMS NIH HHS/ -- R01 GM077291/GM/NIGMS NIH HHS/ -- R01 GM090192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):55-8. doi: 10.1126/science.1249252. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Health Sciences, Johns Hopkins University (JHU) School of Public Health, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674868" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Chromosomes, Fungal/genetics/metabolism ; DNA, Fungal/genetics ; Genes, Fungal ; Genetic Fitness ; Genome, Fungal ; Genomic Instability ; Introns ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; RNA, Fungal/genetics ; RNA, Transfer/genetics ; Saccharomyces cerevisiae/cytology/*genetics/physiology ; Sequence Analysis, DNA ; Sequence Deletion ; Synthetic Biology/*methods ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-02-22
    Description: Robustness, the maintenance of a character in the presence of genetic change, can help preserve adaptive traits but also may hinder evolvability, the ability to bring forth novel adaptations. We used genotype networks to analyze the binding site repertoires of 193 transcription factors from mice and yeast, providing empirical evidence that robustness and evolvability need not be conflicting properties. Network vertices represent binding sites where two sites are connected if they differ in a single nucleotide. We show that the binding sites of larger genotype networks are not only more robust, but the sequences adjacent to such networks can also bind more transcription factors, thus demonstrating that robustness can facilitate evolvability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, Joshua L -- Wagner, Andreas -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):875-7. doi: 10.1126/science.1249046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites/genetics ; Gene Regulatory Networks ; Mice ; Mutation ; Saccharomyces cerevisiae Proteins/chemistry ; Transcription Factors/*chemistry ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-02-08
    Description: Despite our understanding of actomyosin function in individual migrating cells, we know little about the mechanisms by which actomyosin drives collective cell movement in vertebrate embryos. The collective movements of convergent extension drive both global reorganization of the early embryo and local remodeling during organogenesis. We report here that planar cell polarity (PCP) proteins control convergent extension by exploiting an evolutionarily ancient function of the septin cytoskeleton. By directing septin-mediated compartmentalization of cortical actomyosin, PCP proteins coordinate the specific shortening of mesenchymal cell-cell contacts, which in turn powers cell interdigitation. These data illuminate the interface between developmental signaling systems and the fundamental machinery of cell behavior and should provide insights into the etiology of human birth defects, such as spina bifida and congenital kidney cysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167615/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shindo, Asako -- Wallingford, John B -- R01 GM074104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):649-52. doi: 10.1126/science.1243126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and University of Texas at Austin, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503851" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; *Cell Movement ; *Cell Polarity ; Embryo, Nonmammalian/cytology/metabolism ; Female ; Gastrula/cytology/metabolism ; Gene Knockdown Techniques ; Humans ; Mesoderm/cytology/metabolism ; Organogenesis ; Phosphorylation ; Septins/genetics/*metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-10-18
    Description: Small molecules are useful tools for probing the biological function and therapeutic potential of individual proteins, but achieving selectivity is challenging when the target protein shares structural domains with other proteins. The Bromo and Extra-Terminal (BET) proteins have attracted interest because of their roles in transcriptional regulation, epigenetics, and cancer. The BET bromodomains (protein interaction modules that bind acetyl-lysine) have been targeted by potent small-molecule inhibitors, but these inhibitors lack selectivity for individual family members. We developed an ethyl derivative of an existing small-molecule inhibitor, I-BET/JQ1, and showed that it binds leucine/alanine mutant bromodomains with nanomolar affinity and achieves up to 540-fold selectivity relative to wild-type bromodomains. Cell culture studies showed that blockade of the first bromodomain alone is sufficient to displace a specific BET protein, Brd4, from chromatin. Expansion of this approach could help identify the individual roles of single BET proteins in human physiology and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baud, Matthias G J -- Lin-Shiao, Enrique -- Cardote, Teresa -- Tallant, Cynthia -- Pschibul, Annica -- Chan, Kwok-Ho -- Zengerle, Michael -- Garcia, Jordi R -- Kwan, Terence T-L -- Ferguson, Fleur M -- Ciulli, Alessio -- 097945/Z/11/Z/Wellcome Trust/United Kingdom -- 100476/Z/12/Z/Wellcome Trust/United Kingdom -- BB/G023123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J001201/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):638-41. doi: 10.1126/science.1249830. Epub 2014 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. ; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ; Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee, DD1 5EH, UK. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. a.ciulli@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25323695" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azepines/chemistry/pharmacology ; Cell Line, Tumor ; Chromatin/chemistry ; Crystallography, X-Ray ; Humans ; Leucine/genetics ; Models, Molecular ; Molecular Probes/*chemistry ; Mutation ; Nuclear Proteins/antagonists & inhibitors/*chemistry/genetics ; Protein Engineering/*methods ; Protein Structure, Tertiary ; Transcription Factors/antagonists & inhibitors/*chemistry/genetics ; Triazoles/chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-15
    Description: In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, Marc R -- Abraham, Brian J -- Anders, Lars -- Berezovskaya, Alla -- Gutierrez, Alejandro -- Durbin, Adam D -- Etchin, Julia -- Lawton, Lee -- Sallan, Stephen E -- Silverman, Lewis B -- Loh, Mignon L -- Hunger, Stephen P -- Sanda, Takaomi -- Young, Richard A -- Look, A Thomas -- 1R01CA176746-01/CA/NCI NIH HHS/ -- 5P01CA109901-08/CA/NCI NIH HHS/ -- 5P01CA68484/CA/NCI NIH HHS/ -- CA114766/CA/NCI NIH HHS/ -- CA120215/CA/NCI NIH HHS/ -- CA167124/CA/NCI NIH HHS/ -- CA29139/CA/NCI NIH HHS/ -- CA30969/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. ; Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA. ; Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA. ; Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25394790" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/*genetics ; Binding Sites ; Cell Line, Tumor ; *DNA, Intergenic ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Neoplastic ; Histones/metabolism ; Humans ; *INDEL Mutation ; Molecular Sequence Data ; *Mutation ; Oncogenes ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-04-05
    Description: The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an alpha-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grotwinkel, Jan Timo -- Wild, Klemens -- Segnitz, Bernd -- Sinning, Irmgard -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):101-4. doi: 10.1126/science.1249094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700861" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Protein Transport ; RNA, Ribosomal/chemistry/metabolism ; RNA, Small Cytoplasmic/*chemistry/*metabolism ; Ribosomes ; Signal Recognition Particle/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-02-01
    Description: Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Bo -- Looi, Liang-Sheng -- Guo, Siyi -- He, Zemiao -- Gan, Eng-Seng -- Huang, Jiangbo -- Xu, Yifeng -- Wee, Wan-Yi -- Ito, Toshiro -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):1248559. doi: 10.1126/science.1248559.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482483" target="_blank"〉PubMed〈/a〉
    Keywords: AGAMOUS Protein, Arabidopsis/genetics/*metabolism ; Arabidopsis/cytology/genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Base Sequence ; Carrier Proteins/genetics/*metabolism ; Cell Division/genetics/*physiology ; Epigenesis, Genetic ; Flowers/cytology/genetics/*growth & development ; Gene Expression Regulation, Plant ; Meristem/*cytology ; Molecular Sequence Data ; Plants, Genetically Modified/cytology/growth & development ; Polycomb-Group Proteins/genetics/*metabolism ; Promoter Regions, Genetic ; Stem Cells/*cytology ; Time Factors ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-06-28
    Description: Epistatic interactions between mutations can make evolutionary trajectories contingent on the chance occurrence of initial mutations. We used experimental evolution in Saccharomyces cerevisiae to quantify this contingency, finding differences in adaptability among 64 closely related genotypes. Despite these differences, sequencing of 104 evolved clones showed that initial genotype did not constrain future mutational trajectories. Instead, reconstructed combinations of mutations revealed a pattern of diminishing-returns epistasis: Beneficial mutations have consistently smaller effects in fitter backgrounds. Taken together, these results show that beneficial mutations affecting a variety of biological processes are globally coupled; they interact strongly, but only through their combined effect on fitness. As a consequence, fitness evolution follows a predictable trajectory even though sequence-level adaptation is stochastic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kryazhimskiy, Sergey -- Rice, Daniel P -- Jerison, Elizabeth R -- Desai, Michael M -- GM104239/GM/NIGMS NIH HHS/ -- R01 GM104239/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1519-22. doi: 10.1126/science.1250939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. skryazhi@oeb.harvard.edu mdesai@oeb.harvard.edu. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Physics, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. skryazhi@oeb.harvard.edu mdesai@oeb.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970088" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Base Sequence ; Directed Molecular Evolution ; *Epistasis, Genetic ; *Evolution, Molecular ; Genes, Fungal ; *Genetic Fitness ; Genome, Fungal ; Genotype ; Models, Genetic ; Molecular Sequence Annotation ; Mutation ; Saccharomyces cerevisiae/*genetics/*physiology ; Sequence Analysis, DNA ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-04-20
    Description: Tight junctions are cell-cell adhesion structures in epithelial cell sheets that surround organ compartments in multicellular organisms and regulate the permeation of ions through the intercellular space. Claudins are the major constituents of tight junctions and form strands that mediate cell adhesion and function as paracellular barriers. We report the structure of mammalian claudin-15 at a resolution of 2.4 angstroms. The structure reveals a characteristic beta-sheet fold comprising two extracellular segments, which is anchored to a transmembrane four-helix bundle by a consensus motif. Our analyses suggest potential paracellular pathways with distinctive charges on the extracellular surface, providing insight into the molecular basis of ion homeostasis across tight junctions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Hiroshi -- Nishizawa, Tomohiro -- Tani, Kazutoshi -- Yamazaki, Yuji -- Tamura, Atsushi -- Ishitani, Ryuichiro -- Dohmae, Naoshi -- Tsukita, Sachiko -- Nureki, Osamu -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):304-7. doi: 10.1126/science.1248571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744376" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Claudins/*chemistry ; Crystallography, X-Ray ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Static Electricity ; Tight Junctions/*chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-12-17
    Description: Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455941/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barber, Matthew F -- Elde, Nels C -- 1F32GM108288/GM/NIGMS NIH HHS/ -- GM090042/GM/NIGMS NIH HHS/ -- R00 GM090042/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1362-6. doi: 10.1126/science.1259329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. nelde@genetics.utah.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504720" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Evolution, Molecular ; Haemophilus influenzae/*metabolism ; Haplorhini/*genetics/immunology/*metabolism ; Humans ; Immunity, Innate ; Models, Molecular ; Molecular Sequence Data ; Neisseria/*metabolism ; Neisseria gonorrhoeae/metabolism ; Neisseria meningitidis/metabolism ; Phylogeny ; Polymorphism, Genetic ; Protein Binding ; Selection, Genetic ; Transferrin/chemistry/*genetics/*metabolism ; Transferrin-Binding Protein A/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-11-08
    Description: Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harbauer, Angelika B -- Opalinska, Magdalena -- Gerbeth, Carolin -- Herman, Josip S -- Rao, Sanjana -- Schonfisch, Birgit -- Guiard, Bernard -- Schmidt, Oliver -- Pfanner, Nikolaus -- Meisinger, Chris -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1109-13. doi: 10.1126/science.1261253. Epub 2014 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Trinationales Graduiertenkolleg 1478, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. Faculty of Biology, Universitat Freiburg, 79104 Freiburg, Germany. Spemann Graduate School of Biology and Medicine, Universitat Freiburg, 79104 Freiburg, Germany. ; Centre de Genetique Moleculaire, CNRS, 91190 Gif-sur-Yvette, France. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Institut fur Biochemie und Molekularbiologie, ZBMZ, Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. nikolaus.pfanner@biochemie.uni-freiburg.de chris.meisinger@biochemie.uni-freiburg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378463" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Cyclin B/metabolism ; Cytosol/metabolism ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/*metabolism ; Phosphorylation ; Protein Precursors/*metabolism ; Protein Transport ; Saccharomyces cerevisiae/*cytology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-01-25
    Description: Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H(+)-adenosine triphosphatase 2 at Ser(899), mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672726/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruta, Miyoshi -- Sabat, Grzegorz -- Stecker, Kelly -- Minkoff, Benjamin B -- Sussman, Michael R -- 5T32HG002760/HG/NHGRI NIH HHS/ -- U54 GM074901/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):408-11. doi: 10.1126/science.1244454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458638" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/metabolism ; Arabidopsis Proteins/*agonists/genetics/*metabolism ; *Cell Enlargement ; Cell Membrane/*enzymology ; Molecular Sequence Data ; Peptide Hormones/genetics/*metabolism ; Phosphorylation ; Phosphotransferases/genetics/metabolism ; Plant Cells/metabolism/physiology ; Plant Roots/cytology/metabolism ; Protein Binding ; Proteome/metabolism ; Proton-Translocating ATPases/*metabolism ; Serine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-10-04
    Description: Cancer genome characterization has revealed driver mutations in genes that govern ubiquitylation; however, the mechanisms by which these alterations promote tumorigenesis remain incompletely characterized. Here, we analyzed changes in the ubiquitin landscape induced by prostate cancer-associated mutations of SPOP, an E3 ubiquitin ligase substrate-binding protein. SPOP mutants impaired ubiquitylation of a subset of proteins in a dominant-negative fashion. Of these, DEK and TRIM24 emerged as effector substrates consistently up-regulated by SPOP mutants. We highlight DEK as a SPOP substrate that exhibited decreases in ubiquitylation and proteasomal degradation resulting from heteromeric complexes of wild-type and mutant SPOP protein. DEK stabilization promoted prostate epithelial cell invasion, which implicated DEK as an oncogenic effector. More generally, these results provide a framework to decipher tumorigenic mechanisms linked to dysregulated ubiquitylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257137/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257137/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theurillat, Jean-Philippe P -- Udeshi, Namrata D -- Errington, Wesley J -- Svinkina, Tanya -- Baca, Sylvan C -- Pop, Marius -- Wild, Peter J -- Blattner, Mirjam -- Groner, Anna C -- Rubin, Mark A -- Moch, Holger -- Prive, Gilbert G -- Carr, Steven A -- Garraway, Levi A -- T32 GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):85-9. doi: 10.1126/science.1250255. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada. ; Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Institute of Surgical Pathology, University Hospital Zurich, ZH 8091 Zurich, Switzerland. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Institute for Precision Medicine of Weill Cornell and New York Presbyterian Hospital, New York, NY 10065, USA. ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA. levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278611" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites/genetics ; Carcinogenesis/genetics/metabolism/pathology ; Carrier Proteins/metabolism ; Cell Line, Tumor ; Chromosomal Proteins, Non-Histone/metabolism ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Neoplasm Invasiveness ; Nuclear Proteins/*genetics/metabolism ; Oncogene Proteins/metabolism ; Prostatic Neoplasms/genetics/*metabolism/pathology ; Proteasome Endopeptidase Complex/metabolism ; Repressor Proteins/*genetics/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-24
    Description: The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed that these birds are the closest relatives of the New Zealand kiwi and are distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence toward gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche after the extinction of the dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Kieren J -- Llamas, Bastien -- Soubrier, Julien -- Rawlence, Nicolas J -- Worthy, Trevor H -- Wood, Jamie -- Lee, Michael S Y -- Cooper, Alan -- New York, N.Y. -- Science. 2014 May 23;344(6186):898-900. doi: 10.1126/science.1251981.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. ; School of Biological Sciences, Flinders University, South Australia 5001, Australia. ; Landcare Research, Post Office Box 40, Lincoln 7640, New Zealand. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. South Australian Museum, North Terrace, South Australia 5000, Australia. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. alan.cooper@adelaide.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; DNA/*genetics ; Flight, Animal ; Fossils ; Molecular Sequence Data ; New Zealand ; Palaeognathae/*classification/genetics ; Phylogeny ; Struthioniformes/*classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-05-03
    Description: Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108260/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108260/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larson, Matthew H -- Mooney, Rachel A -- Peters, Jason M -- Windgassen, Tricia -- Nayak, Dhananjaya -- Gross, Carol A -- Block, Steven M -- Greenleaf, William J -- Landick, Robert -- Weissman, Jonathan S -- F32 GM100611/GM/NIGMS NIH HHS/ -- F32 GM108222/GM/NIGMS NIH HHS/ -- P50 GM102706/GM/NIGMS NIH HHS/ -- R01 GM038660/GM/NIGMS NIH HHS/ -- R01 GM102790/GM/NIGMS NIH HHS/ -- R37 GM057035/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1042-7. doi: 10.1126/science.1251871. Epub 2014 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. ; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biological Sciences, Stanford University, Stanford, CA 94025, USA. Department of Applied Physics; Stanford University, Stanford, CA 94025, USA. ; Department of Genetics, Stanford University, Stanford, CA 94025, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu. ; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu. ; Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24789973" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Codon, Initiator/*genetics ; Consensus Sequence ; DNA-Directed RNA Polymerases/metabolism ; Escherichia coli/*genetics/*metabolism ; *Gene Expression Regulation, Bacterial ; Peptide Chain Initiation, Translational/*genetics ; *Regulatory Elements, Transcriptional ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-05-17
    Description: Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brooks, Andrew J -- Dai, Wei -- O'Mara, Megan L -- Abankwa, Daniel -- Chhabra, Yash -- Pelekanos, Rebecca A -- Gardon, Olivier -- Tunny, Kathryn A -- Blucher, Kristopher M -- Morton, Craig J -- Parker, Michael W -- Sierecki, Emma -- Gambin, Yann -- Gomez, Guillermo A -- Alexandrov, Kirill -- Wilson, Ian A -- Doxastakis, Manolis -- Mark, Alan E -- Waters, Michael J -- New York, N.Y. -- Science. 2014 May 16;344(6185):1249783. doi: 10.1126/science.1249783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. m.waters@uq.edu.au a.brooks@uq.edu.au. ; Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA. ; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. ; Biota Structural Biology Laboratory and Australian Cancer Research Foundation (ACRF) Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia. Department of Biochemistry and Molecular Biology and Bio21 Institute, University of Melbourne, Parkville, Victoria 3052, Australia. ; Scripps Research Institute, La Jolla, CA 92037, USA. ; The University of Queensland, Institute for Molecular Bioscience (IMB), St Lucia, Queensland 4072, Australia. The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833397" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Cysteine/chemistry ; Enzyme Activation ; HEK293 Cells ; Humans ; Janus Kinase 2/antagonists & inhibitors/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Somatotropin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schirle, Nicole T -- Sheu-Gruttadauria, Jessica -- MacRae, Ian J -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM104475/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. macrae@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359968" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*chemistry/genetics ; Base Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; *Gene Expression Regulation ; Humans ; Magnesium/chemistry ; MicroRNAs/*chemistry/genetics ; Models, Molecular ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Guide/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-11-21
    Description: To study the evolutionary dynamics of regulatory DNA, we mapped 〉1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierstra, Jeff -- Rynes, Eric -- Sandstrom, Richard -- Zhang, Miaohua -- Canfield, Theresa -- Hansen, R Scott -- Stehling-Sun, Sandra -- Sabo, Peter J -- Byron, Rachel -- Humbert, Richard -- Thurman, Robert E -- Johnson, Audra K -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Giste, Erika -- Haugen, Eric -- Dunn, Douglas -- Wilken, Matthew S -- Josefowicz, Steven -- Samstein, Robert -- Chang, Kai-Hsin -- Eichler, Evan E -- De Bruijn, Marella -- Reh, Thomas A -- Skoultchi, Arthur -- Rudensky, Alexander -- Orkin, Stuart H -- Papayannopoulou, Thalia -- Treuting, Piper M -- Selleri, Licia -- Kaul, Rajinder -- Groudine, Mark -- Bender, M A -- Stamatoyannopoulos, John A -- 1RC2HG005654/HG/NHGRI NIH HHS/ -- 2R01HD04399709/HD/NICHD NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 HD043997/HD/NICHD NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):1007-12. doi: 10.1126/science.1246426.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. ; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute. ; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. ; Howard Hughes Medical Institute. Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA. ; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Radiation Oncology, University of Washington, Seattle, WA 98109, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. jstam@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25411453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA/*genetics ; Deoxyribonuclease I ; *Evolution, Molecular ; Genome, Human ; Humans ; Mice ; Regulatory Sequences, Nucleic Acid/*genetics ; Restriction Mapping ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-06-07
    Description: Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1 (hBI-1) is an antiapoptotic protein that mediates a calcium leak and is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Here, we present crystal structures of a bacterial homolog and characterize its calcium leak activity. The structure has a seven-transmembrane-helix fold that features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by change of pH. A hydrogen-bonded, pKa (where Ka is the acid dissociation constant)-perturbed pair of conserved aspartate residues explains the pH dependence of this transition, and biochemical studies show that pH regulates calcium influx in proteoliposomes. Homology models for hBI-1 provide insights into TMBIM-mediated calcium leak and cytoprotective activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Yanqi -- Bruni, Renato -- Kloss, Brian -- Assur, Zahra -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- Liu, Qun -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1131-5. doi: 10.1126/science.1252043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. ; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Bioinformatics and Computational Biology, Fakultat fur Informatik, Technische Universitat Munchen, Garching, Germany. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY 10027, USA. New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA. qunliu@bnl.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904158" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*metabolism ; Bacterial Proteins/*chemistry/metabolism ; Calcium/*metabolism ; Cell Membrane/*metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen-Ion Concentration ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-04-20
    Description: Flaviviruses are emerging human pathogens and worldwide health threats. During infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) are produced by resisting degradation by the 5'--〉3' host cell exonuclease Xrn1 through an unknown RNA structure-based mechanism. Here, we present the crystal structure of a complete Xrn1-resistant flaviviral RNA, which contains interwoven pseudoknots within a compact structure that depends on highly conserved nucleotides. The RNA's three-dimensional topology creates a ringlike conformation, with the 5' end of the resistant structure passing through the ring from one side of the fold to the other. Disruption of this structure prevents formation of sfRNA during flaviviral infection. Thus, sfRNA formation results from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a structure that confounds its helicase activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Erich G -- Costantino, David A -- Rabe, Jennifer L -- Moon, Stephanie L -- Wilusz, Jeffrey -- Nix, Jay C -- Kieft, Jeffrey S -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- U54 AI-065357/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):307-10. doi: 10.1126/science.1250897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744377" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Crystallography, X-Ray ; Encephalitis Virus, Murray Valley/*genetics/pathogenicity ; Exoribonucleases/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA, Viral/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-05-17
    Description: Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatters, James C -- Kennett, Douglas J -- Asmerom, Yemane -- Kemp, Brian M -- Polyak, Victor -- Blank, Alberto Nava -- Beddows, Patricia A -- Reinhardt, Eduard -- Arroyo-Cabrales, Joaquin -- Bolnick, Deborah A -- Malhi, Ripan S -- Culleton, Brendan J -- Erreguerena, Pilar Luna -- Rissolo, Dominique -- Morell-Hart, Shanti -- Stafford, Thomas W Jr -- New York, N.Y. -- Science. 2014 May 16;344(6185):750-4. doi: 10.1126/science.1252619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Paleoscience and DirectAMS, 10322 NE 190th Street, Bothell, WA 98011, USA. paleosci@gmail.com. ; Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA. ; Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. ; Bay Area Underwater Explorers, Berkeley, CA, USA. ; Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA. ; School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Instituto Nacional Antropologia e Historia, Colonia Centro Historico, 06060, Mexico City, DF, Mexico. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA. ; Subdireccion de Arqueologia Subacuatica, Instituto Nacional de Antropologia e Historia, 06070 Mexico City, Mexico. ; Waitt Institute, La Jolla, CA 92038-1948, USA. ; Department of Anthropology, Stanford University, Stanford, CA 94305, USA. ; Centre for AMS C, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Centre for GeoGenetics, Natural History Museum of Denmark, Geological Museum, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833392" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Biological Evolution ; DNA, Mitochondrial/genetics ; Haplotypes ; Humans ; Indians, North American/*genetics ; Mexico ; Molecular Sequence Data ; Paleontology ; Radiometric Dating ; *Skeleton ; Skull/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-07-12
    Description: Antiretroviral treatment (ART) of HIV infection suppresses viral replication. Yet if ART is stopped, virus reemerges because of the persistence of infected cells. We evaluated the contribution of infected-cell proliferation and sites of proviral integration to HIV persistence. A total of 534 HIV integration sites (IS) and 63 adjacent HIV env sequences were derived from three study participants over 11.3 to 12.7 years of ART. Each participant had identical viral sequences integrated at the same position in multiple cells, demonstrating infected-cell proliferation. Integrations were overrepresented in genes associated with cancer and favored in 12 genes across multiple participants. Over time on ART, a greater proportion of persisting proviruses were in proliferating cells. HIV integration into specific genes may promote proliferation of HIV-infected cells, slowing viral decay during ART.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Thor A -- McLaughlin, Sherry -- Garg, Kavita -- Cheung, Charles Y K -- Larsen, Brendan B -- Styrchak, Sheila -- Huang, Hannah C -- Edlefsen, Paul T -- Mullins, James I -- Frenkel, Lisa M -- 201311CVI-322424-244686/Canadian Institutes of Health Research/Canada -- K23 AI077357/AI/NIAID NIH HHS/ -- K23AI077357/AI/NIAID NIH HHS/ -- P30 AI027757/AI/NIAID NIH HHS/ -- R01 AI091550/AI/NIAID NIH HHS/ -- R01 AI111806/AI/NIAID NIH HHS/ -- R01AI091550/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):570-3. doi: 10.1126/science.1256304. Epub 2014 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. University of Washington, Seattle, WA, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; University of Washington, Seattle, WA, USA. ; Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. ; University of Washington, Seattle, WA, USA. Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. University of Washington, Seattle, WA, USA. lfrenkel@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25011556" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/therapeutic use ; Base Sequence ; Basic-Leucine Zipper Transcription Factors/genetics ; Cell Proliferation ; Chromosomes, Human, Pair 6/genetics ; *Genes, Neoplasm ; Genetic Loci ; HIV Infections/drug therapy/*virology ; HIV-1/genetics/*physiology ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Phylogeny ; *Virus Integration ; *Virus Latency ; Virus Replication ; env Gene Products, Human Immunodeficiency Virus/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-12-17
    Description: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jarvis, Erich D -- Mirarab, Siavash -- Aberer, Andre J -- Li, Bo -- Houde, Peter -- Li, Cai -- Ho, Simon Y W -- Faircloth, Brant C -- Nabholz, Benoit -- Howard, Jason T -- Suh, Alexander -- Weber, Claudia C -- da Fonseca, Rute R -- Li, Jianwen -- Zhang, Fang -- Li, Hui -- Zhou, Long -- Narula, Nitish -- Liu, Liang -- Ganapathy, Ganesh -- Boussau, Bastien -- Bayzid, Md Shamsuzzoha -- Zavidovych, Volodymyr -- Subramanian, Sankar -- Gabaldon, Toni -- Capella-Gutierrez, Salvador -- Huerta-Cepas, Jaime -- Rekepalli, Bhanu -- Munch, Kasper -- Schierup, Mikkel -- Lindow, Bent -- Warren, Wesley C -- Ray, David -- Green, Richard E -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Li, Shengbin -- Li, Ning -- Huang, Yinhua -- Derryberry, Elizabeth P -- Bertelsen, Mads Frost -- Sheldon, Frederick H -- Brumfield, Robb T -- Mello, Claudio V -- Lovell, Peter V -- Wirthlin, Morgan -- Schneider, Maria Paula Cruz -- Prosdocimi, Francisco -- Samaniego, Jose Alfredo -- Vargas Velazquez, Amhed Missael -- Alfaro-Nunez, Alonzo -- Campos, Paula F -- Petersen, Bent -- Sicheritz-Ponten, Thomas -- Pas, An -- Bailey, Tom -- Scofield, Paul -- Bunce, Michael -- Lambert, David M -- Zhou, Qi -- Perelman, Polina -- Driskell, Amy C -- Shapiro, Beth -- Xiong, Zijun -- Zeng, Yongli -- Liu, Shiping -- Li, Zhenyu -- Liu, Binghang -- Wu, Kui -- Xiao, Jin -- Yinqi, Xiong -- Zheng, Qiuemei -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Smeds, Linnea -- Rheindt, Frank E -- Braun, Michael -- Fjeldsa, Jon -- Orlando, Ludovic -- Barker, F Keith -- Jonsson, Knud Andreas -- Johnson, Warren -- Koepfli, Klaus-Peter -- O'Brien, Stephen -- Haussler, David -- Ryder, Oliver A -- Rahbek, Carsten -- Willerslev, Eske -- Graves, Gary R -- Glenn, Travis C -- McCormack, John -- Burt, Dave -- Ellegren, Hans -- Alstrom, Per -- Edwards, Scott V -- Stamatakis, Alexandros -- Mindell, David P -- Cracraft, Joel -- Braun, Edward L -- Warnow, Tandy -- Jun, Wang -- Gilbert, M Thomas P -- Zhang, Guojie -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1320-31. doi: 10.1126/science.1253451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Universite Montpellier II Montpellier, France. ; Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan. ; Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. ; Laboratoire de Biometrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Universite de Lyon, F-69622 Villeurbanne, France. ; Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. ; Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark. ; The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ; Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil. ; Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark. ; Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates. ; Dubai Falcon Hospital, Dubai, United Arab Emirates. ; Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand. ; Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia. ; Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biological Sciences, National University of Singapore, Republic of Singapore. ; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA. ; Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA. ; San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA. ; Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany. ; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Base Sequence ; Biological Evolution ; Birds/classification/*genetics ; DNA Transposable Elements ; Genes ; Genetic Speciation ; *Genome ; INDEL Mutation ; Introns ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-11-02
    Description: In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akagi, Takashi -- Henry, Isabelle M -- Tao, Ryutaro -- Comai, Luca -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):646-50. doi: 10.1126/science.1257225. Epub 2014 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. ; Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. ; Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. rtao@kais.kyoto-u.ac.jp lcomai@ucdavis.edu. ; Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. rtao@kais.kyoto-u.ac.jp lcomai@ucdavis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359977" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Plant/*genetics ; Diospyros/*genetics/*physiology ; Molecular Sequence Data ; RNA, Plant/genetics/*physiology ; RNA, Small Interfering/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-04-20
    Description: Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes; however, few have been identified that regulate immune cell differentiation and function. Here, we identified lnc-DC, which was exclusively expressed in human conventional dendritic cells (DCs). Knockdown of lnc-DC impaired DC differentiation from human monocytes in vitro and from mouse bone marrow cells in vivo and reduced capacity of DCs to stimulate T cell activation. lnc-DC mediated these effects by activating the transcription factor STAT3 (signal transducer and activator of transcription 3). lnc-DC bound directly to STAT3 in the cytoplasm, which promoted STAT3 phosphorylation on tyrosine-705 by preventing STAT3 binding to and dephosphorylation by SHP1. Our work identifies a lncRNA that regulates DC differentiation and also broadens the known mechanisms of lncRNA action.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Pin -- Xue, Yiquan -- Han, Yanmei -- Lin, Li -- Wu, Cong -- Xu, Sheng -- Jiang, Zhengping -- Xu, Junfang -- Liu, Qiuyan -- Cao, Xuetao -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):310-3. doi: 10.1126/science.1251456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/cytology ; Cell Differentiation ; Chromatin/metabolism ; Cytoplasm/metabolism ; Dendritic Cells/*cytology/*immunology/physiology ; Epigenesis, Genetic ; Gene Expression Regulation ; Histones/metabolism ; Humans ; Lymphocyte Activation ; Mice ; Monocytes/cytology ; Nucleic Acid Conformation ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; RNA, Long Noncoding/*metabolism ; STAT3 Transcription Factor/*metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-03-15
    Description: Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macho, Alberto P -- Schwessinger, Benjamin -- Ntoukakis, Vardis -- Brutus, Alexandre -- Segonzac, Cecile -- Roy, Sonali -- Kadota, Yasuhiro -- Oh, Man-Ho -- Sklenar, Jan -- Derbyshire, Paul -- Lozano-Duran, Rosa -- Malinovsky, Frederikke Gro -- Monaghan, Jacqueline -- Menke, Frank L -- Huber, Steven C -- He, Sheng Yang -- Zipfel, Cyril -- BB/G024944/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1509-12. doi: 10.1126/science.1248849. Epub 2014 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24625928" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/*microbiology ; Arabidopsis Proteins/agonists/*metabolism ; Bacterial Proteins/*metabolism ; Peptide Elongation Factor Tu/*metabolism ; Peptides/metabolism/pharmacology ; Phosphorylation ; Protein Tyrosine Phosphatases/*metabolism ; Pseudomonas syringae/enzymology/*pathogenicity ; Receptors, Pattern Recognition/agonists/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-07-12
    Description: Peptidoglycan (PG) is a polysaccharide matrix that protects bacteria from osmotic lysis. Inhibition of its biogenesis is a proven strategy for killing bacteria with antibiotics. The assembly of PG requires disaccharide-pentapeptide building blocks attached to a polyisoprene lipid carrier called lipid II. Although the stages of lipid II synthesis are known, the identity of the essential flippase that translocates it across the cytoplasmic membrane for PG polymerization is unclear. We developed an assay for lipid II flippase activity and used a chemical genetic strategy to rapidly and specifically block flippase function. We combined these approaches to demonstrate that MurJ is the lipid II flippase in Escherichia coli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sham, Lok-To -- Butler, Emily K -- Lebar, Matthew D -- Kahne, Daniel -- Bernhardt, Thomas G -- Ruiz, Natividad -- F32 GM103056/GM/NIGMS NIH HHS/ -- F32GM103056/GM/NIGMS NIH HHS/ -- R01 AI099144/AI/NIAID NIH HHS/ -- R01 GM076710/GM/NIGMS NIH HHS/ -- R01 GM100951/GM/NIGMS NIH HHS/ -- R01AI099144/AI/NIAID NIH HHS/ -- R01GM100951/GM/NIGMS NIH HHS/ -- R01GM76710/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Microbiology, Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. thomas_bernhardt@hms.harvard.edu ruiz.82@osu.edu. ; Department of Microbiology, Ohio State University, Columbus, OH 43210, USA. thomas_bernhardt@hms.harvard.edu ruiz.82@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013077" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins/antagonists & inhibitors/chemistry/*physiology ; Mesylates/pharmacology ; Models, Molecular ; Peptidoglycan/*biosynthesis/chemistry ; Phospholipid Transfer Proteins/antagonists & inhibitors/chemistry/*physiology ; Protein Conformation ; Uridine Diphosphate N-Acetylmuramic Acid/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-29
    Description: Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits, respectively. Traces in genomic signatures indicated that selection imposed on Bt during domestication led to derivation of nonbitter cucurbits from their bitter ancestors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shang, Yi -- Ma, Yongshuo -- Zhou, Yuan -- Zhang, Huimin -- Duan, Lixin -- Chen, Huiming -- Zeng, Jianguo -- Zhou, Qian -- Wang, Shenhao -- Gu, Wenjia -- Liu, Min -- Ren, Jinwei -- Gu, Xingfang -- Zhang, Shengping -- Wang, Ye -- Yasukawa, Ken -- Bouwmeester, Harro J -- Qi, Xiaoquan -- Zhang, Zhonghua -- Lucas, William J -- Huang, Sanwen -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1084-8. doi: 10.1126/science.1259215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. ; Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China. ; Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China. ; School of Pharmacy, Nihon University, Tokyo 101-8308, Japan. ; Laboratory of Plant Physiology, Wageningen University, Wageningen 6700, Netherlands. ; Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. huangsanwen@caas.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430763" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cucumis sativus/genetics/*metabolism ; Fruit/genetics/*metabolism ; Gene Expression Regulation, Plant ; Genome, Plant ; Molecular Sequence Data ; Plant Leaves/genetics/*metabolism ; Plant Proteins/genetics/*metabolism ; *Taste ; Transcription Factors/genetics/*metabolism ; Triterpenes/chemical synthesis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-07-28
    Description: The essential bacterial protein FtsZ is a guanosine triphosphatase that self-assembles into a structure at the division site termed the "Z ring". During cytokinesis, the Z ring exerts a constrictive force on the membrane by using the chemical energy of guanosine triphosphate hydrolysis. However, the structural basis of this constriction remains unresolved. Here, we present the crystal structure of a guanosine diphosphate-bound Mycobacterium tuberculosis FtsZ protofilament, which exhibits a curved conformational state. The structure reveals a longitudinal interface that is important for function. The protofilament curvature highlights a hydrolysis-dependent conformational switch at the T3 loop that leads to longitudinal bending between subunits, which could generate sufficient force to drive cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ying -- Hsin, Jen -- Zhao, Lingyun -- Cheng, Yiwen -- Shang, Weina -- Huang, Kerwyn Casey -- Wang, Hong-Wei -- Ye, Sheng -- 1F32GM100677-01A1/GM/NIGMS NIH HHS/ -- DP2 OD006466/OD/NIH HHS/ -- DP2OD006466/OD/NIH HHS/ -- F32 GM100677/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):392-5. doi: 10.1126/science.1239248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, P.R. China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888039" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/physiology ; Crystallography, X-Ray ; *Cytokinesis ; Cytoskeletal Proteins/*chemistry/genetics/*metabolism ; Escherichia coli/chemistry ; Guanosine Diphosphate/chemistry/metabolism ; Guanosine Triphosphate/metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*chemistry/physiology ; Point Mutation ; Protein Conformation ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Staphylococcus aureus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-12-18
    Description: An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Joseph F -- Pang, Kevin -- Schnitzler, Christine E -- Nguyen, Anh-Dao -- Moreland, R Travis -- Simmons, David K -- Koch, Bernard J -- Francis, Warren R -- Havlak, Paul -- NISC Comparative Sequencing Program -- Smith, Stephen A -- Putnam, Nicholas H -- Haddock, Steven H D -- Dunn, Casey W -- Wolfsberg, Tyra G -- Mullikin, James C -- Martindale, Mark Q -- Baxevanis, Andreas D -- ZIA HG000140-13/Intramural NIH HHS/ -- ZIA HG000140-14/Intramural NIH HHS/ -- ZIA HG000140-15/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1242592. doi: 10.1126/science.1242592.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Cell Lineage/*genetics ; Ctenophora/classification/*cytology/*genetics ; *Genome ; Mesoderm/cytology ; Molecular Sequence Data ; Muscle Development/genetics ; Neurogenesis/genetics ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-07-03
    Description: Gene expression in organisms involves many factors and is tightly controlled. Although much is known about the initial phase of transcription by RNA polymerase III (Pol III), the enzyme that synthesizes the majority of RNA molecules in eukaryotic cells, termination is poorly understood. Here, we show that the extensive structure of Pol III-synthesized transcripts dictates the release of elongation complexes at the end of genes. The poly-T termination signal, which does not cause termination in itself, causes catalytic inactivation and backtracking of Pol III, thus committing the enzyme to termination and transporting it to the nearest RNA secondary structure, which facilitates Pol III release. Similarity between termination mechanisms of Pol III and bacterial RNA polymerase suggests that hairpin-dependent termination may date back to the common ancestor of multisubunit RNA polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Soren -- Yuzenkova, Yulia -- Zenkin, Nikolay -- 202994/European Research Council/International -- BB/F013558/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J006378/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1577-80. doi: 10.1126/science.1237934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812715" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Molecular Sequence Data ; Nucleic Acid Conformation ; Poly T/metabolism ; Poly U/metabolism ; RNA Polymerase III/*metabolism ; RNA, Ribosomal, 5S/chemistry/genetics ; RNA, Transfer, Tyr/chemistry/genetics ; Saccharomyces cerevisiae/*enzymology/genetics ; *Transcription Termination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-27
    Description: Senescent and damaged mitochondria undergo selective mitophagic elimination through mechanisms requiring two Parkinson's disease factors, the mitochondrial kinase PINK1 (PTEN-induced putative kinase protein 1; PTEN is phosphatase and tensin homolog) and the cytosolic ubiquitin ligase Parkin. The nature of the PINK-Parkin interaction and the identity of key factors directing Parkin to damaged mitochondria are unknown. We show that the mitochondrial outer membrane guanosine triphosphatase mitofusin (Mfn) 2 mediates Parkin recruitment to damaged mitochondria. Parkin bound to Mfn2 in a PINK1-dependent manner; PINK1 phosphorylated Mfn2 and promoted its Parkin-mediated ubiqitination. Ablation of Mfn2 in mouse cardiac myocytes prevented depolarization-induced translocation of Parkin to the mitochondria and suppressed mitophagy. Accumulation of morphologically and functionally abnormal mitochondria induced respiratory dysfunction in Mfn2-deficient mouse embryonic fibroblasts and cardiomyocytes and in Parkin-deficient Drosophila heart tubes, causing dilated cardiomyopathy. Thus, Mfn2 functions as a mitochondrial receptor for Parkin and is required for quality control of cardiac mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yun -- Dorn, Gerald W 2nd -- R01 HL059888/HL/NHLBI NIH HHS/ -- R21 HL107276/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):471-5. doi: 10.1126/science.1231031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620051" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autophagy ; Cardiomyopathies/enzymology ; Drosophila melanogaster ; Fibroblasts/ultrastructure ; GTP Phosphohydrolases/genetics/*metabolism ; HEK293 Cells ; Humans ; Mice ; Mice, Mutant Strains ; Mitochondria/enzymology ; Mitochondria, Heart/*enzymology ; Molecular Sequence Data ; Myocytes, Cardiac/*enzymology/ultrastructure ; Phosphorylation ; Protein Kinases/*metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-03-09
    Description: RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grohman, Jacob K -- Gorelick, Robert J -- Lickwar, Colin R -- Lieb, Jason D -- Bower, Brian D -- Znosko, Brent M -- Weeks, Kevin M -- GM031819/GM/NIGMS NIH HHS/ -- GM064803/GM/NIGMS NIH HHS/ -- GM072518/GM/NIGMS NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM064803/GM/NIGMS NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):190-5. doi: 10.1126/science.1230715. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470731" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Dimerization ; Guanosine/chemistry/*metabolism ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry/metabolism ; Inosine/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Moloney murine leukemia virus/genetics/*metabolism ; Nucleic Acid Conformation ; Nucleocapsid Proteins/chemistry/*metabolism ; Protein Binding ; RNA, Viral/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-09-07
    Description: Organofluorines represent a rapidly expanding proportion of molecules that are used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural-product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems, and we show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be inserted site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Mark C -- Thuronyi, Benjamin W -- Charkoudian, Louise K -- Lowry, Brian -- Khosla, Chaitan -- Chang, Michelle C Y -- 1 DP2 OD008696/OD/NIH HHS/ -- 1 T32 GMO66698/PHS HHS/ -- 1S10RR023679-01/RR/NCRR NIH HHS/ -- F32 CA137994/CA/NCI NIH HHS/ -- R01 GM087934/GM/NIGMS NIH HHS/ -- S10 RR16634-01/RR/NCRR NIH HHS/ -- T32 GM066698/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1089-94. doi: 10.1126/science.1242345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009388" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Base Sequence ; Biological Products/chemistry/*metabolism ; Burkholderia/enzymology ; Coenzyme A Ligases/chemistry/genetics/metabolism ; Escherichia coli ; Fluoroacetates/chemistry/*metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Polyketide Synthases/chemistry/genetics/*metabolism ; Polyketides/chemistry/*metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Streptomyces coelicolor/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-03-23
    Description: Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons were assembled, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Dongran -- Pal, Suchetan -- Yang, Yang -- Jiang, Shuoxing -- Nangreave, Jeanette -- Liu, Yan -- Yan, Hao -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1412-5. doi: 10.1126/science.1232252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA. dongran.han@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520107" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*chemistry/*ultrastructure ; Models, Molecular ; *Nanostructures ; Nanotechnology/methods ; *Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-12-07
    Description: The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike alpha2-6-linked receptors and strong preference for a subset of avian-like alpha2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- de Vries, Robert P -- Zhu, Xueyong -- Nycholat, Corwin M -- McBride, Ryan -- Yu, Wenli -- Paulson, James C -- Wilson, Ian A -- GM62116/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R56 AI099275/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311689" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; Humans ; Influenza A Virus, H7N9 Subtype/*metabolism/*pathogenicity ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/virology ; Ligands ; Microarray Analysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-07-23
    Description: Ten years ago, the discovery of Mimivirus, a virus infecting Acanthamoeba, initiated a reappraisal of the upper limits of the viral world, both in terms of particle size (〉0.7 micrometers) and genome complexity (〉1000 genes), dimensions typical of parasitic bacteria. The diversity of these giant viruses (the Megaviridae) was assessed by sampling a variety of aquatic environments and their associated sediments worldwide. We report the isolation of two giant viruses, one off the coast of central Chile, the other from a freshwater pond near Melbourne (Australia), without morphological or genomic resemblance to any previously defined virus families. Their micrometer-sized ovoid particles contain DNA genomes of at least 2.5 and 1.9 megabases, respectively. These viruses are the first members of the proposed "Pandoravirus" genus, a term reflecting their lack of similarity with previously described microorganisms and the surprises expected from their future study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Philippe, Nadege -- Legendre, Matthieu -- Doutre, Gabriel -- Coute, Yohann -- Poirot, Olivier -- Lescot, Magali -- Arslan, Defne -- Seltzer, Virginie -- Bertaux, Lionel -- Bruley, Christophe -- Garin, Jerome -- Claverie, Jean-Michel -- Abergel, Chantal -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):281-6. doi: 10.1126/science.1239181.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Genomic Information Laboratory, UMR 7256 CNRS Aix-Marseille Universite, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869018" target="_blank"〉PubMed〈/a〉
    Keywords: Amoeba/*virology ; Base Sequence ; *Evolution, Molecular ; Fresh Water/virology ; *Genome, Viral ; Mimiviridae/*classification/*genetics/isolation & purification/ultrastructure ; Molecular Sequence Data ; Phylogeny ; Proteomics ; Seawater/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-01-26
    Description: Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746486/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746486/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Nan -- Budnik, Bogdan A -- Gunawardena, Jeremy -- O'Shea, Erin K -- R01 GM081578/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):460-4. doi: 10.1126/science.1227299.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349292" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Nucleus/*metabolism ; Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/genetics/metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/*metabolism ; Models, Biological ; Nuclear Export Signals ; Nuclear Localization Signals ; Osmotic Pressure ; Oxidative Stress ; Phosphorylation ; Proteins/pharmacology ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction ; Stress, Physiological ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-06-08
    Description: Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576-amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935617/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hopkins, Benjamin D -- Fine, Barry -- Steinbach, Nicole -- Dendy, Meaghan -- Rapp, Zachary -- Shaw, Jacquelyn -- Pappas, Kyrie -- Yu, Jennifer S -- Hodakoski, Cindy -- Mense, Sarah -- Klein, Joshua -- Pegno, Sarah -- Sulis, Maria-Luisa -- Goldstein, Hannah -- Amendolara, Benjamin -- Lei, Liang -- Maurer, Matthew -- Bruce, Jeffrey -- Canoll, Peter -- Hibshoosh, Hanina -- Parsons, Ramon -- 2T32 CA09503/CA/NCI NIH HHS/ -- CA082783/CA/NCI NIH HHS/ -- CA097403/CA/NCI NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- R01 CA082783/CA/NCI NIH HHS/ -- R01 CA155117/CA/NCI NIH HHS/ -- R01 NS066955/NS/NINDS NIH HHS/ -- R01 NS073610/NS/NINDS NIH HHS/ -- R01NS066955/NS/NINDS NIH HHS/ -- T32 CA009503/CA/NCI NIH HHS/ -- T32 GM008224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):399-402. doi: 10.1126/science.1234907. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line, Tumor ; *Cell Survival ; Embryonic Stem Cells ; Glioblastoma/drug therapy/metabolism/pathology ; HEK293 Cells ; Humans ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutation ; PTEN Phosphohydrolase/*chemistry/genetics/*metabolism/pharmacology ; Peptide Chain Initiation, Translational ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; RNA, Messenger/genetics/metabolism ; *Signal Transduction/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-01-12
    Description: DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Virgilio, Michela -- Callen, Elsa -- Yamane, Arito -- Zhang, Wenzhu -- Jankovic, Mila -- Gitlin, Alexander D -- Feldhahn, Niklas -- Resch, Wolfgang -- Oliveira, Thiago Y -- Chait, Brian T -- Nussenzweig, Andre -- Casellas, Rafael -- Robbiani, Davide F -- Nussenzweig, Michel C -- AI037526/AI/NIAID NIH HHS/ -- GM007739/GM/NIGMS NIH HHS/ -- GM103314/GM/NIGMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):711-5. doi: 10.1126/science.1230624. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/immunology/metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; G1 Phase ; G2 Phase ; Genomic Instability ; *Immunoglobulin Class Switching ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; S Phase ; Telomere-Binding Proteins/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-02-16
    Description: Casein kinase 1 (CK1) members play key roles in numerous biological processes. They are considered "rogue" kinases, because their enzymatic activity appears unregulated. Contrary to this notion, we have identified the DEAD-box RNA helicase DDX3 as a regulator of the Wnt-beta-catenin network, where it acts as a regulatory subunit of CK1epsilon: In a Wnt-dependent manner, DDX3 binds CK1epsilon and directly stimulates its kinase activity, and promotes phosphorylation of the scaffold protein dishevelled. DDX3 is required for Wnt-beta-catenin signaling in mammalian cells and during Xenopus and Caenorhabditis elegans development. The results also suggest that the kinase-stimulatory function extends to other DDX and CK1 members, opening fresh perspectives for one of the longest-studied protein kinase families.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruciat, Cristina-Maria -- Dolde, Christine -- de Groot, Reinoud E A -- Ohkawara, Bisei -- Reinhard, Carmen -- Korswagen, Hendrik C -- Niehrs, Christof -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1436-41. doi: 10.1126/science.1231499. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413191" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Caenorhabditis elegans/genetics/growth & development/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Casein Kinase Iepsilon/chemistry/*metabolism ; DEAD-box RNA Helicases/chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Xenopus/embryology/genetics/metabolism ; Xenopus Proteins/chemistry/genetics/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-10-12
    Description: The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandt, Guido -- Haak, Wolfgang -- Adler, Christina J -- Roth, Christina -- Szecsenyi-Nagy, Anna -- Karimnia, Sarah -- Moller-Rieker, Sabine -- Meller, Harald -- Ganslmeier, Robert -- Friederich, Susanne -- Dresely, Veit -- Nicklisch, Nicole -- Pickrell, Joseph K -- Sirocko, Frank -- Reich, David -- Cooper, Alan -- Alt, Kurt W -- Genographic Consortium -- R01 GM100233/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):257-61. doi: 10.1126/science.1241844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anthropology, Johannes Gutenberg University of Mainz, Mainz, Germany. brandtg@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115443" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; Base Sequence ; DNA, Mitochondrial/*genetics/history ; Europe ; *Genetic Drift ; *Genetic Variation ; History, Ancient ; Humans ; Molecular Sequence Data ; Population/*genetics ; Transients and Migrants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-12-07
    Description: Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazarus, Michael B -- Jiang, Jiaoyang -- Kapuria, Vaibhav -- Bhuiyan, Tanja -- Janetzko, John -- Zandberg, Wesley F -- Vocadlo, David J -- Herr, Winship -- Walker, Suzanne -- R01 GM094263/GM/NIGMS NIH HHS/ -- R01GM094263/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1235-9. doi: 10.1126/science.1243990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311690" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Catalytic Domain ; Crystallography, X-Ray ; Glycosylation ; Host Cell Factor C1/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; N-Acetylglucosaminyltransferases/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Proteolysis ; Pyrrolidonecarboxylic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Uridine Diphosphate N-Acetylglucosamine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-02-16
    Description: Instances in which natural selection maintains genetic variation in a population over millions of years are thought to be extremely rare. We conducted a genome-wide scan for long-lived balancing selection by looking for combinations of SNPs shared between humans and chimpanzees. In addition to the major histocompatibility complex, we identified 125 regions in which the same haplotypes are segregating in the two species, all but two of which are noncoding. In six cases, there is evidence for an ancestral polymorphism that persisted to the present in humans and chimpanzees. Regions with shared haplotypes are significantly enriched for membrane glycoproteins, and a similar trend is seen among shared coding polymorphisms. These findings indicate that ancient balancing selection has shaped human variation and point to genes involved in host-pathogen interactions as common targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leffler, Ellen M -- Gao, Ziyue -- Pfeifer, Susanne -- Segurel, Laure -- Auton, Adam -- Venn, Oliver -- Bowden, Rory -- Bontrop, Ronald -- Wall, Jeffrey D -- Sella, Guy -- Donnelly, Peter -- McVean, Gilean -- Przeworski, Molly -- 075491/Z/04/B/Wellcome Trust/United Kingdom -- 086084/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 095552/Z/11/Z/Wellcome Trust/United Kingdom -- GM72861/GM/NIGMS NIH HHS/ -- HG005226/HG/NHGRI NIH HHS/ -- R01 GM072861/GM/NIGMS NIH HHS/ -- T32 GM007197/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1578-82. doi: 10.1126/science.1234070. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. emleffler@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Genetic Association Studies ; Genome, Human/*genetics ; Haplotypes ; Host-Pathogen Interactions/*genetics ; Humans ; Molecular Sequence Data ; Pan troglodytes/*genetics ; Pedigree ; Polymorphism, Single Nucleotide ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-04-13
    Description: An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fletcher, Jordan M -- Harniman, Robert L -- Barnes, Frederick R H -- Boyle, Aimee L -- Collins, Andrew -- Mantell, Judith -- Sharp, Thomas H -- Antognozzi, Massimo -- Booth, Paula J -- Linden, Noah -- Miles, Mervyn J -- Sessions, Richard B -- Verkade, Paul -- Woolfson, Derek N -- BB/G008833/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 May 3;340(6132):595-9. doi: 10.1126/science.1233936. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579496" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Microscopy, Electron, Scanning ; Models, Molecular ; Molecular Dynamics Simulation ; *Nanostructures ; Peptides/*chemistry ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forrest, Lucy R -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):399-401. doi: 10.1126/science.1228465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computational Structural Biology Group, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany. lucy.forrest@biophys.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349276" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/chemistry ; Ion Channels/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-11-16
    Description: The microtubule-based mitotic spindle segregates chromosomes during cell division. During chromosome segregation, the centromeric regions of chromosomes build kinetochores that establish end-coupled attachments to spindle microtubules. Here, we used the Caenorhabditis elegans embryo as a model system to examine the crosstalk between two kinetochore protein complexes implicated in temporally distinct stages of attachment formation. The kinetochore dynein module, which mediates initial lateral microtubule capture, inhibited microtubule binding by the Ndc80 complex, which ultimately forms the end-coupled attachments that segregate chromosomes. The kinetochore dynein module directly regulated Ndc80, independently of phosphorylation by Aurora B kinase, and this regulation was required for accurate segregation. Thus, the conversion from initial dynein-mediated, lateral attachments to correctly oriented, Ndc80-mediated end-coupled attachments is actively controlled.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheerambathur, Dhanya K -- Gassmann, Reto -- Cook, Brian -- Oegema, Karen -- Desai, Arshad -- GM074215/GM/NIGMS NIH HHS/ -- R01 GM074215/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1239-42. doi: 10.1126/science.1246232. Epub 2013 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24231804" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Aurora Kinase B/metabolism ; Caenorhabditis elegans/embryology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/metabolism ; *Chromosome Segregation ; Dyneins/*metabolism ; Embryo, Nonmammalian/metabolism ; Kinetochores/*metabolism ; Microtubule-Associated Proteins/genetics/*metabolism ; Microtubules/*metabolism ; Multiprotein Complexes/metabolism ; Phenotype ; Phosphorylation ; Protein Binding ; Spindle Apparatus/*metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, Eliot -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):421. doi: 10.1126/science.340.6131.421.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620028" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breast Neoplasms/*diagnosis/genetics ; *Early Detection of Cancer ; Female ; *Genes, BRCA1 ; *Genes, BRCA2 ; Humans ; Ovarian Neoplasms/*diagnosis/genetics ; Patents as Topic/*legislation & jurisprudence ; Risk ; *Supreme Court Decisions ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-01-05
    Description: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cong, Le -- Ran, F Ann -- Cox, David -- Lin, Shuailiang -- Barretto, Robert -- Habib, Naomi -- Hsu, Patrick D -- Wu, Xuebing -- Jiang, Wenyan -- Marraffini, Luciano A -- Zhang, Feng -- DP1 MH100706/MH/NIMH NIH HHS/ -- DP1MH100706/DP/NCCDPHP CDC HHS/ -- DP2 AI104556/AI/NIAID NIH HHS/ -- DP2AI104556/AI/NIAID NIH HHS/ -- R01 NS073124/NS/NINDS NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-GM34277/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287718" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Caspase 9/*chemistry/genetics ; DNA/chemistry/genetics ; *DNA Cleavage ; Genetic Engineering/*methods ; Genetic Loci ; Genome/*genetics ; Humans ; Inverted Repeat Sequences/*genetics ; Mice ; Microarray Analysis/*methods ; Molecular Sequence Data ; Mutagenesis ; RNA/chemistry/genetics ; Recombinational DNA Repair ; Streptococcus pyogenes/enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-02-09
    Description: To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Leary, Maureen A -- Bloch, Jonathan I -- Flynn, John J -- Gaudin, Timothy J -- Giallombardo, Andres -- Giannini, Norberto P -- Goldberg, Suzann L -- Kraatz, Brian P -- Luo, Zhe-Xi -- Meng, Jin -- Ni, Xijun -- Novacek, Michael J -- Perini, Fernando A -- Randall, Zachary S -- Rougier, Guillermo W -- Sargis, Eric J -- Silcox, Mary T -- Simmons, Nancy B -- Spaulding, Michelle -- Velazco, Paul M -- Weksler, Marcelo -- Wible, John R -- Cirranello, Andrea L -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):662-7. doi: 10.1126/science.1229237.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, School of Medicine, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794-8081, USA. maureen.oleary@stonybrook.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393258" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Dentition ; Ecosystem ; Extinction, Biological ; Female ; *Fossils ; *Mammals/anatomy & histology/classification/genetics ; Paleodontology ; *Phylogeny ; Phylogeography ; Placenta ; Pregnancy ; Sequence Alignment ; Time ; Xenarthra/anatomy & histology/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-07-28
    Description: Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bassi, C -- Ho, J -- Srikumar, T -- Dowling, R J O -- Gorrini, C -- Miller, S J -- Mak, T W -- Neel, B G -- Raught, B -- Stambolic, V -- R37 CA49152/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Aminopyridines/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/*enzymology/metabolism ; Cisplatin/pharmacology ; DNA Breaks, Double-Stranded ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Doxorubicin/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Morpholines/pharmacology ; Neoplasm Transplantation ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphatidylinositol 3-Kinase/antagonists & inhibitors ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Sumoylation ; Transplantation, Heterologous ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-04-13
    Description: Wnt signaling stabilizes beta-catenin through the LRP6 receptor signaling complex, which antagonizes the beta-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3 (GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated ("open") for beta-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated ("closed") Axin through an intramolecular interaction. Inactivation of Axin diminished its association with beta-catenin and LRP6, thereby inhibiting beta-catenin phosphorylation and enabling activated LRP6 to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for scaffold regulation and morphogen signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sung-Eun -- Huang, He -- Zhao, Ming -- Zhang, Xinjun -- Zhang, Aili -- Semonov, Mikhail V -- MacDonald, Bryan T -- Zhang, Xiaowu -- Garcia Abreu, Jose -- Peng, Leilei -- He, Xi -- P30 HD-18655/HD/NICHD NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R00EB008737/EB/NIBIB NIH HHS/ -- R01 AR060359/AR/NIAMS NIH HHS/ -- R01 GM074241/GM/NIGMS NIH HHS/ -- R01EB015481/EB/NIBIB NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 17;340(6134):867-70. doi: 10.1126/science.1232389. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axin Protein/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein Stability ; Signal Transduction ; Wnt Proteins/*metabolism ; Xenopus ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-10-12
    Description: Debate on the ancestry of Europeans centers on the interplay between Mesolithic foragers and Neolithic farmers. Foragers are generally believed to have disappeared shortly after the arrival of agriculture. To investigate the relation between foragers and farmers, we examined Mesolithic and Neolithic samples from the Blatterhohle site. Mesolithic mitochondrial DNA sequences were typical of European foragers, whereas the Neolithic sample included additional lineages that are associated with early farmers. However, isotope analyses separate the Neolithic sample into two groups: one with an agriculturalist diet and one with a forager and freshwater fish diet, the latter carrying mitochondrial DNA sequences typical of Mesolithic hunter-gatherers. This indicates that the descendants of Mesolithic people maintained a foraging lifestyle in Central Europe for more than 2000 years after the arrival of farming societies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bollongino, Ruth -- Nehlich, Olaf -- Richards, Michael P -- Orschiedt, Jorg -- Thomas, Mark G -- Sell, Christian -- Fajkosova, Zuzana -- Powell, Adam -- Burger, Joachim -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):479-81. doi: 10.1126/science.1245049. Epub 2013 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Palaeogenetics Group, Institute of Anthropology, Johannes Gutenberg University, 55099 Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24114781" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Animal Feed/*history ; Animals ; Animals, Domestic ; *Anthropology ; Base Sequence ; DNA, Mitochondrial/genetics/history ; Europe ; *Evolution, Molecular ; History, Ancient ; Humans ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-10-19
    Description: Engineering radically altered genetic codes will allow for genomically recoded organisms that have expanded chemical capabilities and are isolated from nature. We have previously reassigned the translation function of the UAG stop codon; however, reassigning sense codons poses a greater challenge because such codons are more prevalent, and their usage regulates gene expression in ways that are difficult to predict. To assess the feasibility of radically altering the genetic code, we selected a panel of 42 highly expressed essential genes for modification. Across 80 Escherichia coli strains, we removed all instances of 13 rare codons from these genes and attempted to shuffle all remaining codons. Our results suggest that the genome-wide removal of 13 codons is feasible; however, several genome design constraints were apparent, underscoring the importance of a strategy that rapidly prototypes and tests many designs in small pieces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lajoie, M J -- Kosuri, S -- Mosberg, J A -- Gregg, C J -- Zhang, D -- Church, G M -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):361-3. doi: 10.1126/science.1241460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136967" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/genetics ; Base Sequence ; Codon/*genetics ; Escherichia coli/*genetics/growth & development ; Frameshift Mutation ; *Genes, Essential ; Genes, Synthetic ; Genetic Engineering ; Genome, Bacterial/*genetics ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-10
    Description: Phosphorylated O-mannosyl trisaccharide [N-acetylgalactosamine-beta3-N-acetylglucosamine-beta4-(phosphate-6-)mannose] is required for dystroglycan to bind laminin-G domain-containing extracellular proteins with high affinity in muscle and brain. However, the enzymes that produce this structure have not been fully elucidated. We found that glycosyltransferase-like domain-containing 2 (GTDC2) is a protein O-linked mannose beta 1,4-N-acetylglucosaminyltransferase whose product could be extended by beta 1,3-N-acetylgalactosaminyltransferase2 (B3GALNT2) to form the O-mannosyl trisaccharide. Furthermore, we identified SGK196 as an atypical kinase that phosphorylated the 6-position of O-mannose, specifically after the mannose had been modified by both GTDC2 and B3GALNT2. These findings suggest how mutations in GTDC2, B3GALNT2, and SGK196 disrupt dystroglycan receptor function and lead to congenital muscular dystrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida-Moriguchi, Takako -- Willer, Tobias -- Anderson, Mary E -- Venzke, David -- Whyte, Tamieka -- Muntoni, Francesco -- Lee, Hane -- Nelson, Stanley F -- Yu, Liping -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- MR/K000608/1/Medical Research Council/United Kingdom -- P30 AR057230/AR/NIAMS NIH HHS/ -- R01 HL079031/HL/NHLBI NIH HHS/ -- U54 NS053672/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):896-9. doi: 10.1126/science.1239951. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929950" target="_blank"〉PubMed〈/a〉
    Keywords: Dystroglycans/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/metabolism ; HEK293 Cells ; Humans ; N-Acetylgalactosaminyltransferases/genetics/metabolism ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Phosphorylation ; Protein Kinases/genetics/*metabolism ; *Protein Processing, Post-Translational ; Trisaccharides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-02-09
    Description: E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the focal adhesion protein paxillin and the ubiquitin ligase E6AP, respectively. In both E6 proteins, two zinc domains and a linker helix form a basic-hydrophobic pocket, which captures helical LxxLL motifs in a way compatible with other interaction modes. Mutational inactivation of the LxxLL binding pocket disrupts the oncogenic activities of both E6 proteins. This work reveals the structural basis of both the multifunctionality and the oncogenicity of E6 proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899395/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899395/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanier, Katia -- Charbonnier, Sebastian -- Sidi, Abdellahi Ould M'hamed Ould -- McEwen, Alastair G -- Ferrario, Maria Giovanna -- Poussin-Courmontagne, Pierre -- Cura, Vincent -- Brimer, Nicole -- Babah, Khaled Ould -- Ansari, Tina -- Muller, Isabelle -- Stote, Roland H -- Cavarelli, Jean -- Vande Pol, Scott -- Trave, Gilles -- CA08093/CA/NCI NIH HHS/ -- CA120352/CA/NCI NIH HHS/ -- CA134737/CA/NCI NIH HHS/ -- P30 CA044579/CA/NCI NIH HHS/ -- R01 CA134737/CA/NCI NIH HHS/ -- R01CA134737/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):694-8. doi: 10.1126/science.1229934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bovine papillomavirus 1 ; Crystallography, X-Ray ; Human papillomavirus 16 ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Oncogene Proteins, Viral/*chemistry/genetics/*metabolism ; Paxillin/*chemistry/metabolism ; Peptide Fragments/chemistry/metabolism ; Point Mutation ; *Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/*metabolism ; Ubiquitin-Protein Ligases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-11-16
    Description: The geographic and temporal origins of the domestic dog remain controversial, as genetic data suggest a domestication process in East Asia beginning 15,000 years ago, whereas the oldest doglike fossils are found in Europe and Siberia and date to 〉30,000 years ago. We analyzed the mitochondrial genomes of 18 prehistoric canids from Eurasia and the New World, along with a comprehensive panel of modern dogs and wolves. The mitochondrial genomes of all modern dogs are phylogenetically most closely related to either ancient or modern canids of Europe. Molecular dating suggests an onset of domestication there 18,800 to 32,100 years ago. These findings imply that domestic dogs are the culmination of a process that initiated with European hunter-gatherers and the canids with whom they interacted.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thalmann, O -- Shapiro, B -- Cui, P -- Schuenemann, V J -- Sawyer, S K -- Greenfield, D L -- Germonpre, M B -- Sablin, M V -- Lopez-Giraldez, F -- Domingo-Roura, X -- Napierala, H -- Uerpmann, H-P -- Loponte, D M -- Acosta, A A -- Giemsch, L -- Schmitz, R W -- Worthington, B -- Buikstra, J E -- Druzhkova, A -- Graphodatsky, A S -- Ovodov, N D -- Wahlberg, N -- Freedman, A H -- Schweizer, R M -- Koepfli, K-P -- Leonard, J A -- Meyer, M -- Krause, J -- Paabo, S -- Green, R E -- Wayne, R K -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):871-4. doi: 10.1126/science.1243650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Section of Genetics and Physiology, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/*genetics ; Base Sequence ; Breeding ; Dogs/*genetics ; Europe ; Genome, Mitochondrial/*genetics ; Molecular Sequence Data ; Phylogeny ; Wolves/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, James U -- R01GM063919/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):398-9. doi: 10.1126/science.1228655.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA. bowie@mbi.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349275" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/*chemistry ; Hydrogen Bonding ; Lipid Bilayers/chemistry ; Membrane Proteins/*chemistry ; Models, Molecular ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Protein Subunits/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-12-21
    Description: We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, Danny W -- Alverson, Andrew J -- Richardson, Aaron O -- Young, Gregory J -- Sanchez-Puerta, M Virginia -- Munzinger, Jerome -- Barry, Kerrie -- Boore, Jeffrey L -- Zhang, Yan -- dePamphilis, Claude W -- Knox, Eric B -- Palmer, Jeffrey D -- R01-GM-76012/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1468-73. doi: 10.1126/science.1246275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357311" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Bryophyta/classification/genetics ; Chlorophyta/classification/genetics ; DNA, Mitochondrial/*genetics ; *Gene Transfer, Horizontal ; *Genome, Plant ; Membrane Fusion ; *Mitochondrial Dynamics ; Molecular Sequence Data ; Phylogeny ; Tracheobionta/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-05-04
    Description: Recent studies have identified several mutations in the hemagglutinin (HA) protein that allow the highly pathogenic avian H5N1 influenza A virus to transmit between mammals by airborne route. Here, we determined the complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs. A cis/trans conformational change in the glycosidic linkage of the receptor analog was observed, which explains how the H5N1 virus alters its receptor-binding preference. Furthermore, the mutant HA possessed low affinities for both avian and human receptors. Our findings provide a structural and biophysical basis for the H5N1 adaptation to acquire human, but maintain avian, receptor-binding properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Wei -- Shi, Yi -- Lu, Xishan -- Shu, Yuelong -- Qi, Jianxun -- Gao, George F -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1463-7. doi: 10.1126/science.1236787. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/genetics/*metabolism ; Humans ; Influenza A Virus, H5N1 Subtype ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Oligosaccharides/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Stability ; Receptors, Cell Surface/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-03-16
    Description: Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth's oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host delta(13)C- and delta(34)S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic delta(13)C signatures locally attenuated by heterotrophic metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lever, Mark A -- Rouxel, Olivier -- Alt, Jeffrey C -- Shimizu, Nobumichi -- Ono, Shuhei -- Coggon, Rosalind M -- Shanks, Wayne C 3rd -- Lapham, Laura -- Elvert, Marcus -- Prieto-Mollar, Xavier -- Hinrichs, Kai-Uwe -- Inagaki, Fumio -- Teske, Andreas -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1305-8. doi: 10.1126/science.1229240.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. mark.lever@biology.au.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23493710" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Carbon/*metabolism ; Methane/*metabolism ; Methanomicrobiales/classification/genetics/*metabolism ; Methanosarcinales/classification/genetics/*metabolism ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Sequence Analysis, DNA ; *Silicates ; Sulfur/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-01-19
    Description: The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) melanoma differentiation-associated protein 5 (MDA5) senses cytoplasmic viral RNA and activates antiviral innate immunity. To reveal how paramyxoviruses counteract this response, we determined the crystal structure of the MDA5 adenosine 5'-triphosphate (ATP)-hydrolysis domain in complex with the viral inhibitor V protein. The V protein unfolded the ATP-hydrolysis domain of MDA5 via a beta-hairpin motif and recognized a structural motif of MDA5 that is normally buried in the conserved helicase fold. This leads to disruption of the MDA5 ATP-hydrolysis site and prevention of RNA-bound MDA5 filament formation. The structure explains why V proteins inactivate MDA5, but not RIG-I, and mutating only two amino acids in RIG-I induces robust V protein binding. Our results suggest an inhibition mechanism of RLR signalosome formation by unfolding of receptor and inhibitor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motz, Carina -- Schuhmann, Kerstin Monika -- Kirchhofer, Axel -- Moldt, Manuela -- Witte, Gregor -- Conzelmann, Karl-Klaus -- Hopfner, Karl-Peter -- U19AI083025/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):690-3. doi: 10.1126/science.1230949. Epub 2013 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23328395" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Hydrolysis ; Immunity, Innate ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Parainfluenza Virus 5/immunology ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA, Double-Stranded/*metabolism ; Signal Transduction ; Sus scrofa ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-02-22
    Description: The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanson, Michael A -- Roth, Christopher B -- Jo, Euijung -- Griffith, Mark T -- Scott, Fiona L -- Reinhart, Greg -- Desale, Hans -- Clemons, Bryan -- Cahalan, Stuart M -- Schuerer, Stephan C -- Sanna, M Germana -- Han, Gye Won -- Kuhn, Peter -- Rosen, Hugh -- Stevens, Raymond C -- AI055509/AI/NIAID NIH HHS/ -- AI074564/AI/NIAID NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-08/GM/NIGMS NIH HHS/ -- R01 AI055509/AI/NIAID NIH HHS/ -- R01 AI055509-04/AI/NIAID NIH HHS/ -- U01 AI074564/AI/NIAID NIH HHS/ -- U01 AI074564-04/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-02/GM/NIGMS NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-04/MH/NIMH NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):851-5. doi: 10.1126/science.1215904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptos, 10835 Road to the Cure, San Diego, CA 92121, USA. mhanson@receptos.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344443" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/chemistry ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Muramidase/chemistry ; Mutagenesis ; Organophosphonates/chemistry ; Protein Conformation ; Receptors, Lysosphingolipid/agonists/antagonists & inhibitors/*chemistry/genetics ; Recombinant Fusion Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-01
    Description: We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30x) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of "missing evolution" in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Matthias -- Kircher, Martin -- Gansauge, Marie-Theres -- Li, Heng -- Racimo, Fernando -- Mallick, Swapan -- Schraiber, Joshua G -- Jay, Flora -- Prufer, Kay -- de Filippo, Cesare -- Sudmant, Peter H -- Alkan, Can -- Fu, Qiaomei -- Do, Ron -- Rohland, Nadin -- Tandon, Arti -- Siebauer, Michael -- Green, Richard E -- Bryc, Katarzyna -- Briggs, Adrian W -- Stenzel, Udo -- Dabney, Jesse -- Shendure, Jay -- Kitzman, Jacob -- Hammer, Michael F -- Shunkov, Michael V -- Derevianko, Anatoli P -- Patterson, Nick -- Andres, Aida M -- Eichler, Evan E -- Slatkin, Montgomery -- Reich, David -- Kelso, Janet -- Paabo, Svante -- GM100233/GM/NIGMS NIH HHS/ -- R01 GM040282/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):222-6. doi: 10.1126/science.1224344. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. mmeyer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936568" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Fossils ; Gene Flow ; Gene Library ; *Genetic Variation ; Genome, Human/*genetics ; *Heterozygote ; Humans ; Molecular Sequence Data ; Neanderthals/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...