ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-06
    Description: During cytokinesis, the guanosine triphosphatase (GTPase) RhoA orchestrates contractile ring assembly and constriction. RhoA signaling is controlled by the central spindle, a set of microtubule bundles that forms between the separating chromosomes. Centralspindlin, a protein complex consisting of the kinesin-6 ZEN-4 and the Rho family GTPase activating protein (GAP) CYK-4, is required for central spindle assembly and cytokinesis in Caenorhabditis elegans. However, the importance of the CYK-4 GAP activity and whether it regulates RhoA remain unclear. We found that two separation-of-function mutations in the GAP domain of CYK-4 lead to cytokinesis defects that mimic centralspindlin loss of function. These defects could be rescued by depletion of the GTPase Rac or its effectors, but not by depletion of RhoA. Thus, inactivation of Rac by centralspindlin functions in parallel with RhoA activation to drive contractile ring constriction during cytokinesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736296/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736296/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, Julie C -- Lewellyn, Lindsay -- Laband, Kimberley -- Smerdon, Stephen J -- Desai, Arshad -- Bowerman, Bruce -- Oegema, Karen -- GM058017/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- R01 GM049869/GM/NIGMS NIH HHS/ -- R01 GM049869-15/GM/NIGMS NIH HHS/ -- R01 GM058017/GM/NIGMS NIH HHS/ -- T32 CA067754/CA/NCI NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1543-6. doi: 10.1126/science.1163086.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Biology, University of Oregon, Eugene, OR 97403, USA. jcanman@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056985" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Caenorhabditis elegans/*cytology/embryology/genetics/*metabolism ; Caenorhabditis elegans Proteins/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; *Cytokinesis ; Embryo, Nonmammalian/cytology/metabolism ; GTPase-Activating Proteins/chemistry/genetics/metabolism ; Genes, Helminth ; Kinesin/metabolism ; Mutation ; Protein Structure, Tertiary ; Signal Transduction ; Spindle Apparatus/physiology/ultrastructure ; rac GTP-Binding Proteins/*antagonists & inhibitors/metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-13
    Description: Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length. Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically. Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gassmann, Reto -- Rechtsteiner, Andreas -- Yuen, Karen W -- Muroyama, Andrew -- Egelhofer, Thea -- Gaydos, Laura -- Barron, Francie -- Maddox, Paul -- Essex, Anthony -- Monen, Joost -- Ercan, Sevinc -- Lieb, Jason D -- Oegema, Karen -- Strome, Susan -- Desai, Arshad -- GM074215/GM/NIGMS NIH HHS/ -- R01 GM034059/GM/NIGMS NIH HHS/ -- R01 GM074215/GM/NIGMS NIH HHS/ -- T32 GM008646/GM/NIGMS NIH HHS/ -- U01 HG004270/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Apr 8;484(7395):534-7. doi: 10.1038/nature10973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research and Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoantigens/metabolism ; Biological Evolution ; Caenorhabditis elegans/embryology/*genetics ; Centromere/*genetics ; Chromatin/*genetics ; Chromosomal Proteins, Non-Histone/metabolism ; Embryo, Nonmammalian/embryology/metabolism ; Embryonic Development/genetics ; Female ; Fertilization ; Gene Expression Regulation, Developmental ; Genome, Helminth ; Germ Cells/*metabolism ; Gonads/cytology/metabolism ; Hermaphroditic Organisms ; Male ; Meiosis ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-16
    Description: The microtubule-based mitotic spindle segregates chromosomes during cell division. During chromosome segregation, the centromeric regions of chromosomes build kinetochores that establish end-coupled attachments to spindle microtubules. Here, we used the Caenorhabditis elegans embryo as a model system to examine the crosstalk between two kinetochore protein complexes implicated in temporally distinct stages of attachment formation. The kinetochore dynein module, which mediates initial lateral microtubule capture, inhibited microtubule binding by the Ndc80 complex, which ultimately forms the end-coupled attachments that segregate chromosomes. The kinetochore dynein module directly regulated Ndc80, independently of phosphorylation by Aurora B kinase, and this regulation was required for accurate segregation. Thus, the conversion from initial dynein-mediated, lateral attachments to correctly oriented, Ndc80-mediated end-coupled attachments is actively controlled.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885540/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885540/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheerambathur, Dhanya K -- Gassmann, Reto -- Cook, Brian -- Oegema, Karen -- Desai, Arshad -- GM074215/GM/NIGMS NIH HHS/ -- R01 GM074215/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1239-42. doi: 10.1126/science.1246232. Epub 2013 Nov 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24231804" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Aurora Kinase B/metabolism ; Caenorhabditis elegans/embryology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/metabolism ; *Chromosome Segregation ; Dyneins/*metabolism ; Embryo, Nonmammalian/metabolism ; Kinetochores/*metabolism ; Microtubule-Associated Proteins/genetics/*metabolism ; Microtubules/*metabolism ; Multiprotein Complexes/metabolism ; Phenotype ; Phosphorylation ; Protein Binding ; Spindle Apparatus/*metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-05-02
    Description: Centrioles are ancient organelles that build centrosomes, the major microtubule-organizing centers of animal cells. Extra centrosomes are a common feature of cancer cells. To investigate the importance of centrosomes in the proliferation of normal and cancer cells, we developed centrinone, a reversible inhibitor of Polo-like kinase 4 (Plk4), a serine-threonine protein kinase that initiates centriole assembly. Centrinone treatment caused centrosome depletion in human and other vertebrate cells. Centrosome loss irreversibly arrested normal cells in a senescence-like G1 state by a p53-dependent mechanism that was independent of DNA damage, stress, Hippo signaling, extended mitotic duration, or segregation errors. In contrast, cancer cell lines with normal or amplified centrosome numbers could proliferate indefinitely after centrosome loss. Upon centrinone washout, each cancer cell line returned to an intrinsic centrosome number "set point." Thus, cells with cancer-associated mutations fundamentally differ from normal cells in their response to centrosome loss.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764081/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764081/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Yao Liang -- Anzola, John V -- Davis, Robert L -- Yoon, Michelle -- Motamedi, Amir -- Kroll, Ashley -- Seo, Chanmee P -- Hsia, Judy E -- Kim, Sun K -- Mitchell, Jennifer W -- Mitchell, Brian J -- Desai, Arshad -- Gahman, Timothy C -- Shiau, Andrew K -- Oegema, Karen -- GM074207/GM/NIGMS NIH HHS/ -- GM089970/GM/NIGMS NIH HHS/ -- GM103403/GM/NIGMS NIH HHS/ -- R01 GM089970/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1155-60. doi: 10.1126/science.aaa5111. Epub 2015 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA. ; Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA. ; Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA. koegema@ucsd.edu ashiau@ucsd.edu. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. koegema@ucsd.edu ashiau@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25931445" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Proliferation ; Centrioles/*drug effects ; Humans ; Mice ; Piperazines/pharmacology ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors ; Pyrimidines/chemistry/*pharmacology ; Sulfones/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-16
    Description: The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodruff, Jeffrey B -- Wueseke, Oliver -- Viscardi, Valeria -- Mahamid, Julia -- Ochoa, Stacy D -- Bunkenborg, Jakob -- Widlund, Per O -- Pozniakovsky, Andrei -- Zanin, Esther -- Bahmanyar, Shirin -- Zinke, Andrea -- Hong, Sun Hae -- Decker, Marcus -- Baumeister, Wolfgang -- Andersen, Jens S -- Oegema, Karen -- Hyman, Anthony A -- R01-GM074207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):808-12. doi: 10.1126/science.aaa3923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. ; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. hyman@mpi-cbg.de koegema@ucsd.edu. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. hyman@mpi-cbg.de koegema@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Centrosome/*metabolism/ultrasonography ; Metabolic Networks and Pathways ; Phosphorylation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-05-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-27
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2005-03-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-14
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...