ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, D W -- New York, N.Y. -- Science. 1985 Mar 8;227(4691):1219.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17757861" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-25
    Description: Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ming, Ray -- Hou, Shaobin -- Feng, Yun -- Yu, Qingyi -- Dionne-Laporte, Alexandre -- Saw, Jimmy H -- Senin, Pavel -- Wang, Wei -- Ly, Benjamin V -- Lewis, Kanako L T -- Salzberg, Steven L -- Feng, Lu -- Jones, Meghan R -- Skelton, Rachel L -- Murray, Jan E -- Chen, Cuixia -- Qian, Wubin -- Shen, Junguo -- Du, Peng -- Eustice, Moriah -- Tong, Eric -- Tang, Haibao -- Lyons, Eric -- Paull, Robert E -- Michael, Todd P -- Wall, Kerr -- Rice, Danny W -- Albert, Henrik -- Wang, Ming-Li -- Zhu, Yun J -- Schatz, Michael -- Nagarajan, Niranjan -- Acob, Ricelle A -- Guan, Peizhu -- Blas, Andrea -- Wai, Ching Man -- Ackerman, Christine M -- Ren, Yan -- Liu, Chao -- Wang, Jianmei -- Wang, Jianping -- Na, Jong-Kuk -- Shakirov, Eugene V -- Haas, Brian -- Thimmapuram, Jyothi -- Nelson, David -- Wang, Xiyin -- Bowers, John E -- Gschwend, Andrea R -- Delcher, Arthur L -- Singh, Ratnesh -- Suzuki, Jon Y -- Tripathi, Savarni -- Neupane, Kabi -- Wei, Hairong -- Irikura, Beth -- Paidi, Maya -- Jiang, Ning -- Zhang, Wenli -- Presting, Gernot -- Windsor, Aaron -- Navajas-Perez, Rafael -- Torres, Manuel J -- Feltus, F Alex -- Porter, Brad -- Li, Yingjun -- Burroughs, A Max -- Luo, Ming-Cheng -- Liu, Lei -- Christopher, David A -- Mount, Stephen M -- Moore, Paul H -- Sugimura, Tak -- Jiang, Jiming -- Schuler, Mary A -- Friedman, Vikki -- Mitchell-Olds, Thomas -- Shippen, Dorothy E -- dePamphilis, Claude W -- Palmer, Jeffrey D -- Freeling, Michael -- Paterson, Andrew H -- Gonsalves, Dennis -- Wang, Lei -- Alam, Maqsudul -- R01 GM083873/GM/NIGMS NIH HHS/ -- R01 GM083873-05/GM/NIGMS NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):991-6. doi: 10.1038/nature06856.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hawaii Agriculture Research Center, Aiea, Hawaii 96701, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432245" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; Carica/*genetics ; Contig Mapping ; Databases, Genetic ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Molecular Sequence Data ; Plants, Genetically Modified/genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Transcription Factors/genetics ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, D W -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1459.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11713776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Artiodactyla/*classification ; Cetacea/classification ; History, 19th Century ; Mammals/*classification ; *Phylogeny ; Whales/*classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-10-18
    Description: The Escherichia coli DNA binding protein RuvA acts in concert with the helicase RuvB to drive branch migration of Holliday intermediates during recombination and DNA repair. The atomic structure of RuvA was determined at a resolution of 1.9 angstroms. Four monomers of RuvA are related by fourfold symmetry in a manner reminiscent of a four-petaled flower. The four DNA duplex arms of a Holliday junction can be modeled in a square planar configuration and docked into grooves on the concave surface of the protein around a central pin that may facilitate strand separation during the migration reaction. The model presented reveals how a RuvAB-junction complex may also accommodate the resolvase RuvC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rafferty, J B -- Sedelnikova, S E -- Hargreaves, D -- Artymiuk, P J -- Baker, P J -- Sharples, G J -- Mahdi, A A -- Lloyd, R G -- Rice, D W -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1996 Oct 18;274(5286):415-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK. d.rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8832889" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Composition ; Crystallography, X-Ray ; DNA Helicases/metabolism ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Endodeoxyribonucleases/metabolism ; Escherichia coli ; *Escherichia coli Proteins ; Hydrogen Bonding ; Models, Molecular ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-07-31
    Description: A computational method is proposed for inferring protein interactions from genome sequences on the basis of the observation that some pairs of interacting proteins have homologs in another organism fused into a single protein chain. Searching sequences from many genomes revealed 6809 such putative protein-protein interactions in Escherichia coli and 45,502 in yeast. Many members of these pairs were confirmed as functionally related; computational filtering further enriches for interactions. Some proteins have links to several other proteins; these coupled links appear to represent functional interactions such as complexes or pathways. Experimentally confirmed interacting pairs are documented in a Database of Interacting Proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marcotte, E M -- Pellegrini, M -- Ng, H L -- Rice, D W -- Yeates, T O -- Eisenberg, D -- P01 GM 31299/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):751-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA-Department of Energy Laboratory of Structural Biology and Molecular Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10427000" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/metabolism/physiology ; Binding Sites ; *Computational Biology ; Databases, Factual ; Escherichia coli/genetics ; Evolution, Molecular ; Fungal Proteins/chemistry/genetics/metabolism ; *Genome ; Genome, Bacterial ; Genome, Fungal ; Humans ; Models, Biological ; Proteins/chemistry/genetics/metabolism/*physiology ; *Sequence Homology, Amino Acid ; *Sequence Homology, Nucleic Acid ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-09-20
    Description: FtsZ is an essential bacterial guanosine triphosphatase and homolog of mammalian beta-tubulin that polymerizes and assembles into a ring to initiate cell division. We have created a class of small synthetic antibacterials, exemplified by PC190723, which inhibits FtsZ and prevents cell division. PC190723 has potent and selective in vitro bactericidal activity against staphylococci, including methicillin- and multi-drug-resistant Staphylococcus aureus. The putative inhibitor-binding site of PC190723 was mapped to a region of FtsZ that is analogous to the Taxol-binding site of tubulin. PC190723 was efficacious in an in vivo model of infection, curing mice infected with a lethal dose of S. aureus. The data validate FtsZ as a target for antibacterial intervention and identify PC190723 as suitable for optimization into a new anti-staphylococcal therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haydon, David J -- Stokes, Neil R -- Ure, Rebecca -- Galbraith, Greta -- Bennett, James M -- Brown, David R -- Baker, Patrick J -- Barynin, Vladimir V -- Rice, David W -- Sedelnikova, Sveta E -- Heal, Jonathan R -- Sheridan, Joseph M -- Aiwale, Sachin T -- Chauhan, Pramod K -- Srivastava, Anil -- Taneja, Amit -- Collins, Ian -- Errington, Jeff -- Czaplewski, Lloyd G -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 19;321(5896):1673-5. doi: 10.1126/science.1159961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Prolysis, Begbroke Science Park, Oxfordshire OX5 1PF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801997" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Bacillus subtilis/chemistry/*drug effects/genetics ; Bacterial Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Binding Sites ; Cell Division/drug effects ; Crystallography, X-Ray ; Cytoskeletal Proteins/*antagonists & inhibitors/chemistry/genetics/metabolism ; Drug Resistance, Bacterial/genetics ; Drug Resistance, Multiple, Bacterial ; Ligands ; Methicillin Resistance ; Mice ; Microbial Sensitivity Tests ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Pyridines/chemistry/metabolism/*pharmacology/therapeutic use ; Staphylococcal Infections/*drug therapy ; Staphylococcus aureus/chemistry/*drug effects ; Thiazoles/chemistry/metabolism/*pharmacology/therapeutic use ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-21
    Description: We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice, Danny W -- Alverson, Andrew J -- Richardson, Aaron O -- Young, Gregory J -- Sanchez-Puerta, M Virginia -- Munzinger, Jerome -- Barry, Kerrie -- Boore, Jeffrey L -- Zhang, Yan -- dePamphilis, Claude W -- Knox, Eric B -- Palmer, Jeffrey D -- R01-GM-76012/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1468-73. doi: 10.1126/science.1246275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357311" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Bryophyta/classification/genetics ; Chlorophyta/classification/genetics ; DNA, Mitochondrial/*genetics ; *Gene Transfer, Horizontal ; *Genome, Plant ; Membrane Fusion ; *Mitochondrial Dynamics ; Molecular Sequence Data ; Phylogeny ; Tracheobionta/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The Lawrence Livermore National Laboratory (LLNL) and the Idaho National Engineering Laboratory (INEL) are jointly investigating the decomposition of chlorinated hydrocarbons using bremsstrahlung radiation produced by electron accelerators and gamma photons from spent reactor fuel. Experimental results demonstrate an exponential type decay of concentration with dose for volatile organic compounds (VOCs) in ground water and for both polychlorinated biphenyls (PCBs) and insecticides in organic solutions. Experiments were performed at several photon energies and dose rates with various initial concentrations. Mass balance analysis suggests complete mineralization of VOCs in ground water and indicates significant degradation of PCBs and insecticides to VOC type compounds in organic solutions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...