ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-12
    Description: Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1-associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Yadong -- Li, Lei -- Macho, Alberto P -- Han, Zhifu -- Hu, Zehan -- Zipfel, Cyril -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):624-8. doi: 10.1126/science.1243825. Epub 2013 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, Beijing 100084, China, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24114786" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Complex/*chemistry ; Arabidopsis/*immunology ; Arabidopsis Proteins/*chemistry ; Crystallography, X-Ray ; Flagellin/*chemistry ; Protein Kinases/*chemistry ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-15
    Description: Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macho, Alberto P -- Schwessinger, Benjamin -- Ntoukakis, Vardis -- Brutus, Alexandre -- Segonzac, Cecile -- Roy, Sonali -- Kadota, Yasuhiro -- Oh, Man-Ho -- Sklenar, Jan -- Derbyshire, Paul -- Lozano-Duran, Rosa -- Malinovsky, Frederikke Gro -- Monaghan, Jacqueline -- Menke, Frank L -- Huber, Steven C -- He, Sheng Yang -- Zipfel, Cyril -- BB/G024944/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01AI060761/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 28;343(6178):1509-12. doi: 10.1126/science.1248849. Epub 2014 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24625928" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/*microbiology ; Arabidopsis Proteins/agonists/*metabolism ; Bacterial Proteins/*metabolism ; Peptide Elongation Factor Tu/*metabolism ; Peptides/metabolism/pharmacology ; Phosphorylation ; Protein Tyrosine Phosphatases/*metabolism ; Pseudomonas syringae/enzymology/*pathogenicity ; Receptors, Pattern Recognition/agonists/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-09
    Description: Background Ralstonia solanacearum is the causal agent of bacterial wilt, a devastating plant disease responsible for serious economic losses especially on potato, tomato, and other solanaceous plant species in temperate countries. In R. solanacearum, gene expression analysis has been key to unravel many virulence determinants as well as their regulatory networks. However, most of these assays have been performed using either bacteria grown in minimal medium or in planta, after symptom onset, which occurs at late stages of colonization. Thus, little is known about the genetic program that coordinates virulence gene expression and metabolic adaptation along the different stages of plant infection by R. solanacearum. Results We performed an RNA-sequencing analysis of the transcriptome of bacteria recovered from potato apoplast and from the xylem of asymptomatic or wilted potato plants, which correspond to three different conditions (Apoplast, Early and Late xylem). Our results show dynamic expression of metabolism-controlling genes and virulence factors during parasitic growth inside the plant. Flagellar motility genes were especially up-regulated in the apoplast and twitching motility genes showed a more sustained expression in planta regardless of the condition. Xylem-induced genes included virulence genes, such as the type III secretion system (T3SS) and most of its related effectors and nitrogen utilisation genes. The upstream regulators of the T3SS were exclusively up-regulated in the apoplast, preceding the induction of their downstream targets. Finally, a large subset of genes involved in central metabolism was exclusively down-regulated in the xylem at late infection stages. Conclusions This is the first report describing R. solanacearum dynamic transcriptional changes within the plant during infection. Our data define four main genetic programmes that define gene pathogen physiology during plant colonisation. The described expression of virulence genes, which might reflect bacterial states in different infection stages, provides key information on the R. solanacearum potato infection process.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...