ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (102)
  • Mice, Inbred C57BL  (102)
  • 2020-2024
  • 2010-2014  (102)
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • 2010  (102)
  • Chemistry and Pharmacology  (102)
  • Computer Science  (46)
Collection
  • Articles  (102)
Years
  • 2020-2024
  • 2010-2014  (102)
  • 1985-1989
  • 1950-1954
  • 1945-1949
Year
Topic
  • 1
    Publication Date: 2010-07-20
    Description: Chronic myelogenous leukaemia (CML) can progress from a slow growing chronic phase to an aggressive blast crisis phase, but the molecular basis of this transition remains poorly understood. Here we have used mouse models of CML to show that disease progression is regulated by the Musashi-Numb signalling axis. Specifically, we find that the chronic phase is marked by high levels of Numb expression whereas the blast crisis phase has low levels of Numb expression, and that ectopic expression of Numb promotes differentiation and impairs advanced-phase disease in vivo. As a possible explanation for the decreased levels of Numb in the blast crisis phase, we show that NUP98-HOXA9, an oncogene associated with blast crisis CML, can trigger expression of the RNA-binding protein Musashi2 (Msi2), which in turn represses Numb. Notably, loss of Msi2 restores Numb expression and significantly impairs the development and propagation of blast crisis CML in vitro and in vivo. Finally we show that Msi2 expression is not only highly upregulated during human CML progression but is also an early indicator of poorer prognosis. These data show that the Musashi-Numb pathway can control the differentiation of CML cells, and raise the possibility that targeting this pathway may provide a new strategy for the therapy of aggressive leukaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Takahiro -- Kwon, Hyog Young -- Zimdahl, Bryan -- Congdon, Kendra L -- Blum, Jordan -- Lento, William E -- Zhao, Chen -- Lagoo, Anand -- Gerrard, Gareth -- Foroni, Letizia -- Goldman, John -- Goh, Harriet -- Kim, Soo-Hyun -- Kim, Dong-Wook -- Chuah, Charles -- Oehler, Vivian G -- Radich, Jerald P -- Jordan, Craig T -- Reya, Tannishtha -- AI067798/AI/NIAID NIH HHS/ -- CA122206/CA/NCI NIH HHS/ -- CA140371/CA/NCI NIH HHS/ -- CA18029/CA/NCI NIH HHS/ -- DK072234/DK/NIDDK NIH HHS/ -- DK63031/DK/NIDDK NIH HHS/ -- DP1 CA174422/CA/NCI NIH HHS/ -- DP1 OD006430/OD/NIH HHS/ -- DP1 OD006430-01/OD/NIH HHS/ -- DP1 OD006430-02/OD/NIH HHS/ -- DP1OD006430/OD/NIH HHS/ -- HL097767/HL/NHLBI NIH HHS/ -- P01 CA018029/CA/NCI NIH HHS/ -- R01 CA140371/CA/NCI NIH HHS/ -- R01 DK063031/DK/NIDDK NIH HHS/ -- R01 DK063031-01/DK/NIDDK NIH HHS/ -- R01 DK063031-01S1/DK/NIDDK NIH HHS/ -- R01 DK063031-02/DK/NIDDK NIH HHS/ -- R01 DK063031-03/DK/NIDDK NIH HHS/ -- R01 DK063031-04/DK/NIDDK NIH HHS/ -- R01 DK063031-05/DK/NIDDK NIH HHS/ -- R01 DK063031-06/DK/NIDDK NIH HHS/ -- R01 DK063031-07/DK/NIDDK NIH HHS/ -- R01 DK063031-07S1/DK/NIDDK NIH HHS/ -- R01 DK063031-08/DK/NIDDK NIH HHS/ -- R01 DK072234/DK/NIDDK NIH HHS/ -- R01 DK072234-01A1/DK/NIDDK NIH HHS/ -- R01 DK072234-02/DK/NIDDK NIH HHS/ -- R01 DK072234-03/DK/NIDDK NIH HHS/ -- R01 DK072234-04/DK/NIDDK NIH HHS/ -- R01 HL097767/HL/NHLBI NIH HHS/ -- R01 HL097767-01/HL/NHLBI NIH HHS/ -- R01 HL097767-02/HL/NHLBI NIH HHS/ -- T32 GM007184-33/GM/NIGMS NIH HHS/ -- U19 AI067798/AI/NIAID NIH HHS/ -- U19 AI067798-010006/AI/NIAID NIH HHS/ -- U19 AI067798-020006/AI/NIAID NIH HHS/ -- U19 AI067798-030006/AI/NIAID NIH HHS/ -- U19 AI067798-040006/AI/NIAID NIH HHS/ -- U19 AI067798-050006/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):765-8. doi: 10.1038/nature09171. Epub 2010 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20639863" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blast Crisis/genetics/metabolism/pathology ; *Cell Differentiation/genetics ; Disease Progression ; Fusion Proteins, bcr-abl/genetics/metabolism ; Gene Expression Regulation, Neoplastic ; Homeodomain Proteins/genetics/metabolism ; Humans ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics/*metabolism/*pathology ; Membrane Proteins/biosynthesis/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/biosynthesis/genetics/metabolism ; Nuclear Pore Complex Proteins/genetics/metabolism ; Oncogene Proteins, Fusion/genetics/metabolism ; Prognosis ; RNA-Binding Proteins/biosynthesis/genetics/*metabolism ; Receptor, Notch1/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-14
    Description: The main reason why tumours are not controlled by the immune system is that, unlike pathogens, they do not express potent tumour rejection antigens (TRAs). Tumour vaccination aims at stimulating a systemic immune response targeted to, mostly weak, antigens expressed in the disseminated tumour lesions. Main challenges in developing effective vaccination protocols are the identification of potent and broadly expressed TRAs and effective adjuvants to stimulate a robust and durable immune response. Here we describe an alternative approach in which the expression of new, and thereby potent, antigens are induced in tumour cells by inhibiting nonsense-mediated messenger RNA decay (NMD). Small interfering RNA (siRNA)-mediated inhibition of NMD in tumour cells led to the expression of new antigenic determinants and their immune-mediated rejection. In subcutaneous and metastatic tumour models, tumour-targeted delivery of NMD factor-specific siRNAs conjugated to oligonucleotide aptamer ligands led to significant inhibition of tumour growth that was superior to that of vaccination with granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing irradiated tumour cells, and could be further enhanced by co-stimulation. Tumour-targeted NMD inhibition forms the basis of a simple, broadly useful, and clinically feasible approach to enhance the antigenicity of disseminated tumours leading to their immune recognition and rejection. The cell-free chemically synthesized oligonucleotide backbone of aptamer-siRNAs reduces the risk of immunogenicity and enhances the feasibility of generating reagents suitable for clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107067/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107067/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pastor, Fernando -- Kolonias, Despina -- Giangrande, Paloma H -- Gilboa, Eli -- R01 CA138503/CA/NCI NIH HHS/ -- R01 CA151857-02/CA/NCI NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):227-30. doi: 10.1038/nature08999.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, University of Miami Miller School of Medicine Miami, Florida 33134, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463739" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/*genetics/*immunology ; Aptamers, Nucleotide/genetics ; Cancer Vaccines/genetics/immunology/metabolism ; Carrier Proteins/genetics ; Cell Line, Tumor ; Chickens/genetics ; Colonic Neoplasms/*genetics/*immunology/pathology ; Gene Expression Regulation, Neoplastic ; Granulocyte-Macrophage Colony-Stimulating Factor/genetics/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Nude ; Neoplasm Transplantation ; RNA Interference ; RNA Stability/*genetics ; RNA, Small Interfering/*genetics/therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-03
    Description: The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Boyi -- Hu, Jian -- Jiang, Shan -- Liu, Yingchun -- Sahin, Ergun -- Zhuang, Li -- Fletcher-Sananikone, Eliot -- Colla, Simona -- Wang, Y Alan -- Chin, Lynda -- Depinho, Ronald A -- 01CA141508/CA/NCI NIH HHS/ -- R21 CA135057/CA/NCI NIH HHS/ -- R21 CA135057-01/CA/NCI NIH HHS/ -- R21CA135057/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):701-4. doi: 10.1038/nature09595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle/*physiology ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Female ; Gene Deletion ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; *Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Survival Analysis ; TOR Serine-Threonine Kinases ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-19
    Description: Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlas, Alexander -- Machuy, Nikolaus -- Shin, Yujin -- Pleissner, Klaus-Peter -- Artarini, Anita -- Heuer, Dagmar -- Becker, Daniel -- Khalil, Hany -- Ogilvie, Lesley A -- Hess, Simone -- Maurer, Andre P -- Muller, Elke -- Wolff, Thorsten -- Rudel, Thomas -- Meyer, Thomas F -- England -- Nature. 2010 Feb 11;463(7282):818-22. doi: 10.1038/nature08760. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Factors/genetics/metabolism ; Cell Line ; Cells, Cultured ; Chick Embryo ; Cyclin-Dependent Kinase Inhibitor p27/deficiency/genetics/metabolism ; Epithelial Cells/virology ; Genome, Human/genetics ; *Host-Pathogen Interactions/genetics/physiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*growth & development ; Influenza, Human/*genetics/*virology ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/genetics ; Protein-Tyrosine Kinases/genetics ; *RNA Interference ; Virus Replication/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-01
    Description: RANK ligand (RANKL), a TNF-related molecule, is essential for osteoclast formation, function and survival through interaction with its receptor RANK. Mammary glands of RANK- and RANKL-deficient mice develop normally during sexual maturation, but fail to form lobuloalveolar structures during pregnancy because of defective proliferation and increased apoptosis of mammary epithelium. It has been shown that RANKL is responsible for the major proliferative response of mouse mammary epithelium to progesterone during mammary lactational morphogenesis, and in mouse models, manipulated to induce activation of the RANK/RANKL pathway in the absence of strict hormonal control, inappropriate mammary proliferation is observed. However, there is no evidence so far of a functional contribution of RANKL to tumorigenesis. Here we show that RANK and RANKL are expressed within normal, pre-malignant and neoplastic mammary epithelium, and using complementary gain-of-function (mouse mammary tumour virus (MMTV)-RANK transgenic mice) and loss-of function (pharmacological inhibition of RANKL) approaches, define a direct contribution of this pathway in mammary tumorigenesis. Accelerated pre-neoplasias and increased mammary tumour formation were observed in MMTV-RANK transgenic mice after multiparity or treatment with carcinogen and hormone (progesterone). Reciprocally, selective pharmacological inhibition of RANKL attenuated mammary tumour development not only in hormone- and carcinogen-treated MMTV-RANK and wild-type mice, but also in the MMTV-neu transgenic spontaneous tumour model. The reduction in tumorigenesis upon RANKL inhibition was preceded by a reduction in pre-neoplasias as well as rapid and sustained reductions in hormone- and carcinogen-induced mammary epithelial proliferation and cyclin D1 levels. Collectively, our results indicate that RANKL inhibition is acting directly on hormone-induced mammary epithelium at early stages in tumorigenesis, and the permissive contribution of progesterone to increased mammary cancer incidence is due to RANKL-dependent proliferative changes in the mammary epithelium. The current study highlights a potential role for RANKL inhibition in the management of proliferative breast disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Suarez, Eva -- Jacob, Allison P -- Jones, Jon -- Miller, Robert -- Roudier-Meyer, Martine P -- Erwert, Ryan -- Pinkas, Jan -- Branstetter, Dan -- Dougall, William C -- England -- Nature. 2010 Nov 4;468(7320):103-7. doi: 10.1038/nature09495. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Hematology/Oncology Research, Amgen Inc, Seattle, Washington 98119, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881963" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene/administration & dosage/adverse effects ; Animals ; Breast Neoplasms/metabolism/pathology ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/*chemically induced/*drug effects/pathology ; Disease Models, Animal ; Epithelial Cells/drug effects/metabolism/pathology ; Female ; Humans ; Lung Neoplasms/secondary ; Mammary Neoplasms, Experimental/*chemically ; induced/genetics/metabolism/*pathology ; Mammary Tumor Virus, Mouse/genetics/physiology ; Medroxyprogesterone Acetate/administration & dosage/adverse effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neoplasm Invasiveness ; Precancerous Conditions/pathology/prevention & control ; Progesterone/administration & dosage/adverse effects ; Progestins/administration & dosage/*adverse effects ; RANK Ligand/antagonists & inhibitors/genetics/*metabolism ; Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-10-12
    Description: Reciprocity of inflammation, oxidative stress and neovascularization is emerging as an important mechanism underlying numerous processes from tissue healing and remodelling to cancer progression. Whereas the mechanism of hypoxia-driven angiogenesis is well understood, the link between inflammation-induced oxidation and de novo blood vessel growth remains obscure. Here we show that the end products of lipid oxidation, omega-(2-carboxyethyl)pyrrole (CEP) and other related pyrroles, are generated during inflammation and wound healing and accumulate at high levels in ageing tissues in mice and in highly vascularized tumours in both murine and human melanoma. The molecular patterns of carboxyalkylpyrroles are recognized by Toll-like receptor 2 (TLR2), but not TLR4 or scavenger receptors on endothelial cells, leading to an angiogenic response that is independent of vascular endothelial growth factor. CEP promoted angiogenesis in hindlimb ischaemia and wound healing models through MyD88-dependent TLR2 signalling. Neutralization of endogenous carboxyalkylpyrroles impaired wound healing and tissue revascularization and diminished tumour angiogenesis. Both TLR2 and MyD88 are required for CEP-induced stimulation of Rac1 and endothelial migration. Taken together, these findings establish a new function of TLR2 as a sensor of oxidation-associated molecular patterns, providing a key link connecting inflammation, oxidative stress, innate immunity and angiogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, Xiaoxia Z -- Malinin, Nikolay L -- Merkulova, Alona A -- Tischenko, Mira -- Kerr, Bethany A -- Borden, Ernest C -- Podrez, Eugene A -- Salomon, Robert G -- Byzova, Tatiana V -- CA126847/CA/NCI NIH HHS/ -- GM021249/GM/NIGMS NIH HHS/ -- HL071625/HL/NHLBI NIH HHS/ -- HL073311/HL/NHLBI NIH HHS/ -- HL077213/HL/NHLBI NIH HHS/ -- R01 HL071625/HL/NHLBI NIH HHS/ -- R01 HL071625-07/HL/NHLBI NIH HHS/ -- R01 HL071625-08/HL/NHLBI NIH HHS/ -- R01 HL077213/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):972-6. doi: 10.1038/nature09421. Epub 2010 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cardiology, J. J. Jacobs Center for Thrombosis and Vascular Biology, NB50, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927103" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/metabolism ; Animals ; Antigens, CD31/metabolism ; Aorta/cytology/drug effects ; Cell Line ; Cell Movement ; Endothelial Cells/metabolism ; Hindlimb/metabolism ; Humans ; Immunity, Innate/immunology ; Inflammation/metabolism ; Ischemia/metabolism ; Ligands ; Melanoma/blood supply/metabolism ; Mice ; Mice, Inbred C57BL ; Myeloid Differentiation Factor 88/metabolism ; Neovascularization, Pathologic/*metabolism ; *Neovascularization, Physiologic/drug effects ; Oxidation-Reduction ; Oxidative Stress/*physiology ; Propionates ; Pyrroles/chemistry/*metabolism/pharmacology ; Receptors, Scavenger/metabolism ; Signal Transduction/drug effects ; Toll-Like Receptor 2/agonists/*metabolism ; Toll-Like Receptor 4/metabolism ; Vascular Endothelial Growth Factor A/metabolism ; Wound Healing/drug effects/physiology ; rac1 GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-09-30
    Description: Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB1(1-2)-SEMA4D(ecto) and murine PlxnA2(1-4)-Sema6A(ecto)), plus unliganded structures of PlxnA2(1-4) and Sema6A(ecto). These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed beta-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin-plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587840/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Bert J C -- Robinson, Ross A -- Perez-Branguli, Francesc -- Bell, Christian H -- Mitchell, Kevin J -- Siebold, Christian -- Jones, E Yvonne -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- A10976/Cancer Research UK/United Kingdom -- A3964/Cancer Research UK/United Kingdom -- A5261/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- G0700232(82098)/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- G9900061(69203)/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1118-22. doi: 10.1038/nature09468. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/genetics/metabolism ; Binding Sites ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Cell Communication ; Crystallography, X-Ray ; Humans ; Ligands ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; NIH 3T3 Cells ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-26
    Description: Lymph nodes (LNs) capture microorganisms that breach the body's external barriers and enter draining lymphatics, limiting the systemic spread of pathogens. Recent work has shown that CD11b(+)CD169(+) macrophages, which populate the subcapsular sinus (SCS) of LNs, are critical for the clearance of viruses from the lymph and for initiating antiviral humoral immune responses. Here we show, using vesicular stomatitis virus (VSV), a relative of rabies virus transmitted by insect bites, that SCS macrophages perform a third vital function: they prevent lymph-borne neurotropic viruses from infecting the central nervous system (CNS). On local depletion of LN macrophages, about 60% of mice developed ascending paralysis and died 7-10 days after subcutaneous infection with a small dose of VSV, whereas macrophage-sufficient animals remained asymptomatic and cleared the virus. VSV gained access to the nervous system through peripheral nerves in macrophage-depleted LNs. In contrast, within macrophage-sufficient LNs VSV replicated preferentially in SCS macrophages but not in adjacent nerves. Removal of SCS macrophages did not compromise adaptive immune responses against VSV, but decreased type I interferon (IFN-I) production within infected LNs. VSV-infected macrophages recruited IFN-I-producing plasmacytoid dendritic cells to the SCS and in addition were a major source of IFN-I themselves. Experiments in bone marrow chimaeric mice revealed that IFN-I must act on both haematopoietic and stromal compartments, including the intranodal nerves, to prevent lethal infection with VSV. These results identify SCS macrophages as crucial gatekeepers to the CNS that prevent fatal viral invasion of the nervous system on peripheral infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892812/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892812/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iannacone, Matteo -- Moseman, E Ashley -- Tonti, Elena -- Bosurgi, Lidia -- Junt, Tobias -- Henrickson, Sarah E -- Whelan, Sean P -- Guidotti, Luca G -- von Andrian, Ulrich H -- AI069259/AI/NIAID NIH HHS/ -- AI072252/AI/NIAID NIH HHS/ -- AI078897/AI/NIAID NIH HHS/ -- AR42689/AR/NIAMS NIH HHS/ -- P01 AI078897/AI/NIAID NIH HHS/ -- P01 AI078897-01/AI/NIAID NIH HHS/ -- P01 CA071932/CA/NCI NIH HHS/ -- P01 CA071932-12S29003/CA/NCI NIH HHS/ -- R01 AI069259/AI/NIAID NIH HHS/ -- R01 AI069259-06/AI/NIAID NIH HHS/ -- R01 AI072252/AI/NIAID NIH HHS/ -- R01 AI072252-04/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1079-83. doi: 10.1038/nature09118.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute and Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA. Matteo_Iannacone@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/cytology/*immunology/*virology ; Dendritic Cells/immunology ; Injections ; Interferon Type I/immunology ; Lymph Nodes/cytology/*immunology/innervation/*virology ; Macrophages/*immunology/virology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Paralysis/complications/virology ; Peripheral Nerves/virology ; Receptor, Interferon alpha-beta/deficiency ; Rhabdoviridae Infections/complications/*immunology/virology ; Survival Rate ; Vesicular stomatitis Indiana virus/immunology/pathogenicity/physiology ; Vesicular stomatitis New Jersey virus/immunology/pathogenicity/physiology ; Vesiculovirus/*immunology/pathogenicity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-04-30
    Description: In sensory cortex regions, neurons are tuned to specific stimulus features. For example, in the visual cortex, many neurons fire predominantly in response to moving objects of a preferred orientation. However, the characteristics of the synaptic input that cortical neurons receive to generate their output firing pattern remain unclear. Here we report a novel approach for the visualization and functional mapping of sensory inputs to the dendrites of cortical neurons in vivo. By combining high-speed two-photon imaging with electrophysiological recordings, we identify local subthreshold calcium signals that correspond to orientation-specific synaptic inputs. We find that even inputs that share the same orientation preference are widely distributed throughout the dendritic tree. At the same time, inputs of different orientation preference are interspersed, so that adjacent dendritic segments are tuned to distinct orientations. Thus, orientation-tuned neurons can compute their characteristic firing pattern by integrating spatially distributed synaptic inputs coding for multiple stimulus orientations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Hongbo -- Rochefort, Nathalie L -- Chen, Xiaowei -- Konnerth, Arthur -- England -- Nature. 2010 Apr 29;464(7293):1307-12. doi: 10.1038/nature08947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and Center for Integrated Protein Science, Technical University Munich, Biedersteinerstrasse 29, 80802 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428163" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium Signaling ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Sensory Receptor Cells/cytology/*physiology ; Synapses/metabolism ; Visual Cortex/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-24
    Description: Learning new action sequences subserves a plethora of different abilities such as escaping a predator, playing the piano, or producing fluent speech. Proper initiation and termination of each action sequence is critical for the organization of behaviour, and is compromised in nigrostriatal disorders like Parkinson's and Huntington's diseases. Using a self-paced operant task in which mice learn to perform a particular sequence of actions to obtain an outcome, we found neural activity in nigrostriatal circuits specifically signalling the initiation or the termination of each action sequence. This start/stop activity emerged during sequence learning, was specific for particular actions, and did not reflect interval timing, movement speed or action value. Furthermore, genetically altering the function of striatal circuits disrupted the development of start/stop activity and selectively impaired sequence learning. These results have important implications for understanding the functional organization of actions and the sequence initiation and termination impairments observed in basal ganglia disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Xin -- Costa, Rui M -- 243393/European Research Council/International -- Z01 AA000416-02/Intramural NIH HHS/ -- England -- Nature. 2010 Jul 22;466(7305):457-62. doi: 10.1038/nature09263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Bethesda, Maryland 20892-9412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651684" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal/physiology ; Dopamine/metabolism ; Glutamic Acid/metabolism ; Learning/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neostriatum/*physiology ; Neural Pathways/*physiology ; Receptors, N-Methyl-D-Aspartate/deficiency/genetics/metabolism ; Substantia Nigra/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-01-15
    Description: Immune homeostasis is dependent on tight control over the size of a population of regulatory T (T(reg)) cells capable of suppressing over-exuberant immune responses. The T(reg) cell subset is comprised of cells that commit to the T(reg) lineage by upregulating the transcription factor Foxp3 either in the thymus (tT(reg)) or in the periphery (iT(reg)). Considering a central role for Foxp3 in T(reg) cell differentiation and function, we proposed that conserved non-coding DNA sequence (CNS) elements at the Foxp3 locus encode information defining the size, composition and stability of the T(reg) cell population. Here we describe the function of three Foxp3 CNS elements (CNS1-3) in T(reg) cell fate determination in mice. The pioneer element CNS3, which acts to potently increase the frequency of T(reg) cells generated in the thymus and the periphery, binds c-Rel in in vitro assays. In contrast, CNS1, which contains a TGF-beta-NFAT response element, is superfluous for tT(reg) cell differentiation, but has a prominent role in iT(reg) cell generation in gut-associated lymphoid tissues. CNS2, although dispensable for Foxp3 induction, is required for Foxp3 expression in the progeny of dividing T(reg) cells. Foxp3 binds to CNS2 in a Cbf-beta-Runx1 and CpG DNA demethylation-dependent manner, suggesting that Foxp3 recruitment to this 'cellular memory module' facilitates the heritable maintenance of the active state of the Foxp3 locus and, therefore, T(reg) lineage stability. Together, our studies demonstrate that the composition, size and maintenance of the T(reg) cell population are controlled by Foxp3 CNS elements engaged in response to distinct cell-extrinsic or -intrinsic cues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2884187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Ye -- Josefowicz, Steven -- Chaudhry, Ashutosh -- Peng, Xiao P -- Forbush, Katherine -- Rudensky, Alexander Y -- R37 AI034206/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 11;463(7282):808-12. doi: 10.1038/nature08750. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage/*genetics ; Chromatin Assembly and Disassembly ; Conserved Sequence/*genetics ; CpG Islands/genetics ; DNA Methylation ; Female ; Forkhead Transcription Factors/*genetics/metabolism ; Gene Expression Regulation ; Lymphocyte Count ; Male ; Mice ; Mice, Inbred C57BL ; Proto-Oncogene Proteins c-rel/metabolism ; Regulatory Sequences, Nucleic Acid/*genetics ; Response Elements/genetics ; T-Lymphocytes, Regulatory/*cytology/immunology/*metabolism ; Thymus Gland/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-11-12
    Description: The central amygdala (CEA), a nucleus predominantly composed of GABAergic inhibitory neurons, is essential for fear conditioning. How the acquisition and expression of conditioned fear are encoded within CEA inhibitory circuits is not understood. Using in vivo electrophysiological, optogenetic and pharmacological approaches in mice, we show that neuronal activity in the lateral subdivision of the central amygdala (CEl) is required for fear acquisition, whereas conditioned fear responses are driven by output neurons in the medial subdivision (CEm). Functional circuit analysis revealed that inhibitory CEA microcircuits are highly organized and that cell-type-specific plasticity of phasic and tonic activity in the CEl to CEm pathway may gate fear expression and regulate fear generalization. Our results define the functional architecture of CEA microcircuits and their role in the acquisition and regulation of conditioned fear behaviour.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciocchi, Stephane -- Herry, Cyril -- Grenier, Francois -- Wolff, Steffen B E -- Letzkus, Johannes J -- Vlachos, Ioannis -- Ehrlich, Ingrid -- Sprengel, Rolf -- Deisseroth, Karl -- Stadler, Michael B -- Muller, Christian -- Luthi, Andreas -- England -- Nature. 2010 Nov 11;468(7321):277-82. doi: 10.1038/nature09559.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068837" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amygdala/anatomy & histology/cytology/*physiology ; Animals ; Conditioning, Classical/*physiology ; Fear/*physiology ; Freezing Reaction, Cataleptic ; Male ; Mice ; Mice, Inbred C57BL ; Neural Inhibition/*physiology ; Neural Pathways/cytology/*physiology ; Neuronal Plasticity/physiology ; Neurons/physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-12-24
    Description: The multi-component mechanistic target of rapamycin complex 1 (mTORC1) kinase is the central node of a mammalian pathway that coordinates cell growth with the availability of nutrients, energy and growth factors. Progress has been made in the identification of mTORC1 pathway components and in understanding their functions in cells, but there is relatively little known about the role of the pathway in vivo. Specifically, we have little knowledge regarding the role mTOCR1 has in liver physiology. In fasted animals, the liver performs numerous functions that maintain whole-body homeostasis, including the production of ketone bodies for peripheral tissues to use as energy sources. Here we show that mTORC1 controls ketogenesis in mice in response to fasting. We find that liver-specific loss of TSC1 (tuberous sclerosis 1), an mTORC1 inhibitor, leads to a fasting-resistant increase in liver size, and to a pronounced defect in ketone body production and ketogenic gene expression on fasting. The loss of raptor (regulatory associated protein of mTOR, complex 1) an essential mTORC1 component, has the opposite effects. In addition, we find that the inhibition of mTORC1 is required for the fasting-induced activation of PPARalpha (peroxisome proliferator activated receptor alpha), the master transcriptional activator of ketogenic genes, and that suppression of NCoR1 (nuclear receptor co-repressor 1), a co-repressor of PPARalpha, reactivates ketogenesis in cells and livers with hyperactive mTORC1 signalling. Like livers with activated mTORC1, livers from aged mice have a defect in ketogenesis, which correlates with an increase in mTORC1 signalling. Moreover, we show that the suppressive effects of mTORC1 activation and ageing on PPARalpha activity and ketone production are not additive, and that mTORC1 inhibition is sufficient to prevent the ageing-induced defect in ketogenesis. Thus, our findings reveal that mTORC1 is a key regulator of PPARalpha function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sengupta, Shomit -- Peterson, Timothy R -- Laplante, Mathieu -- Oh, Stephanie -- Sabatini, David M -- CA103866/CA/NCI NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-04/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 23;468(7327):1100-4. doi: 10.1038/nature09584.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179166" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; Fasting/*metabolism ; *Gene Expression Regulation ; Humans ; Ketone Bodies/*biosynthesis/metabolism ; Liver/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Multiprotein Complexes ; Nuclear Receptor Co-Repressor 1/metabolism ; PPAR alpha/antagonists & inhibitors/metabolism ; Proteins/genetics/*metabolism ; TOR Serine-Threonine Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-11-05
    Description: Stroke is a leading cause of disability, but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage-the peri-infarct zone-is critical for rehabilitation, as it shows heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas. Thus, understanding the neuronal properties constraining this plasticity is important for the development of new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABA(A) receptors and is caused by an impairment in GABA (gamma-aminobutyric acid) transporter (GAT-3/GAT-4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for alpha5-subunit-containing extrasynaptic GABA(A) receptors at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of alpha5- or delta-subunit-containing GABA(A) receptors responsible for tonic inhibition also proved beneficial for recovery after stroke, consistent with the therapeutic potential of diminishing extrasynaptic GABA(A) receptor function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clarkson, Andrew N -- Huang, Ben S -- Macisaac, Sarah E -- Mody, Istvan -- Carmichael, S Thomas -- NS30549/NS/NINDS NIH HHS/ -- R01 NS030549/NS/NINDS NIH HHS/ -- R01 NS030549-18/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Nov 11;468(7321):305-9. doi: 10.1038/nature09511. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepines/pharmacology ; Cerebral Infarction/metabolism/pathology/physiopathology ; Disease Models, Animal ; Drug Inverse Agonism ; GABA Antagonists/pharmacology ; GABA Plasma Membrane Transport Proteins/metabolism ; Imidazoles/pharmacology ; Male ; Membrane Potentials/drug effects ; Mice ; Mice, Inbred C57BL ; Motor Cortex/metabolism/pathology/*physiology/*physiopathology ; Neuronal Plasticity/physiology ; Receptors, GABA/deficiency/genetics/metabolism ; Recovery of Function/*physiology ; Stroke/drug therapy/*metabolism/pathology ; Synapses/metabolism ; Time Factors ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-08-13
    Description: Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic contacts) and block long-term synaptic potentiation (LTP), a form of synaptic plasticity; however, the receptor through which amyloid-beta produces these synaptic perturbations has remained elusive. Lauren et al. suggested that binding between oligomeric amyloid-beta (a form of amyloid-beta thought to be most active) and the cellular prion protein (PrP(C)) is necessary for synaptic perturbations. Here we show that PrP(C) is not required for amyloid-beta-induced synaptic depression, reduction in spine density, or blockade of LTP; our results indicate that amyloid-beta-mediated synaptic defects do not require PrP(c).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kessels, Helmut W -- Nguyen, Louis N -- Nabavi, Sadegh -- Malinow, Roberto -- R01 AG032132/AG/NIA NIH HHS/ -- R01 AG032132-14/AG/NIA NIH HHS/ -- R01 AG032132-15/AG/NIA NIH HHS/ -- R01 AG032132-17/AG/NIA NIH HHS/ -- R01 AG032132-18/AG/NIA NIH HHS/ -- R01 MH049159/MH/NIMH NIH HHS/ -- R01 MH049159-09/MH/NIMH NIH HHS/ -- R01 MH049159-21/MH/NIMH NIH HHS/ -- R01 MH049159-22/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Aug 12;466(7308):E3-4; discussion E4-5. doi: 10.1038/nature09217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Circuits and Behavior, 9500 Gilman Drive 0634, University of California at San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703260" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism/pathology ; Amyloid beta-Peptides/chemistry/genetics/*metabolism ; Animals ; Learning/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; PrPC Proteins/deficiency/genetics/*metabolism ; Reproducibility of Results ; Serotonin/metabolism ; Synapses/*metabolism/*pathology ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-09-17
    Description: Specialized cellular microenvironments, or 'niches', modulate stem cell properties, including cell number, self-renewal and fate decisions. In the adult brain, niches that maintain a source of neural stem cells (NSCs) and neural progenitor cells (NPCs) are the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus of the hippocampus. The size of the NSC population of the SVZ at any time is the result of several ongoing processes, including self-renewal, cell differentiation, and cell death. Maintaining the balance between NSCs and NPCs in the SVZ niche is critical to supply the brain with specific neural populations, both under normal conditions or after injury. A fundamental question relevant to both normal development and to cell-based repair strategies in the central nervous system is how the balance of different NSC and NPC populations is maintained in the niche. EGFR (epidermal growth factor receptor) and Notch signalling pathways have fundamental roles during development of multicellular organisms. In Drosophila and in Caenorhabditis elegans these pathways may have either cooperative or antagonistic functions. In the SVZ, Notch regulates NSC identity and self-renewal, whereas EGFR specifically affects NPC proliferation and migration. This suggests that interplay of these two pathways may maintain the balance between NSC and NPC numbers. Here we show that functional cell-cell interaction between NPCs and NSCs through EGFR and Notch signalling has a crucial role in maintaining the balance between these cell populations in the SVZ. Enhanced EGFR signalling in vivo results in the expansion of the NPC pool, and reduces NSC number and self-renewal. This occurs through a non-cell-autonomous mechanism involving EGFR-mediated regulation of Notch signalling. Our findings define a novel interaction between EGFR and Notch pathways in the adult SVZ, and thus provide a mechanism for NSC and NPC pool maintenance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941915/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941915/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aguirre, Adan -- Rubio, Maria E -- Gallo, Vittorio -- K99NS057944/NS/NINDS NIH HHS/ -- P30HD40677/HD/NICHD NIH HHS/ -- R00 NS057944/NS/NINDS NIH HHS/ -- R01 DC006881/DC/NIDCD NIH HHS/ -- R01 DC006881-03/DC/NIDCD NIH HHS/ -- R01 DC006881-04/DC/NIDCD NIH HHS/ -- R01DC006881/DC/NIDCD NIH HHS/ -- R01NS045702/NS/NINDS NIH HHS/ -- R01NS056427/NS/NINDS NIH HHS/ -- R0O NS057944-03/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):323-7. doi: 10.1038/nature09347.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Division ; Humans ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/deficiency/genetics/metabolism ; Neurons/*cytology ; Protein Binding ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Receptor, Notch1/metabolism ; Receptors, Notch/*metabolism ; *Signal Transduction ; Stem Cell Niche/cytology ; Stem Cells/*cytology ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-04-30
    Description: The inflammatory nature of atherosclerosis is well established but the agent(s) that incite inflammation in the artery wall remain largely unknown. Germ-free animals are susceptible to atherosclerosis, suggesting that endogenous substances initiate the inflammation. Mature atherosclerotic lesions contain macroscopic deposits of cholesterol crystals in the necrotic core, but their appearance late in atherogenesis had been thought to disqualify them as primary inflammatory stimuli. However, using a new microscopic technique, we revealed that minute cholesterol crystals are present in early diet-induced atherosclerotic lesions and that their appearance in mice coincides with the first appearance of inflammatory cells. Other crystalline substances can induce inflammation by stimulating the caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome, which results in cleavage and secretion of interleukin (IL)-1 family cytokines. Here we show that cholesterol crystals activate the NLRP3 inflammasome in phagocytes in vitro in a process that involves phagolysosomal damage. Similarly, when injected intraperitoneally, cholesterol crystals induce acute inflammation, which is impaired in mice deficient in components of the NLRP3 inflammasome, cathepsin B, cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-density lipoprotein receptor (LDLR) were bone-marrow transplanted with NLRP3-deficient, ASC (also known as PYCARD)-deficient or IL-1alpha/beta-deficient bone marrow and fed on a high-cholesterol diet, they had markedly decreased early atherosclerosis and inflammasome-dependent IL-18 levels. Minimally modified LDL can lead to cholesterol crystallization concomitant with NLRP3 inflammasome priming and activation in macrophages. Although there is the possibility that oxidized LDL activates the NLRP3 inflammasome in vivo, our results demonstrate that crystalline cholesterol acts as an endogenous danger signal and its deposition in arteries or elsewhere is an early cause rather than a late consequence of inflammation. These findings provide new insights into the pathogenesis of atherosclerosis and indicate new potential molecular targets for the therapy of this disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946640/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946640/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duewell, Peter -- Kono, Hajime -- Rayner, Katey J -- Sirois, Cherilyn M -- Vladimer, Gregory -- Bauernfeind, Franz G -- Abela, George S -- Franchi, Luigi -- Nunez, Gabriel -- Schnurr, Max -- Espevik, Terje -- Lien, Egil -- Fitzgerald, Katherine A -- Rock, Kenneth L -- Moore, Kathryn J -- Wright, Samuel D -- Hornung, Veit -- Latz, Eicke -- R01 AI075318/AI/NIAID NIH HHS/ -- R01 AI083713/AI/NIAID NIH HHS/ -- R01 AI083713-01/AI/NIAID NIH HHS/ -- R01 HL093262/HL/NHLBI NIH HHS/ -- R01 HL093262-01A1/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Apr 29;464(7293):1357-61. doi: 10.1038/nature08938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins ; Atherosclerosis/chemically induced/*metabolism/*pathology ; Bone Marrow Transplantation ; Carrier Proteins/genetics/*metabolism ; Cathepsin B/metabolism ; Cathepsin L/metabolism ; Cholesterol/*chemistry/*metabolism/pharmacology ; Crystallization ; Cytoskeletal Proteins/deficiency ; Diet, Atherogenic ; Female ; Humans ; Inflammation/chemically induced/metabolism/pathology ; Interleukin-1/deficiency ; Interleukin-18/metabolism ; Lysosomes/drug effects/pathology ; Mice ; Mice, Inbred C57BL ; Peritoneal Cavity/pathology ; Phagocytes/drug effects/pathology/physiology ; Receptors, LDL/deficiency ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-10-22
    Description: Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaohua -- Chakravarti, Deepavali -- Cho, Min Soon -- Liu, Lingzhi -- Gi, Young Jin -- Lin, Yu-Li -- Leung, Marco L -- El-Naggar, Adel -- Creighton, Chad J -- Suraokar, Milind B -- Wistuba, Ignacio -- Flores, Elsa R -- 01DE019765/DE/NIDCR NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P30 CA016672-27/CA/NCI NIH HHS/ -- P50 CA070907/CA/NCI NIH HHS/ -- P50 CA070907-10/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- P50 CA091846-10/CA/NCI NIH HHS/ -- P50CA070907/CA/NCI NIH HHS/ -- P50CA091846/CA/NCI NIH HHS/ -- U01 DE019765/DE/NIDCR NIH HHS/ -- U01 DE019765-03/DE/NIDCR NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):986-90. doi: 10.1038/nature09459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Line ; Cell Line, Tumor ; DEAD-box RNA Helicases/biosynthesis/deficiency/genetics/*metabolism ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Genomic Instability ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*biosynthesis/genetics/metabolism ; Neoplasm Metastasis/*genetics ; Neoplasms/genetics/pathology/secretion ; Phosphoproteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Ribonuclease III/biosynthesis/deficiency/genetics/*metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transcriptional Activation ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2010-02-05
    Description: Chronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL, a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO), supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy, imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here, using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model, we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a(+/+) and Foxo3a(-/-) mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore, we find that TGF-beta is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-beta inhibition, Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore, the treatment of human CML LICs with a TGF-beta inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-beta-FOXO pathway in the maintenance of LICs, and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naka, Kazuhito -- Hoshii, Takayuki -- Muraguchi, Teruyuki -- Tadokoro, Yuko -- Ooshio, Takako -- Kondo, Yukio -- Nakao, Shinji -- Motoyama, Noboru -- Hirao, Atsushi -- England -- Nature. 2010 Feb 4;463(7281):676-80. doi: 10.1038/nature08734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, Center for Cancer and Stem Cell Research, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan. kazunaka@kenroku.kanazawa-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; Apoptosis ; Benzamides ; Cell Differentiation ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Disease Models, Animal ; Enzyme Activation ; Forkhead Transcription Factors/deficiency/genetics/*metabolism ; Humans ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/*metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Neoplastic Stem Cells/drug effects/*metabolism/*pathology ; Phosphorylation ; Piperazines/therapeutic use ; Protein Kinase Inhibitors/therapeutic use ; Protein Transport ; Protein-Tyrosine Kinases/antagonists & inhibitors ; Proto-Oncogene Proteins c-akt/metabolism ; Pyrimidines/therapeutic use ; *Signal Transduction/drug effects ; Transforming Growth Factor beta/antagonists & inhibitors/*metabolism ; Tumor Stem Cell Assay
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-12-03
    Description: Little is known about metabolic regulation in stem cells and how this modulates tissue regeneration or tumour suppression. We studied the Lkb1 tumour suppressor and its substrate AMP-activated protein kinase (AMPK), kinases that coordinate metabolism with cell growth. Deletion of the Lkb1 (also called Stk11) gene in mice caused increased haematopoietic stem cell (HSC) division, rapid HSC depletion and pancytopenia. HSCs depended more acutely on Lkb1 for cell-cycle regulation and survival than many other haematopoietic cells. HSC depletion did not depend on mTOR activation or oxidative stress. Lkb1-deficient HSCs, but not myeloid progenitors, had reduced mitochondrial membrane potential and ATP levels. HSCs deficient for two catalytic alpha-subunits of AMPK (AMPK-deficient HSCs) showed similar changes in mitochondrial function but remained able to reconstitute irradiated mice. Lkb1-deficient HSCs, but not AMPK-deficient HSCs, exhibited defects in centrosomes and mitotic spindles in culture, and became aneuploid. Lkb1 is therefore required for HSC maintenance through AMPK-dependent and AMPK-independent mechanisms, revealing differences in metabolic and cell-cycle regulation between HSCs and some other haematopoietic progenitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059717/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059717/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakada, Daisuke -- Saunders, Thomas L -- Morrison, Sean J -- CA46592/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 2;468(7324):653-8. doi: 10.1038/nature09571.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Life Sciences Institute, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124450" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/deficiency/genetics/metabolism ; Aneuploidy ; Animals ; Catalytic Domain/genetics ; Cell Cycle/*physiology ; Cell Death ; Cell Division ; Cell Survival ; Centrosome/pathology ; Energy Metabolism/*physiology ; Enzyme Activation ; Female ; Gene Deletion ; Hematopoietic Stem Cells/*cytology/drug effects/*metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Regeneration ; Signal Transduction ; Sirolimus/pharmacology ; Spindle Apparatus/pathology ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-03-05
    Description: Innate immunity provides the first line of defence against invading pathogens and provides important cues for the development of adaptive immunity. Type-2 immunity-responsible for protective immune responses to helminth parasites and the underlying cause of the pathogenesis of allergic asthma-consists of responses dominated by the cardinal type-2 cytokines interleukin (IL)4, IL5 and IL13 (ref. 5). T cells are an important source of these cytokines in adaptive immune responses, but the innate cell sources remain to be comprehensively determined. Here, through the use of novel Il13-eGFP reporter mice, we present the identification and functional characterization of a new innate type-2 immune effector leukocyte that we have named the nuocyte. Nuocytes expand in vivo in response to the type-2-inducing cytokines IL25 and IL33, and represent the predominant early source of IL13 during helminth infection with Nippostrongylus brasiliensis. In the combined absence of IL25 and IL33 signalling, nuocytes fail to expand, resulting in a severe defect in worm expulsion that is rescued by the adoptive transfer of in vitro cultured wild-type, but not IL13-deficient, nuocytes. Thus, nuocytes represent a critically important innate effector cell in type-2 immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neill, Daniel R -- Wong, See Heng -- Bellosi, Agustin -- Flynn, Robin J -- Daly, Maria -- Langford, Theresa K A -- Bucks, Christine -- Kane, Colleen M -- Fallon, Padraic G -- Pannell, Richard -- Jolin, Helen E -- McKenzie, Andrew N J -- MC_U105178805/Medical Research Council/United Kingdom -- U.1051.03.007(78805)/Medical Research Council/United Kingdom -- England -- Nature. 2010 Apr 29;464(7293):1367-70. doi: 10.1038/nature08900. Epub 2010 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20200518" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Cells, Cultured ; Immunity, Innate/*immunology ; Interleukin-13/biosynthesis/deficiency/genetics ; Interleukin-17/deficiency/genetics ; Interleukins/biosynthesis/deficiency/genetics/*immunology ; Leukocytes/cytology/*immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nippostrongylus/immunology ; Strongylida Infections/immunology ; Th2 Cells/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-02-12
    Description: Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals. Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward system that ultimately may induce the pathological behaviour. The neural basis for the addictive nature of benzodiazepines, however, remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental area through the positive modulation of GABA(A) (gamma-aminobutyric acid type A) receptors in nearby interneurons. Such disinhibition, which relies on alpha1-containing GABA(A) receptors expressed in these cells, triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell-type-specific expression of alpha1-containing GABA(A) receptors in the ventral tegmental area. The data also indicate that subunit-selective benzodiazepines sparing alpha1 may be devoid of addiction liability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Kelly R -- Brown, Matthew -- Labouebe, Gwenael -- Yvon, Cedric -- Creton, Cyril -- Fritschy, Jean-Marc -- Rudolph, Uwe -- Luscher, Christian -- DA019022/DA/NIDA NIH HHS/ -- R01 DA019022/DA/NIDA NIH HHS/ -- R01 DA019022-04/DA/NIDA NIH HHS/ -- England -- Nature. 2010 Feb 11;463(7282):769-74. doi: 10.1038/nature08758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20148031" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/drug effects ; Administration, Oral ; Animals ; Behavior, Addictive/*chemically induced/pathology/*physiopathology ; Benzodiazepines/administration & dosage/*adverse effects/*pharmacology ; Dopamine/metabolism ; Electric Conductivity ; Glutamic Acid/metabolism ; In Vitro Techniques ; Inhibitory Postsynaptic Potentials/drug effects/physiology ; Interneurons/drug effects/metabolism ; Mice ; Mice, Inbred C57BL ; Midazolam/administration & dosage/adverse effects/pharmacology ; Models, Biological ; Morphine/pharmacology ; Neuronal Plasticity/drug effects ; Neurons/*drug effects/metabolism ; Organ Specificity ; Receptors, AMPA/metabolism ; Receptors, GABA-A/deficiency/genetics/metabolism ; Substrate Specificity ; Ventral Tegmental Area/cytology/drug effects/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2010-09-17
    Description: Apoptosis and the subsequent clearance of dying cells occurs throughout development and adult life in many tissues. Failure to promptly clear apoptotic cells has been linked to many diseases. ELMO1 is an evolutionarily conserved cytoplasmic engulfment protein that functions downstream of the phosphatidylserine receptor BAI1, and, along with DOCK1 and the GTPase RAC1, promotes internalization of the dying cells. Here we report the generation of ELMO1-deficient mice, which we found to be unexpectedly viable and grossly normal. However, they had a striking testicular pathology, with disrupted seminiferous epithelium, multinucleated giant cells, uncleared apoptotic germ cells and decreased sperm output. Subsequent in vitro and in vivo analyses revealed a crucial role for ELMO1 in the phagocytic clearance of apoptotic germ cells by Sertoli cells lining the seminiferous epithelium. The engulfment receptor BAI1 and RAC1 (upstream and downstream of ELMO1, respectively) were also important for Sertoli-cell-mediated engulfment. Collectively, these findings uncover a selective requirement for ELMO1 in Sertoli-cell-mediated removal of apoptotic germ cells and make a compelling case for a relationship between engulfment and tissue homeostasis in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elliott, Michael R -- Zheng, Shuqiu -- Park, Daeho -- Woodson, Robin I -- Reardon, Michael A -- Juncadella, Ignacio J -- Kinchen, Jason M -- Zhang, Jun -- Lysiak, Jeffrey J -- Ravichandran, Kodi S -- R01 GM064709/GM/NIGMS NIH HHS/ -- R01 HD057242/HD/NICHD NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):333-7. doi: 10.1038/nature09356.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844538" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/deficiency/genetics/*metabolism ; Angiogenic Proteins/metabolism ; Animals ; *Apoptosis ; Cell Line ; Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Neuropeptides/metabolism ; Phagocytosis/*physiology ; Phosphatidylserines/metabolism ; Seminiferous Epithelium/cytology/pathology ; Sertoli Cells/*cytology/*metabolism/pathology ; Signal Transduction ; Spermatozoa/*cytology/pathology ; rac GTP-Binding Proteins/metabolism ; rac1 GTP-Binding Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-10-15
    Description: The blood-brain barrier (BBB) consists of specific physical barriers, enzymes and transporters, which together maintain the necessary extracellular environment of the central nervous system (CNS). The main physical barrier is found in the CNS endothelial cell, and depends on continuous complexes of tight junctions combined with reduced vesicular transport. Other possible constituents of the BBB include extracellular matrix, astrocytes and pericytes, but the relative contribution of these different components to the BBB remains largely unknown. Here we demonstrate a direct role of pericytes at the BBB in vivo. Using a set of adult viable pericyte-deficient mouse mutants we show that pericyte deficiency increases the permeability of the BBB to water and a range of low-molecular-mass and high-molecular-mass tracers. The increased permeability occurs by endothelial transcytosis, a process that is rapidly arrested by the drug imatinib. Furthermore, we show that pericytes function at the BBB in at least two ways: by regulating BBB-specific gene expression patterns in endothelial cells, and by inducing polarization of astrocyte end-feet surrounding CNS blood vessels. Our results indicate a novel and critical role for pericytes in the integration of endothelial and astrocyte functions at the neurovascular unit, and in the regulation of the BBB.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armulik, Annika -- Genove, Guillem -- Mae, Maarja -- Nisancioglu, Maya H -- Wallgard, Elisabet -- Niaudet, Colin -- He, Liqun -- Norlin, Jenny -- Lindblom, Per -- Strittmatter, Karin -- Johansson, Bengt R -- Betsholtz, Christer -- England -- Nature. 2010 Nov 25;468(7323):557-61. doi: 10.1038/nature09522. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Scheeles vag 2, SE-171 77 Stockholm, Sweden. annika.armulik@ki.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/metabolism ; Benzamides ; Blood-Brain Barrier/*cytology/*metabolism ; Central Nervous System/blood supply ; Endothelial Cells/metabolism ; Gene Expression Regulation ; Imatinib Mesylate ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Pericytes/*metabolism ; Piperazines/pharmacology ; Protein Kinase Inhibitors/pharmacology ; Pyrimidines/pharmacology ; Transcytosis/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-03-30
    Description: Cancer chemoprevention uses natural, synthetic, or biological substances to reverse, suppress, or prevent either the initial phase of carcinogenesis or the progression of neoplastic cells to cancer. It holds promise for overcoming problems associated with the treatment of late-stage cancers. However, the broad application of chemoprevention is compromised at present by limited effectiveness and potential toxicity. To overcome these challenges, here we developed a new chemoprevention approach that specifically targets premalignant tumour cells for apoptosis. We show that a deficiency in the adenomatous polyposis coli (APC) gene and subsequent activation of beta-catenin lead to the repression of cellular caspase-8 inhibitor c-FLIP (also known as CFLAR) expression through activation of c-Myc, and that all-trans-retinyl acetate (RAc) independently upregulates tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors and suppresses decoy receptors. Thus, the combination of TRAIL and RAc induces apoptosis in APC-deficient premalignant cells without affecting normal cells in vitro. In addition, we show that short-term and non-continuous TRAIL and RAc treatment induce apoptosis specifically in intestinal polyps, strongly inhibit tumour growth, and prolong survival in multiple intestinal neoplasms C57BL/6J-Apc(Min)/J (Apc(Min)) mice. With our approach, we further demonstrate that TRAIL and RAc induce significant cell death in human colon polyps, providing a potentially selective approach for colorectal cancer chemoprevention by targeting APC-deficient cells for apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ling -- Ren, Xiaoyang -- Alt, Eckhard -- Bai, Xiaowen -- Huang, Shaoyi -- Xu, Zhengming -- Lynch, Patrick M -- Moyer, Mary P -- Wen, Xian-Feng -- Wu, Xiangwei -- AI063063/AI/NIAID NIH HHS/ -- R01 AI063063/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Apr 15;464(7291):1058-61. doi: 10.1038/nature08871. Epub 2010 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20348907" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/*deficiency/genetics ; Animals ; Apoptosis/*drug effects ; CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism ; Cell Proliferation/drug effects ; Colorectal Neoplasms/genetics/metabolism/*pathology/*prevention & control ; Gene Expression Regulation/drug effects ; Genes, APC ; Humans ; Intestinal Polyps/drug therapy/pathology ; Mice ; Mice, Inbred C57BL ; Precancerous Conditions/drug therapy/genetics/metabolism/pathology ; Proto-Oncogene Proteins c-myc/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism ; Signal Transduction/drug effects ; Survival Rate ; TNF-Related Apoptosis-Inducing Ligand/administration & ; dosage/pharmacology/therapeutic use ; Time Factors ; Vitamin A/administration & dosage/*analogs & derivatives/pharmacology/therapeutic ; use ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-06-11
    Description: Lymphocytes and neutrophils are rapidly depleted by systemic infection. Progenitor cells of the haematopoietic system, such as common myeloid progenitors and common lymphoid progenitors, increase the production of immune cells to restore and maintain homeostasis during chronic infection, but the contribution of haematopoietic stem cells (HSCs) to this process is largely unknown. Here we show, using an in vivo mouse model of Mycobacterium avium infection, that an increased proportion of long-term repopulating HSCs proliferate during M. avium infection, and that this response requires interferon-gamma (IFN-gamma) but not interferon-alpha (IFN-alpha) signalling. Thus, the haematopoietic response to chronic bacterial infection involves the activation not only of intermediate blood progenitors but of long-term repopulating HSCs as well. IFN-gamma is sufficient to promote long-term repopulating HSC proliferation in vivo; furthermore, HSCs from IFN-gamma-deficient mice have a lower proliferative rate, indicating that baseline IFN-gamma tone regulates HSC activity. These findings implicate IFN-gamma both as a regulator of HSCs during homeostasis and under conditions of infectious stress. Our studies contribute to a deeper understanding of haematological responses in patients with chronic infections such as HIV/AIDS or tuberculosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldridge, Megan T -- King, Katherine Y -- Boles, Nathan C -- Weksberg, David C -- Goodell, Margaret A -- K08 HL098898/HL/NHLBI NIH HHS/ -- P50 CA126752/CA/NCI NIH HHS/ -- P50 CA126752-030005/CA/NCI NIH HHS/ -- R01 DK058192/DK/NIDDK NIH HHS/ -- R01 DK058192-10/DK/NIDDK NIH HHS/ -- R01 EB005173/EB/NIBIB NIH HHS/ -- R01 EB005173-05/EB/NIBIB NIH HHS/ -- R01 HL096360/HL/NHLBI NIH HHS/ -- T32 HL092332/HL/NHLBI NIH HHS/ -- T32 HL092332-07/HL/NHLBI NIH HHS/ -- U54 HL081007-05/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):793-7. doi: 10.1038/nature09135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; Cell Count ; Cell Proliferation ; Chronic Disease ; Hematopoietic Stem Cells/*cytology/*immunology ; Homeostasis/*immunology/physiology ; Interferon-alpha ; Interferon-gamma/deficiency/*immunology/*metabolism ; Mice ; Mice, Inbred C57BL ; Multipotent Stem Cells/cytology/immunology ; Mycobacterium avium/immunology ; Signal Transduction ; Tuberculosis/blood/*immunology/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-05-14
    Description: Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of diseases such as cancer, diabetes, myopathy and inflammation. Although the biological functions of the phosphatases that regulate phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) have been well characterized, little is known about the functions of the phosphatases regulating the closely related molecule phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)). Here we show that inositol polyphosphate phosphatase 4A (INPP4A), a PtdIns(3,4)P(2) phosphatase, is a suppressor of glutamate excitotoxicity in the central nervous system. Targeted disruption of the Inpp4a gene in mice leads to neurodegeneration in the striatum, the input nucleus of the basal ganglia that has a central role in motor and cognitive behaviours. Notably, Inpp4a(-/-) mice show severe involuntary movement disorders. In vitro, Inpp4a gene silencing via short hairpin RNA renders cultured primary striatal neurons vulnerable to cell death mediated by N-methyl-d-aspartate-type glutamate receptors (NMDARs). Mechanistically, INPP4A is found at the postsynaptic density and regulates synaptic NMDAR localization and NMDAR-mediated excitatory postsynaptic current. Thus, INPP4A protects neurons from excitotoxic cell death and thereby maintains the functional integrity of the brain. Our study demonstrates that PtdIns(3,4)P(2), PtdIns(3,4,5)P(3) and the phosphatases acting on them can have distinct regulatory roles, and provides insight into the unique aspects and physiological significance of PtdIns(3,4)P(2) metabolism. INPP4A represents, to our knowledge, the first signalling protein with a function in neurons to suppress excitotoxic cell death. The discovery of a direct link between PtdIns(3,4)P(2) metabolism and the regulation of neurodegeneration and involuntary movements may aid the development of new approaches for the treatment of neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Junko -- Kofuji, Satoshi -- Itoh, Reietsu -- Momiyama, Toshihiko -- Takayama, Kiyohiko -- Murakami, Haruka -- Chida, Shinsuke -- Tsuya, Yuko -- Takasuga, Shunsuke -- Eguchi, Satoshi -- Asanuma, Ken -- Horie, Yasuo -- Miura, Kouichi -- Davies, Elizabeth Michele -- Mitchell, Christina -- Yamazaki, Masakazu -- Hirai, Hirokazu -- Takenawa, Tadaomi -- Suzuki, Akira -- Sasaki, Takehiko -- England -- Nature. 2010 May 27;465(7297):497-501. doi: 10.1038/nature09023. Epub 2010 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan. sasakij@med.akita-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463662" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Dyskinesias/genetics/pathology/physiopathology ; Glutamic Acid/metabolism/pharmacology/*toxicity ; Humans ; Mice ; Mice, Inbred C57BL ; Neostriatum/drug effects/metabolism/pathology ; Neurodegenerative Diseases/genetics/pathology/physiopathology ; Neurons/*cytology/*drug effects/enzymology/pathology ; Phosphoric Monoester Hydrolases/deficiency/genetics/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Survival Rate ; Synapses/metabolism ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-11-26
    Description: Tumorigenesis is a multistep process that results from the sequential accumulation of mutations in key oncogene and tumour suppressor pathways. Personalized cancer therapy that is based on targeting these underlying genetic abnormalities presupposes that sustained inactivation of tumour suppressors and activation of oncogenes is essential in advanced cancers. Mutations in the p53 tumour-suppressor pathway are common in human cancer and significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. Here we show that restoration of p53 in established murine lung tumours leads to significant but incomplete tumour cell loss specifically in malignant adenocarcinomas, but not in adenomas. We define amplification of MAPK signalling as a critical determinant of malignant progression and also a stimulator of Arf tumour-suppressor expression. The response to p53 restoration in this context is critically dependent on the expression of Arf. We propose that p53 not only limits malignant progression by suppressing the acquisition of alterations that lead to tumour progression, but also, in the context of p53 restoration, responds to increased oncogenic signalling to mediate tumour regression. Our observations also underscore that the p53 pathway is not engaged by low levels of oncogene activity that are sufficient for early stages of lung tumour development. These data suggest that restoration of pathways important in tumour progression, as opposed to initiation, may lead to incomplete tumour regression due to the stage-heterogeneity of tumour cell populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feldser, David M -- Kostova, Kamena K -- Winslow, Monte M -- Taylor, Sarah E -- Cashman, Chris -- Whittaker, Charles A -- Sanchez-Rivera, Francisco J -- Resnick, Rebecca -- Bronson, Roderick -- Hemann, Michael T -- Jacks, Tyler -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-37/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30 CA014051-39/CA/NCI NIH HHS/ -- P30 CA014051-40/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 25;468(7323):572-5. doi: 10.1038/nature09535.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Koch Institute for Integrative Cancer Research, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107428" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/metabolism/*physiopathology ; Adenoma/metabolism/*physiopathology ; Animals ; Cell Proliferation ; *Disease Progression ; Lung Neoplasms/*physiopathology ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinases/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-05-07
    Description: The formation and guidance of specialized endothelial tip cells is essential for both developmental and pathological angiogenesis. Notch-1 signalling regulates the generation of tip cells, which respond to gradients of vascular endothelial growth factor (VEGF-A). The molecular cues and signalling pathways that control the guidance of tip cells are poorly understood. Bidirectional signalling by Eph receptors and ephrin ligands represents one of the most important guidance cues involved in axon path finding. Here we show that ephrin-B2 reverse signalling involving PDZ interactions regulates endothelial tip cell guidance to control angiogenic sprouting and branching in physiological and pathological angiogenesis. In vivo, ephrin-B2 PDZ-signalling-deficient mice (ephrin-B2DeltaV) exhibit a reduced number of tip cells with fewer filopodial extensions at the vascular front in the mouse retina. In pathological settings, impaired PDZ signalling decreases tumour vascularization and growth. Mechanistically, we show that ephrin-B2 controls VEGF receptor (VEGFR)-2 internalization and signalling. Importantly, internalization of VEGFR2 is necessary for activation and downstream signalling of the receptor and is required for VEGF-induced tip cell filopodial extension. Together, our results suggest that ephrin-B2 at the tip cell filopodia regulates the proper spatial activation of VEGFR2 endocytosis and signalling to direct filopodial extension. Blocking ephrin-B2 reverse signalling may be an attractive alternative or combinatorial anti-angiogenic therapy strategy to disrupt VEGFR2 function in tumour angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawamiphak, Suphansa -- Seidel, Sascha -- Essmann, Clara L -- Wilkinson, George A -- Pitulescu, Mara E -- Acker, Till -- Acker-Palmer, Amparo -- England -- Nature. 2010 May 27;465(7297):487-91. doi: 10.1038/nature08995. Epub 2010 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Frankfurt Institute for Molecular Life Sciences and Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20445540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytoma/*blood supply/*metabolism/pathology ; Brain/blood supply ; Cells, Cultured ; Endocytosis ; Endothelial Cells/cytology/metabolism ; Ephrin-B2/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; *Neovascularization, Pathologic ; Neovascularization, Physiologic ; Pseudopodia/metabolism ; Retina ; Retinal Vessels/cytology/physiology ; Signal Transduction ; Vascular Endothelial Growth Factor Receptor-2/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-01-08
    Description: The life cycle of mammals begins when a sperm enters an egg. Immediately after fertilization, both the maternal and paternal genomes undergo dramatic reprogramming to prepare for the transition from germ cell to somatic cell transcription programs. One of the molecular events that takes place during this transition is the demethylation of the paternal genome. Despite extensive efforts, the factors responsible for paternal DNA demethylation have not been identified. To search for such factors, we developed a live cell imaging system that allows us to monitor the paternal DNA methylation state in zygotes. Through short-interfering-RNA-mediated knockdown in mouse zygotes, we identified Elp3 (also called KAT9), a component of the elongator complex, to be important for paternal DNA demethylation. We demonstrate that knockdown of Elp3 impairs paternal DNA demethylation as indicated by reporter binding, immunostaining and bisulphite sequencing. Similar results were also obtained when other elongator components, Elp1 and Elp4, were knocked down. Importantly, injection of messenger RNA encoding the Elp3 radical SAM domain mutant, but not the HAT domain mutant, into MII oocytes before fertilization also impaired paternal DNA demethylation, indicating that the SAM radical domain is involved in the demethylation process. Our study not only establishes a critical role for the elongator complex in zygotic paternal genome demethylation, but also indicates that the demethylation process may be mediated through a reaction that requires an intact radical SAM domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Yuki -- Yamagata, Kazuo -- Hong, Kwonho -- Wakayama, Teruhiko -- Zhang, Yi -- R01 GM068804/GM/NIGMS NIH HHS/ -- R01 GM068804-07/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):554-8. doi: 10.1038/nature08732. Epub 2010 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chapel Hill, North Carolina 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; *DNA Methylation ; Embryonic Development/*genetics ; Female ; Gene Knockdown Techniques ; Genome/*genetics ; Histone Acetyltransferases/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Protein Structure, Tertiary/genetics ; Zygote/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-12-24
    Description: Cancer is a disease consisting of both genetic and epigenetic changes. Although increasing evidence demonstrates that tumour progression entails chromatin-mediated changes such as DNA methylation, the role of histone variants in cancer initiation and progression currently remains unclear. Histone variants replace conventional histones within the nucleosome and confer unique biological functions to chromatin. Here we report that the histone variant macroH2A (mH2A) suppresses tumour progression of malignant melanoma. Loss of mH2A isoforms, histone variants generally associated with condensed chromatin and fine-tuning of developmental gene expression programs, is positively correlated with increasing malignant phenotype of melanoma cells in culture and human tissue samples. Knockdown of mH2A isoforms in melanoma cells of low malignancy results in significantly increased proliferation and migration in vitro and growth and metastasis in vivo. Restored expression of mH2A isoforms rescues these malignant phenotypes in vitro and in vivo. We demonstrate that the tumour-promoting function of mH2A loss is mediated, at least in part, through direct transcriptional upregulation of CDK8. Suppression of CDK8, a colorectal cancer oncogene, inhibits proliferation of melanoma cells, and knockdown of CDK8 in cells depleted of mH2A suppresses the proliferative advantage induced by mH2A loss. Moreover, a significant inverse correlation between mH2A and CDK8 expression levels exists in melanoma patient samples. Taken together, our results demonstrate that mH2A is a critical component of chromatin that suppresses the development of malignant melanoma, a highly intractable cutaneous neoplasm.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057940/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057940/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapoor, Avnish -- Goldberg, Matthew S -- Cumberland, Lara K -- Ratnakumar, Kajan -- Segura, Miguel F -- Emanuel, Patrick O -- Menendez, Silvia -- Vardabasso, Chiara -- Leroy, Gary -- Vidal, Claudia I -- Polsky, David -- Osman, Iman -- Garcia, Benjamin A -- Hernando, Eva -- Bernstein, Emily -- 5P30CA016087-27/CA/NCI NIH HHS/ -- CA109388/CA/NCI NIH HHS/ -- R21 CA150117/CA/NCI NIH HHS/ -- R21 CA150117-01/CA/NCI NIH HHS/ -- R21 CA150117-02/CA/NCI NIH HHS/ -- R21CA150117/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1105-9. doi: 10.1038/nature09590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179167" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cyclin-Dependent Kinase 8/*metabolism ; Disease Progression ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; HCT116 Cells ; Histones/deficiency/genetics/*metabolism ; Humans ; Melanoma/*pathology/physiopathology ; Melanoma, Experimental ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neoplasm Metastasis/*pathology/physiopathology ; Rats ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-10-22
    Description: Accumulation of amyloid fibrils in the viscera and connective tissues causes systemic amyloidosis, which is responsible for about one in a thousand deaths in developed countries. Localized amyloid can also have serious consequences; for example, cerebral amyloid angiopathy is an important cause of haemorrhagic stroke. The clinical presentations of amyloidosis are extremely diverse and the diagnosis is rarely made before significant organ damage is present. There is therefore a major unmet need for therapy that safely promotes the clearance of established amyloid deposits. Over 20 different amyloid fibril proteins are responsible for different forms of clinically significant amyloidosis and treatments that substantially reduce the abundance of the respective amyloid fibril precursor proteins can arrest amyloid accumulation. Unfortunately, control of fibril-protein production is not possible in some forms of amyloidosis and in others it is often slow and hazardous. There is no therapy that directly targets amyloid deposits for enhanced clearance. However, all amyloid deposits contain the normal, non-fibrillar plasma glycoprotein, serum amyloid P component (SAP). Here we show that administration of anti-human-SAP antibodies to mice with amyloid deposits containing human SAP triggers a potent, complement-dependent, macrophage-derived giant cell reaction that swiftly removes massive visceral amyloid deposits without adverse effects. Anti-SAP-antibody treatment is clinically feasible because circulating human SAP can be depleted in patients by the bis-d-proline compound CPHPC, thereby enabling injected anti-SAP antibodies to reach residual SAP in the amyloid deposits. The unprecedented capacity of this novel combined therapy to eliminate amyloid deposits should be applicable to all forms of systemic and local amyloidosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975378/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2975378/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodin, Karl -- Ellmerich, Stephan -- Kahan, Melvyn C -- Tennent, Glenys A -- Loesch, Andrzej -- Gilbertson, Janet A -- Hutchinson, Winston L -- Mangione, Palma P -- Gallimore, J Ruth -- Millar, David J -- Minogue, Shane -- Dhillon, Amar P -- Taylor, Graham W -- Bradwell, Arthur R -- Petrie, Aviva -- Gillmore, Julian D -- Bellotti, Vittorio -- Botto, Marina -- Hawkins, Philip N -- Pepys, Mark B -- G0800737/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- G0901596/Medical Research Council/United Kingdom -- G7900510/Medical Research Council/United Kingdom -- G7900510(69566)/Medical Research Council/United Kingdom -- G97900510/Medical Research Council/United Kingdom -- England -- Nature. 2010 Nov 4;468(7320):93-7. doi: 10.1038/nature09494. Epub 2010 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962779" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*drug effects ; Amyloidosis/*prevention & control/therapy ; Animals ; Antibodies/*immunology/*pharmacology/therapeutic use ; Disease Models, Animal ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Serum Amyloid P-Component/*antagonists & inhibitors/genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-01-26
    Description: Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95(-/-), also called Uhrf1(-/-)) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popp, Christian -- Dean, Wendy -- Feng, Suhua -- Cokus, Shawn J -- Andrews, Simon -- Pellegrini, Matteo -- Jacobsen, Steven E -- Reik, Wolf -- G0700098/Medical Research Council/United Kingdom -- R37 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398-11/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Feb 25;463(7284):1101-5. doi: 10.1038/nature08829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20098412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytidine Deaminase/*deficiency/genetics/*metabolism ; *DNA Methylation ; DNA Transposable Elements/genetics ; Embryo, Mammalian/cytology/embryology/metabolism ; Epigenesis, Genetic/genetics ; Exons/genetics ; Female ; *Genome/genetics ; Germ Cells/enzymology/*metabolism ; Introns/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/deficiency/genetics ; Octamer Transcription Factor-3/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-02-19
    Description: One of the most notable features of the vertebrate body plan organization is its bilateral symmetry, evident at the level of vertebrae and skeletal muscles. Here we show that a mutation in Rere (also known as atrophin2) leads to the formation of asymmetrical somites in mouse embryos, similar to embryos deprived of retinoic acid. Furthermore, we also demonstrate that Rere controls retinoic acid signalling, which is required to maintain somite symmetry by interacting with Fgf8 in the left-right signalling pathway. Rere forms a complex with Nr2f2, p300 (also known as Ep300) and a retinoic acid receptor, which is recruited to the retinoic acid regulatory element of retinoic acid targets, such as the Rarb promoter. Furthermore, the knockdown of Nr2f2 and/or Rere decreases retinoic acid signalling, suggesting that this complex is required to promote transcriptional activation of retinoic acid targets. The asymmetrical expression of Nr2f2 in the presomitic mesoderm overlaps with the asymmetry of the retinoic acid signalling response, supporting its implication in the control of somitic symmetry. Misregulation of this mechanism could be involved in symmetry defects of the human spine, such as those observed in patients with scoliosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vilhais-Neto, Goncalo C -- Maruhashi, Mitsuji -- Smith, Karen T -- Vasseur-Cognet, Mireille -- Peterson, Andrew S -- Workman, Jerry L -- Pourquie, Olivier -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Feb 18;463(7283):953-7. doi: 10.1038/nature08763.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Missouri 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*physiology ; COUP Transcription Factor II/deficiency/genetics/metabolism ; Cell Line ; E1A-Associated p300 Protein/metabolism ; Embryo, Mammalian/embryology/metabolism ; Fibroblast Growth Factor 8/metabolism ; Gene Expression Regulation, Developmental ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; Nerve Tissue Proteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Receptors, Retinoic Acid/genetics/metabolism ; Repressor Proteins/deficiency/genetics/*metabolism ; Response Elements/genetics ; *Signal Transduction ; Somites/*embryology/*metabolism ; Tretinoin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-10-15
    Description: Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241506/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241506/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daneman, Richard -- Zhou, Lu -- Kebede, Amanuel A -- Barres, Ben A -- R01 NS045621/NS/NINDS NIH HHS/ -- R01 NS045621-04/NS/NINDS NIH HHS/ -- R01-NS045621/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Nov 25;468(7323):562-6. doi: 10.1038/nature09513. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCSF Department of Anatomy, 513 Parnassus Avenue, HSW1301, San Francisco, California 94143-0452, USA. Richard.daneman@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood-Brain Barrier/*cytology/*embryology/ultrastructure ; Cells, Cultured ; Central Nervous System/blood supply/cytology/*embryology ; Gene Expression Regulation, Developmental ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Pericytes/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2010-01-30
    Description: Ageing in multicellular organisms typically involves a progressive decline in cell replacement and repair processes, resulting in several physiological deficiencies, including inefficient muscle repair, reduced bone mass, and dysregulation of blood formation (haematopoiesis). Although defects in tissue-resident stem cells clearly contribute to these phenotypes, it is unclear to what extent they reflect stem cell intrinsic alterations or age-related changes in the stem cell supportive microenvironment, or niche. Here, using complementary in vivo and in vitro heterochronic models, we show that age-associated changes in stem cell supportive niche cells deregulate normal haematopoiesis by causing haematopoietic stem cell dysfunction. Furthermore, we find that age-dependent defects in niche cells are systemically regulated and can be reversed by exposure to a young circulation or by neutralization of the conserved longevity regulator, insulin-like growth factor-1, in the marrow microenvironment. Together, these results show a new and critical role for local and systemic factors in signalling age-related haematopoietic decline, and highlight a new model in which blood-borne factors in aged animals act through local niche cells to induce age-dependent disruption of stem cell function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayack, Shane R -- Shadrach, Jennifer L -- Kim, Francis S -- Wagers, Amy J -- 1 DP2 OD004345-01/OD/NIH HHS/ -- DP2 OD004345/OD/NIH HHS/ -- P30 DK036836/DK/NIDDK NIH HHS/ -- P30DK036836/DK/NIDDK NIH HHS/ -- T32DK07260-29/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):495-500. doi: 10.1038/nature08749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110993" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/blood/*physiology ; Animals ; Blood Cells/cytology/*physiology ; Bone Marrow/metabolism ; Cell Count ; Cells, Cultured ; Hematopoiesis/physiology ; Insulin-Like Growth Factor I/metabolism ; Mice ; Mice, Inbred C57BL ; Osteoblasts/cytology ; Rejuvenation/*physiology ; *Signal Transduction ; Stem Cells/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-08-10
    Description: MicroRNAs (miRNAs) belong to a recently discovered class of small RNA molecules that regulate gene expression at the post-transcriptional level. miRNAs have crucial functions in the development and establishment of cell identity, and aberrant metabolism or expression of miRNAs has been linked to human diseases, including cancer. Components of the miRNA machinery and miRNAs themselves are involved in many cellular processes that are altered in cancer, such as differentiation, proliferation and apoptosis. Some miRNAs, referred to as oncomiRs, show differential expression levels in cancer and are able to affect cellular transformation, carcinogenesis and metastasis, acting either as oncogenes or tumour suppressors. The phenomenon of 'oncogene addiction' reveals that despite the multistep nature of tumorigenesis, targeting of certain single oncogenes can have therapeutic value, and the possibility of oncomiR addiction has been proposed but never demonstrated. MicroRNA-21 (miR-21) is a unique miRNA in that it is overexpressed in most tumour types analysed so far. Despite great interest in miR-21, most of the data implicating it in cancer have been obtained through miRNA profiling and limited in vitro functional assays. To explore the role of miR-21 in cancer in vivo, we used Cre and Tet-off technologies to generate mice conditionally expressing miR-21. Here we show that overexpression of miR-21 leads to a pre-B malignant lymphoid-like phenotype, demonstrating that mir-21 is a genuine oncogene. When miR-21 was inactivated, the tumours regressed completely in a few days, partly as a result of apoptosis. These results demonstrate that tumours can become addicted to oncomiRs and support efforts to treat human cancers through pharmacological inactivation of miRNAs such as miR-21.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Medina, Pedro P -- Nolde, Mona -- Slack, Frank J -- England -- Nature. 2010 Sep 2;467(7311):86-90. doi: 10.1038/nature09284. Epub 2010 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20693987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Lymphoma, B-Cell/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; MicroRNAs/genetics/*metabolism ; Precursor Cells, B-Lymphoid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-06-19
    Description: Glucocorticoids are widely used to treat patients with autoimmune diseases such as systemic lupus erythematosus (SLE). However, regimens used to treat many such conditions cannot maintain disease control in the majority of SLE patients and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reductions in disease activity. The primary anti-inflammatory mechanism of glucocorticoids is thought to be NF-kappaB inhibition. Recognition of self nucleic acids by toll-like receptors TLR7 and TLR9 on B cells and plasmacytoid dendritic cells (PDCs) is an important step in the pathogenesis of SLE, promoting anti-nuclear antibodies and the production of type I interferon (IFN), both correlated with the severity of disease. Following their activation by self-nucleic acid-associated immune complexes, PDCs migrate to the tissues. We demonstrate, in vitro and in vivo, that stimulation of PDCs through TLR7 and 9 can account for the reduced activity of glucocorticoids to inhibit the IFN pathway in SLE patients and in two lupus-prone mouse strains. The triggering of PDCs through TLR7 and 9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-kappaB pathway essential for PDC survival. Glucocorticoids do not affect NF-kappaB activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-alpha levels. These findings unveil a new role for self nucleic acid recognition by TLRs and indicate that inhibitors of TLR7 and 9 signalling could prove to be effective corticosteroid-sparing drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964153/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964153/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiducci, Cristiana -- Gong, Mei -- Xu, Zhaohui -- Gill, Michelle -- Chaussabel, Damien -- Meeker, Thea -- Chan, Jean H -- Wright, Tracey -- Punaro, Marilynn -- Bolland, Silvia -- Soumelis, Vassili -- Banchereau, Jacques -- Coffman, Robert L -- Pascual, Virginia -- Barrat, Franck J -- 2R44AI066483-02/AI/NIAID NIH HHS/ -- P50 AR054083/AR/NIAMS NIH HHS/ -- P50 AR054083-01/AR/NIAMS NIH HHS/ -- P50 AR054083-010001/AR/NIAMS NIH HHS/ -- P50 AR054083-010002/AR/NIAMS NIH HHS/ -- P50 AR054083-019001/AR/NIAMS NIH HHS/ -- P50 AR054083-02/AR/NIAMS NIH HHS/ -- P50 AR054083-020001/AR/NIAMS NIH HHS/ -- P50 AR054083-020002/AR/NIAMS NIH HHS/ -- P50 AR054083-029001/AR/NIAMS NIH HHS/ -- P50 AR054083-03/AR/NIAMS NIH HHS/ -- P50 AR054083-030001/AR/NIAMS NIH HHS/ -- P50 AR054083-030002/AR/NIAMS NIH HHS/ -- P50 AR054083-04/AR/NIAMS NIH HHS/ -- P50 AR054083-040001/AR/NIAMS NIH HHS/ -- P50 AR054083-040002/AR/NIAMS NIH HHS/ -- P50 AR054083-04S1/AR/NIAMS NIH HHS/ -- P50 AR054083-05/AR/NIAMS NIH HHS/ -- P50 AR054083-050001/AR/NIAMS NIH HHS/ -- P50 AR054083-050002/AR/NIAMS NIH HHS/ -- P50-ARO54083-01CORT/PHS HHS/ -- R44 AI066483/AI/NIAID NIH HHS/ -- R44 AI066483-02/AI/NIAID NIH HHS/ -- U19 AI082715/AI/NIAID NIH HHS/ -- U19 AI082715-01/AI/NIAID NIH HHS/ -- U19 AI082715-017348/AI/NIAID NIH HHS/ -- U19 AI082715-017351/AI/NIAID NIH HHS/ -- U19 AI082715-02/AI/NIAID NIH HHS/ -- U19 AI082715-027348/AI/NIAID NIH HHS/ -- U19 AI082715-027351/AI/NIAID NIH HHS/ -- U19 AI082715-03/AI/NIAID NIH HHS/ -- U19-AI082715-01/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):937-41. doi: 10.1038/nature09102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dynavax Technologies Corporation, 2929 Seventh Street, Suite 100, Berkeley, California 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559388" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Autoantibodies/immunology ; Cell Survival/drug effects ; Cells, Cultured ; Child ; Dendritic Cells/*drug effects ; Disease Models, Animal ; Female ; Glucocorticoids/*pharmacology ; Humans ; Interferon-alpha/immunology ; Interferons/immunology ; Lupus Erythematosus, Systemic/*physiopathology ; Male ; Membrane Glycoproteins/immunology ; Mice ; Mice, Inbred C57BL ; NF-kappa B/immunology ; Nucleic Acids/*immunology ; Toll-Like Receptor 7/*immunology ; Toll-Like Receptor 9/*immunology ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2010-12-03
    Description: Haematopoietic stem cells (HSCs) can convert between growth states that have marked differences in bioenergetic needs. Although often quiescent in adults, these cells become proliferative upon physiological demand. Balancing HSC energetics in response to nutrient availability and growth state is poorly understood, yet essential for the dynamism of the haematopoietic system. Here we show that the Lkb1 tumour suppressor is critical for the maintenance of energy homeostasis in haematopoietic cells. Lkb1 inactivation in adult mice causes loss of HSC quiescence followed by rapid depletion of all haematopoietic subpopulations. Lkb1-deficient bone marrow cells exhibit mitochondrial defects, alterations in lipid and nucleotide metabolism, and depletion of cellular ATP. The haematopoietic effects are largely independent of Lkb1 regulation of AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling. Instead, these data define a central role for Lkb1 in restricting HSC entry into cell cycle and in broadly maintaining energy homeostasis in haematopoietic cells through a novel metabolic checkpoint.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037591/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037591/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gurumurthy, Sushma -- Xie, Stephanie Z -- Alagesan, Brinda -- Kim, Judith -- Yusuf, Rushdia Z -- Saez, Borja -- Tzatsos, Alexandros -- Ozsolak, Fatih -- Milos, Patrice -- Ferrari, Francesco -- Park, Peter J -- Shirihai, Orian S -- Scadden, David T -- Bardeesy, Nabeel -- DK050234/DK/NIDDK NIH HHS/ -- R01 DK050234/DK/NIDDK NIH HHS/ -- R01 DK050234-12/DK/NIDDK NIH HHS/ -- R01 DK050234-13/DK/NIDDK NIH HHS/ -- R01 HG005230/HG/NHGRI NIH HHS/ -- R01 HG005230-01/HG/NHGRI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):659-63. doi: 10.1038/nature09572.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124451" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Apoptosis ; Autophagy ; Bone Marrow/metabolism/pathology ; Cell Cycle ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Enzyme Activation ; Female ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; Homeostasis ; Lipid Metabolism ; Male ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/antagonists & inhibitors/metabolism ; TOR Serine-Threonine Kinases/metabolism ; Tumor Suppressor Proteins/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-07-03
    Description: Various social behaviours in mice are regulated by chemical signals called pheromones that act through the vomeronasal system. Exocrine gland-secreting peptide 1 (ESP1) is a 7-kDa peptide that is released into male tear fluids and stimulates vomeronasal sensory neurons in female mice. Here, we describe the molecular and neural mechanisms that are involved in the decoding of ESP1 signals in the vomeronasal system, which leads to behavioural output in female mice. ESP1 is recognized by a specific vomeronasal receptor, V2Rp5, and the ligand-receptor interaction results in sex-specific signal transmission to the amygdaloid and hypothalamic nuclei via the accessory olfactory bulb. Consequently, ESP1 enhances female sexual receptive behaviour upon male mounting (lordosis), allowing successful copulation. In V2Rp5-deficient mice, ESP1 induces neither neural activation nor sexual behaviour. These findings show that ESP1 is a crucial male pheromone that regulates female reproductive behaviour through a specific receptor in the mouse vomeronasal system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haga, Sachiko -- Hattori, Tatsuya -- Sato, Toru -- Sato, Koji -- Matsuda, Soichiro -- Kobayakawa, Reiko -- Sakano, Hitoshi -- Yoshihara, Yoshihiro -- Kikusui, Takefumi -- Touhara, Kazushige -- England -- Nature. 2010 Jul 1;466(7302):118-22. doi: 10.1038/nature09142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neurons/metabolism ; Pheromones/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins c-fos/metabolism ; Receptors, Odorant/deficiency/genetics/*metabolism ; Receptors, Pheromone/deficiency/genetics/*metabolism ; Sexual Behavior, Animal/*physiology ; TRPC Cation Channels/deficiency ; Vomeronasal Organ/cytology/innervation/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2010-10-23
    Description: CD4(+)Foxp3(+) regulatory T (T(reg)) cells are important for maintaining immune tolerance. Understanding the molecular mechanism that regulates T(reg) differentiation will facilitate the development of effective therapeutic strategies against autoimmune diseases. We report here that the SUMO E3 ligase PIAS1 restricts the differentiation of natural T(reg) cells by maintaining a repressive chromatin state of the Foxp3 promoter. PIAS1 acts by binding to the Foxp3 promoter to recruit DNA methyltransferases and heterochromatin protein 1 for epigenetic modifications. Pias1 deletion caused promoter demethylation, reduced histone H3 methylation at Lys(9), and enhanced promoter accessibility. Consistently, Pias1(-/-) mice displayed an increased natural T(reg) cell population and were resistant to the development of experimental autoimmune encephalomyelitis. Our studies have identified an epigenetic mechanism that negatively regulates the differentiation of natural T(reg) cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Bin -- Tahk, Samuel -- Yee, Kathleen M -- Fan, Guoping -- Shuai, Ke -- K01 AR52717-01/AR/NIAMS NIH HHS/ -- R01 AI063286/AI/NIAID NIH HHS/ -- R01 AI063286-05/AI/NIAID NIH HHS/ -- R01 GM085797/GM/NIGMS NIH HHS/ -- R01 GM085797-03/GM/NIGMS NIH HHS/ -- R01AI063286/AI/NIAID NIH HHS/ -- R01GM085797/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):521-5. doi: 10.1126/science.1193787.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology-Oncology, Department of Medicine, 11-934 Factor Building, 10833 Le Conte Avenue, University of California, Los Angeles, Los Angeles, CA 90095, USA. bliu@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; CD4-Positive T-Lymphocytes/cytology ; Chromatin/metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; DNA Methylation ; Encephalomyelitis, Autoimmune, Experimental/immunology ; *Epigenesis, Genetic ; Female ; Forkhead Transcription Factors/genetics ; Histones/metabolism ; Lymphopoiesis/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Promoter Regions, Genetic ; Protein Inhibitors of Activated STAT/*physiology ; Repressor Proteins/*physiology ; T-Lymphocytes, Regulatory/*cytology/immunology ; Ubiquitin-Protein Ligases/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-01-23
    Description: At the core of the mammalian circadian clock is a negative feedback loop in which the dimeric transcription factor CLOCK-BMAL1 drives processes that in turn suppress its transcriptional activity. To gain insight into the mechanisms of circadian feedback, we analyzed mouse protein complexes containing BMAL1. Receptor for activated C kinase-1 (RACK1) and protein kinase C-alpha (PKCalpha) were recruited in a circadian manner into a nuclear BMAL1 complex during the negative feedback phase of the cycle. Overexpression of RACK1 and PKCalpha suppressed CLOCK-BMAL1 transcriptional activity, and RACK1 stimulated phosphorylation of BMAL1 by PKCalpha in vitro. Depletion of endogenous RACK1 or PKCalpha from fibroblasts shortened the circadian period, demonstrating that both molecules function in the clock oscillatory mechanism. Thus, the classical PKC signaling pathway is not limited to relaying external stimuli but is rhythmically activated by internal processes, forming an integral part of the circadian feedback loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robles, Maria S -- Boyault, Cyril -- Knutti, Darko -- Padmanabhan, Kiran -- Weitz, Charles J -- New York, N.Y. -- Science. 2010 Jan 22;327(5964):463-6. doi: 10.1126/science.1180067.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20093473" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/metabolism ; Animals ; CLOCK Proteins/metabolism ; Cell Nucleus/metabolism ; Circadian Rhythm/*physiology ; Feedback, Physiological ; Fibroblasts/metabolism/physiology ; Mice ; Mice, Inbred C57BL ; Neuropeptides/genetics/*metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase C-alpha/*metabolism ; RNA Interference ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-11-26
    Description: Ghrelin is a gastric peptide hormone that stimulates weight gain in vertebrates. The biological activities of ghrelin require octanoylation of the peptide on Ser(3), an unusual posttranslational modification that is catalyzed by the enzyme ghrelin O-acyltransferase (GOAT). Here, we describe the design, synthesis, and characterization of GO-CoA-Tat, a peptide-based bisubstrate analog that antagonizes GOAT. GO-CoA-Tat potently inhibits GOAT in vitro, in cultured cells, and in mice. Intraperitoneal administration of GO-CoA-Tat improves glucose tolerance and reduces weight gain in wild-type mice but not in ghrelin-deficient mice, supporting the concept that its beneficial metabolic effects are due specifically to GOAT inhibition. In addition to serving as a research tool for mapping ghrelin actions, GO-CoA-Tat may help pave the way for clinical targeting of GOAT in metabolic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068526/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068526/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barnett, Brad P -- Hwang, Yousang -- Taylor, Martin S -- Kirchner, Henriette -- Pfluger, Paul T -- Bernard, Vincent -- Lin, Yu-yi -- Bowers, Erin M -- Mukherjee, Chandrani -- Song, Woo-Jin -- Longo, Patti A -- Leahy, Daniel J -- Hussain, Mehboob A -- Tschop, Matthias H -- Boeke, Jef D -- Cole, Philip A -- P01 CA016519/CA/NCI NIH HHS/ -- P01 CA016519-35/CA/NCI NIH HHS/ -- P30 DK079637/DK/NIDDK NIH HHS/ -- P60 DK079637/DK/NIDDK NIH HHS/ -- P60 DK079637-05/DK/NIDDK NIH HHS/ -- R01 DK081472/DK/NIDDK NIH HHS/ -- R01 DK081472-01A1/DK/NIDDK NIH HHS/ -- R01 DK081472-02/DK/NIDDK NIH HHS/ -- R01 DK081472-03/DK/NIDDK NIH HHS/ -- R01 GM062437/GM/NIGMS NIH HHS/ -- R01 GM062437-04/GM/NIGMS NIH HHS/ -- R01 GM062437-11/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1689-92. doi: 10.1126/science.1196154. Epub 2010 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097901" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Acyltransferases/*antagonists & inhibitors ; Animals ; Cell Survival/drug effects ; Drug Design ; Enzyme Inhibitors/chemical synthesis/*pharmacology/toxicity ; Ghrelin/deficiency/genetics/*metabolism ; Glucose/*metabolism ; Glucose Tolerance Test ; HeLa Cells ; Homeostasis ; Humans ; Insulin/metabolism ; Ion Channels/metabolism ; Islets of Langerhans/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/metabolism ; Peptides/chemical synthesis/*pharmacology/toxicity ; Weight Gain/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-08-14
    Description: Dendritic cells (DCs) play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens. However, the intracellular signaling networks that program DCs to become tolerogenic remain unknown. We report here that the Wnt-beta-catenin signaling in intestinal dendritic cells regulates the balance between inflammatory versus regulatory responses in the gut. beta-catenin in intestinal dendritic cells was required for the expression of anti-inflammatory mediators such as retinoic acid-metabolizing enzymes, interleukin-10, and transforming growth factor-beta, and the stimulation of regulatory T cell induction while suppressing inflammatory effector T cells. Furthermore, ablation of beta-catenin expression in DCs enhanced inflammatory responses and disease in a mouse model of inflammatory bowel disease. Thus, beta-catenin signaling programs DCs to a tolerogenic state, limiting the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732486/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732486/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manicassamy, Santhakumar -- Reizis, Boris -- Ravindran, Rajesh -- Nakaya, Helder -- Salazar-Gonzalez, Rosa Maria -- Wang, Yi-Chong -- Pulendran, Bali -- HHSN266 200700006C/PHS HHS/ -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- R01 AI048638/AI/NIAID NIH HHS/ -- R01 AI056499/AI/NIAID NIH HHS/ -- R01 DK057665/DK/NIDDK NIH HHS/ -- R01DK057665,/DK/NIDDK NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R37AI48638,/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19AI057266,/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54AI057157/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):849-53. doi: 10.1126/science.1188510.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, and Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705860" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/metabolism ; Dendritic Cells/*immunology/metabolism ; Gene Expression Profiling ; *Inflammation ; Inflammatory Bowel Diseases/*immunology ; Intestinal Mucosa/cytology/*immunology/metabolism ; Macrophages/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; *Self Tolerance ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology ; T-Lymphocytes, Regulatory/*immunology ; Tretinoin/metabolism ; Wnt Proteins/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-05-08
    Description: Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vegiopoulos, Alexandros -- Muller-Decker, Karin -- Strzoda, Daniela -- Schmitt, Iris -- Chichelnitskiy, Evgeny -- Ostertag, Anke -- Berriel Diaz, Mauricio -- Rozman, Jan -- Hrabe de Angelis, Martin -- Nusing, Rolf M -- Meyer, Carola W -- Wahli, Walter -- Klingenspor, Martin -- Herzig, Stephan -- New York, N.Y. -- Science. 2010 May 28;328(5982):1158-61. doi: 10.1126/science.1186034. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448152" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/cytology/*physiology ; Adipogenesis ; Adipose Tissue ; Adipose Tissue, Brown/cytology/*physiology ; Adipose Tissue, White/enzymology/*physiology ; Adrenergic beta-3 Receptor Agonists ; Adrenergic beta-Agonists/pharmacology ; Animals ; Body Weight ; Cyclooxygenase 2/*genetics/*metabolism ; Dietary Fats/administration & dosage ; Dioxoles/pharmacology ; *Energy Metabolism ; Female ; Gene Expression Regulation, Enzymologic ; Homeostasis ; Male ; Mesenchymal Stromal Cells/cytology ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mice, Transgenic ; Norepinephrine/metabolism ; Obesity/etiology/prevention & control ; Oxygen Consumption ; Prostaglandins/*metabolism ; Receptors, Adrenergic, beta-3/metabolism ; Signal Transduction ; *Thermogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-01-16
    Description: Integrins mediate cell adhesion to the extracellular matrix and transmit signals within the cell that stimulate cell spreading, retraction, migration, and proliferation. The mechanism of integrin outside-in signaling has been unclear. We found that the heterotrimeric guanine nucleotide-binding protein (G protein) Galpha13 directly bound to the integrin beta3 cytoplasmic domain and that Galpha13-integrin interaction was promoted by ligand binding to the integrin alphaIIbbeta3 and by guanosine triphosphate (GTP) loading of Galpha13. Interference of Galpha13 expression or a myristoylated fragment of Galpha13 that inhibited interaction of alphaIIbbeta3 with Galpha13 diminished activation of protein kinase c-Src and stimulated the small guanosine triphosphatase RhoA, consequently inhibiting cell spreading and accelerating cell retraction. We conclude that integrins are noncanonical Galpha13-coupled receptors that provide a mechanism for dynamic regulation of RhoA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2842917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Haixia -- Shen, Bo -- Flevaris, Panagiotis -- Chow, Christina -- Lam, Stephen C-T -- Voyno-Yasenetskaya, Tatyana A -- Kozasa, Tohru -- Du, Xiaoping -- GM061454/GM/NIGMS NIH HHS/ -- GM074001/GM/NIGMS NIH HHS/ -- HL062350/HL/NHLBI NIH HHS/ -- HL068819/HL/NHLBI NIH HHS/ -- HL080264/HL/NHLBI NIH HHS/ -- R01 GM061454/GM/NIGMS NIH HHS/ -- R01 GM061454-09/GM/NIGMS NIH HHS/ -- R01 GM074001/GM/NIGMS NIH HHS/ -- R01 GM074001-02/GM/NIGMS NIH HHS/ -- R01 HL062350/HL/NHLBI NIH HHS/ -- R01 HL062350-09/HL/NHLBI NIH HHS/ -- R01 HL068819/HL/NHLBI NIH HHS/ -- R01 HL068819-08/HL/NHLBI NIH HHS/ -- R01 HL080264/HL/NHLBI NIH HHS/ -- R01 HL080264-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):340-3. doi: 10.1126/science.1174779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Room E403, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20075254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Blood Platelets/*physiology ; Clot Retraction ; Fibrinogen/metabolism ; GTP-Binding Protein alpha Subunits, G12-G13/genetics/*metabolism ; Humans ; Integrin beta3/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Platelet Adhesiveness ; Platelet Glycoprotein GPIIb-IIIa Complex/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins pp60(c-src)/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; rhoA GTP-Binding Protein/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-10-12
    Description: Lymphocyte survival during immune responses is controlled by the relative expression of pro- and anti-apoptotic molecules, regulating the magnitude, quality, and duration of the response. We investigated the consequences of deleting genes encoding the anti-apoptotic molecules Mcl1 and Bcl2l1 (Bcl-x(L)) from B cells using an inducible system synchronized with expression of activation-induced cytidine deaminase (Aicda) after immunization. This revealed Mcl1 and not Bcl2l1 to be indispensable for the formation and persistence of germinal centers (GCs). Limiting Mcl1 expression reduced the magnitude of the GC response with an equivalent, but not greater, effect on memory B cell formation and no effect on persistence. Our results identify Mcl1 as the main anti-apoptotic regulator of activated B cell survival and suggest distinct mechanisms controlling survival of GC and memory B cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991396/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991396/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vikstrom, Ingela -- Carotta, Sebastian -- Luthje, Katja -- Peperzak, Victor -- Jost, Philipp J -- Glaser, Stefan -- Busslinger, Meinrad -- Bouillet, Philippe -- Strasser, Andreas -- Nutt, Stephen L -- Tarlinton, David M -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- R01 CA043540/CA/NCI NIH HHS/ -- R01 CA043540-22/CA/NCI NIH HHS/ -- R01 CA080188-08/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1095-9. doi: 10.1126/science.1191793. Epub 2010 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity ; B-Lymphocytes/*immunology ; Cell Survival ; Gene Deletion ; Germinal Center/cytology/*immunology ; *Immunologic Memory ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Myeloid Cell Leukemia Sequence 1 Protein ; Proto-Oncogene Proteins c-bcl-2/genetics/*immunology ; bcl-X Protein/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-01-02
    Description: Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parvanov, Emil D -- Petkov, Petko M -- Paigen, Kenneth -- 076468/PHS HHS/ -- 078452/PHS HHS/ -- 083408/PHS HHS/ -- CA 34196/CA/NCI NIH HHS/ -- GM 078643/GM/NIGMS NIH HHS/ -- P30 CA034196-26/CA/NCI NIH HHS/ -- P50 GM076468/GM/NIGMS NIH HHS/ -- P50 GM076468-030004/GM/NIGMS NIH HHS/ -- R01 GM078452/GM/NIGMS NIH HHS/ -- R01 GM078452-02/GM/NIGMS NIH HHS/ -- R01 GM078643/GM/NIGMS NIH HHS/ -- R01 GM078643-03/GM/NIGMS NIH HHS/ -- R01 GM083408/GM/NIGMS NIH HHS/ -- R01 GM083408-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):835. doi: 10.1126/science.1181495. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044538" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Chromosome Mapping ; Female ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/metabolism ; Humans ; Male ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Recombination, Genetic ; Sequence Analysis, DNA ; Testis/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-07-10
    Description: Genomic imprinting results in preferential gene expression from paternally versus maternally inherited chromosomes. We used a genome-wide approach to uncover sex-specific parent-of-origin allelic effects in the adult mouse brain. Our study identified preferential selection of the maternally inherited X chromosome in glutamatergic neurons of the female cortex. Moreover, analysis of the cortex and hypothalamus identified 347 autosomal genes with sex-specific imprinting features. In the hypothalamus, sex-specific imprinted genes were mostly found in females, which suggests parental influence over the hypothalamic function of daughters. We show that interleukin-18, a gene linked to diseases with sex-specific prevalence, is subject to complex, regional, and sex-specific parental effects in the brain. Parent-of-origin effects thus provide new avenues for investigation of sexual dimorphism in brain function and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregg, Christopher -- Zhang, Jiangwen -- Butler, James E -- Haig, David -- Dulac, Catherine -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):682-5. doi: 10.1126/science.1190831. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616234" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Crosses, Genetic ; Dioxygenases ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; *Genes, X-Linked ; *Genomic Imprinting ; Glutamic Acid/metabolism ; Interleukin-18/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondrial Proteins/genetics ; Neurons/metabolism ; Oxygenases/genetics ; Polymorphism, Single Nucleotide ; Prefrontal Cortex/cytology/*metabolism ; Preoptic Area/cytology/*metabolism ; Ribosomal Proteins/genetics ; *Sex Characteristics ; Succinate Dehydrogenase/genetics ; X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregg, Christopher -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):770-1. doi: 10.1126/science.1199054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA. cgregg@MCB.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051625" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Awards and Prizes ; *Fathers ; *Gene Expression ; Gene Expression Profiling ; *Genomic Imprinting ; Humans ; Interleukin-18 ; Mice ; Mice, Inbred C57BL ; *Mothers ; Polymorphism, Single Nucleotide ; Prefrontal Cortex/embryology/growth & development/*metabolism ; Preoptic Area/embryology/growth & development/*metabolism ; Sex Characteristics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-07-22
    Description: Stem cells that naturally reside in adult tissues, such as muscle stem cells (MuSCs), exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (approximately 10(6) kilopascals), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kilopascals) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle-wasting diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, P M -- Havenstrite, K L -- Magnusson, K E G -- Sacco, A -- Leonardi, N A -- Kraft, P -- Nguyen, N K -- Thrun, S -- Lutolf, M P -- Blau, H M -- 2 T32 HD007249/HD/NICHD NIH HHS/ -- 52005886/Howard Hughes Medical Institute/ -- AG009521/AG/NIA NIH HHS/ -- AG020961/AG/NIA NIH HHS/ -- CA09151/CA/NCI NIH HHS/ -- HL096113/HL/NHLBI NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG020961/AG/NIA NIH HHS/ -- R01 AG020961-06A2/AG/NIA NIH HHS/ -- R01 AG020961-07/AG/NIA NIH HHS/ -- R01 HL096113/HL/NHLBI NIH HHS/ -- R01 HL096113-03/HL/NHLBI NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA009151-35/CA/NCI NIH HHS/ -- T32 HD007249/HD/NICHD NIH HHS/ -- T32 HD007249-25/HD/NICHD NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- U01 HL100397-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1078-81. doi: 10.1126/science.1191035. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647425" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cell Count ; Cell Culture Techniques/*methods ; Cell Death ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Separation ; Cell Survival ; Cells, Cultured ; Elastic Modulus ; Hydrogels ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; Muscle Fibers, Skeletal/*cytology/physiology ; Muscle, Skeletal/*cytology ; Polyethylene Glycols ; Regeneration ; Satellite Cells, Skeletal Muscle/cytology ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-03-27
    Description: Shelterin is an essential telomeric protein complex that prevents DNA damage signaling and DNA repair at mammalian chromosome ends. Here we report on the role of the TRF2-interacting factor Rap1, a conserved shelterin subunit of unknown function. We removed Rap1 from mouse telomeres either through gene deletion or by replacing TRF2 with a mutant that does not bind Rap1. Rap1 was dispensable for the essential functions of TRF2--repression of ATM kinase signaling and nonhomologous end joining (NHEJ)--and mice lacking telomeric Rap1 were viable and fertile. However, Rap1 was critical for the repression of homology-directed repair (HDR), which can alter telomere length. The data reveal that HDR at telomeres can take place in the absence of DNA damage foci and underscore the functional compartmentalization within shelterin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- Kabir, Shaheen -- van Overbeek, Megan -- Celli, Giulia B -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM049046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 AG016642-01/AG/NIA NIH HHS/ -- R01 AG016642-02/AG/NIA NIH HHS/ -- R01 AG016642-03/AG/NIA NIH HHS/ -- R01 AG016642-04/AG/NIA NIH HHS/ -- R01 AG016642-05/AG/NIA NIH HHS/ -- R01 AG016642-06/AG/NIA NIH HHS/ -- R01 AG016642-07/AG/NIA NIH HHS/ -- R01 AG016642-08/AG/NIA NIH HHS/ -- R01 AG016642-09/AG/NIA NIH HHS/ -- R01 AG016642-10/AG/NIA NIH HHS/ -- R01 AG016642-11/AG/NIA NIH HHS/ -- R01 GM049046/GM/NIGMS NIH HHS/ -- R01 GM049046-07/GM/NIGMS NIH HHS/ -- R01 GM049046-08/GM/NIGMS NIH HHS/ -- R01 GM049046-09/GM/NIGMS NIH HHS/ -- R01 GM049046-10/GM/NIGMS NIH HHS/ -- R01 GM049046-11/GM/NIGMS NIH HHS/ -- R01 GM049046-12/GM/NIGMS NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- R37 GM049046-13/GM/NIGMS NIH HHS/ -- R37 GM049046-14/GM/NIGMS NIH HHS/ -- R37 GM049046-15/GM/NIGMS NIH HHS/ -- R37 GM049046-16/GM/NIGMS NIH HHS/ -- R37 GM049046-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1657-61. doi: 10.1126/science.1185100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Proliferation ; Cells, Cultured ; Checkpoint Kinase 2 ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Gene Deletion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Recombination, Genetic ; Signal Transduction ; Sister Chromatid Exchange ; Telomere/*genetics/metabolism ; Telomere-Binding Proteins/chemistry/*genetics/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-06-19
    Description: Adipose tissue secretes proteins referred to as adipokines, many of which promote inflammation and disrupt glucose homeostasis. Here we show that secreted frizzled-related protein 5 (Sfrp5), a protein previously linked to the Wnt signaling pathway, is an anti-inflammatory adipokine whose expression is perturbed in models of obesity and type 2 diabetes. Sfrp5-deficient mice fed a high-calorie diet developed severe glucose intolerance and hepatic steatosis, and their adipose tissue showed an accumulation of activated macrophages that was associated with activation of the c-Jun N-terminal kinase signaling pathway. Adenovirus-mediated delivery of Sfrp5 to mouse models of obesity ameliorated glucose intolerance and hepatic steatosis. Thus, in the setting of obesity, Sfrp5 secretion by adipocytes exerts salutary effects on metabolic dysfunction by controlling inflammatory cells within adipose tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ouchi, Noriyuki -- Higuchi, Akiko -- Ohashi, Koji -- Oshima, Yuichi -- Gokce, Noyan -- Shibata, Rei -- Akasaki, Yuichi -- Shimono, Akihiko -- Walsh, Kenneth -- AG15052/AG/NIA NIH HHS/ -- AG34972/AG/NIA NIH HHS/ -- HL81587/HL/NHLBI NIH HHS/ -- HL86785/HL/NHLBI NIH HHS/ -- P01 HL081587/HL/NHLBI NIH HHS/ -- P01 HL081587-05/HL/NHLBI NIH HHS/ -- R01 AG015052/AG/NIA NIH HHS/ -- R01 AG015052-06/AG/NIA NIH HHS/ -- R01 AG034972/AG/NIA NIH HHS/ -- R01 AG034972-03/AG/NIA NIH HHS/ -- R01 HL086785/HL/NHLBI NIH HHS/ -- R01 HL086785-19/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):454-7. doi: 10.1126/science.1188280. Epub 2010 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, MA 02118, USA. nouchi@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558665" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/*metabolism/pathology ; Adipokines/genetics/*metabolism ; Adipose Tissue/*metabolism/pathology ; Animals ; Dietary Fats/administration & dosage ; Dietary Sucrose/administration & dosage ; Fatty Liver/pathology/therapy ; Genetic Vectors ; Glucose/metabolism ; Humans ; Inflammation ; Insulin/metabolism ; Insulin Resistance ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism ; Macrophages/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mitogen-Activated Protein Kinase 8/genetics/metabolism ; Obesity/*metabolism/pathology ; Phosphorylation ; Rats ; Rats, Zucker ; Signal Transduction ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-01-09
    Description: Cocaine-induced alterations in gene expression cause changes in neuronal morphology and behavior that may underlie cocaine addiction. In mice, we identified an essential role for histone 3 lysine 9 (H3K9) dimethylation and the lysine dimethyltransferase G9a in cocaine-induced structural and behavioral plasticity. Repeated cocaine administration reduced global levels of H3K9 dimethylation in the nucleus accumbens. This reduction in histone methylation was mediated through the repression of G9a in this brain region, which was regulated by the cocaine-induced transcription factor DeltaFosB. Using conditional mutagenesis and viral-mediated gene transfer, we found that G9a down-regulation increased the dendritic spine plasticity of nucleus accumbens neurons and enhanced the preference for cocaine, thereby establishing a crucial role for histone methylation in the long-term actions of cocaine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820240/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820240/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maze, Ian -- Covington, Herbert E 3rd -- Dietz, David M -- LaPlant, Quincey -- Renthal, William -- Russo, Scott J -- Mechanic, Max -- Mouzon, Ezekiell -- Neve, Rachael L -- Haggarty, Stephen J -- Ren, Yanhua -- Sampath, Srihari C -- Hurd, Yasmin L -- Greengard, Paul -- Tarakhovsky, Alexander -- Schaefer, Anne -- Nestler, Eric J -- P01 DA008227/DA/NIDA NIH HHS/ -- P01 DA008227-120001/DA/NIDA NIH HHS/ -- P01 DA008227-129001/DA/NIDA NIH HHS/ -- P01 DA008227-13/DA/NIDA NIH HHS/ -- P01 DA008227-14/DA/NIDA NIH HHS/ -- P01 DA008227-15/DA/NIDA NIH HHS/ -- P01 DA008227-16/DA/NIDA NIH HHS/ -- P01 DA008227-170003/DA/NIDA NIH HHS/ -- P01 DA008227-180003/DA/NIDA NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P01 DA010044-14/DA/NIDA NIH HHS/ -- P01 DA010044-140005/DA/NIDA NIH HHS/ -- P01 DA010044-149002/DA/NIDA NIH HHS/ -- P01 DA010044-14S1/DA/NIDA NIH HHS/ -- P01 DA010044-14S10005/DA/NIDA NIH HHS/ -- P01 DA010044-14S19002/DA/NIDA NIH HHS/ -- P01 DA010044-15/DA/NIDA NIH HHS/ -- P01 DA010044-150005/DA/NIDA NIH HHS/ -- P01 DA010044-159002/DA/NIDA NIH HHS/ -- P01 DA08227/DA/NIDA NIH HHS/ -- P0110044/PHS HHS/ -- R01 DA007359/DA/NIDA NIH HHS/ -- R01 DA007359-02/DA/NIDA NIH HHS/ -- R01 DA007359-17/DA/NIDA NIH HHS/ -- R01 DA007359-18/DA/NIDA NIH HHS/ -- R01 DA007359-19/DA/NIDA NIH HHS/ -- R01 DA007359-20/DA/NIDA NIH HHS/ -- R01 DA007359-21/DA/NIDA NIH HHS/ -- R01 DA007359-22/DA/NIDA NIH HHS/ -- R01 DA014133/DA/NIDA NIH HHS/ -- R01 DA07359/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):213-6. doi: 10.1126/science.1179438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20056891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*drug effects ; Cocaine/*administration & dosage/pharmacology ; Cocaine-Related Disorders/etiology/metabolism ; Dendritic Spines/physiology ; Down-Regulation ; Enzyme Repression ; Gene Expression Profiling ; Gene Expression Regulation ; Histone-Lysine N-Methyltransferase/genetics/*metabolism ; Histones/*metabolism ; Lysine/metabolism ; Male ; Methylation ; Mice ; Mice, Inbred C57BL ; *Neuronal Plasticity ; Neurons/drug effects/*metabolism ; Nucleus Accumbens/cytology/drug effects/*metabolism ; Oligonucleotide Array Sequence Analysis ; Proto-Oncogene Proteins c-fos/genetics/metabolism ; Reward ; Self Administration ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-03-27
    Description: Tumor manipulation of host immunity is important for tumor survival and invasion. Many cancers secrete CCL21, a chemoattractant for various leukocytes and lymphoid tissue inducer cells, which drive lymphoid neogenesis. CCL21 expression by melanoma tumors in mice was associated with an immunotolerant microenvironment, which included the induction of lymphoid-like reticular stromal networks, an altered cytokine milieu, and the recruitment of regulatory leukocyte populations. In contrast, CCL21-deficient tumors induced antigen-specific immunity. CCL21-mediated immune tolerance was dependent on host rather than tumor expression of the CCL21 receptor, CCR7, and could protect distant, coimplanted CCL21-deficient tumors and even nonsyngeneic allografts from rejection. We suggest that by altering the tumor microenvironment, CCL21-secreting tumors shift the host immune response from immunogenic to tolerogenic, which facilitates tumor progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shields, Jacqueline D -- Kourtis, Iraklis C -- Tomei, Alice A -- Roberts, Joanna M -- Swartz, Melody A -- New York, N.Y. -- Science. 2010 May 7;328(5979):749-52. doi: 10.1126/science.1185837. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Chemokine CCL21/*metabolism ; Cytokines/metabolism ; Disease Progression ; Female ; Immune Tolerance ; Lymph Nodes/immunology ; Lymphoid Tissue/*immunology/pathology ; Melanoma, Experimental/*immunology/*pathology ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; RNA Interference ; Receptors, CCR7/metabolism ; Signal Transduction ; Stromal Cells/*immunology/pathology ; T-Lymphocytes/immunology ; T-Lymphocytes, Regulatory/immunology ; *Tumor Escape
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-09-04
    Description: Leukotriene A(4) hydrolase (LTA(4)H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene B(4) (LTB(4)). LTA(4)H also possesses aminopeptidase activity with unknown substrate and physiological importance; we identified the neutrophil chemoattractant proline-glycine-proline (PGP) as this physiological substrate. PGP is a biomarker for chronic obstructive pulmonary disease (COPD) and is implicated in neutrophil persistence in the lung. In acute neutrophil-driven inflammation, PGP was degraded by LTA(4)H, which facilitated the resolution of inflammation. In contrast, cigarette smoke, a major risk factor for the development of COPD, selectively inhibited LTA(4)H aminopeptidase activity, which led to the accumulation of PGP and neutrophils. These studies imply that therapeutic strategies inhibiting LTA(4)H to prevent LTB(4) generation may not reduce neutrophil recruitment because of elevated levels of PGP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snelgrove, Robert J -- Jackson, Patricia L -- Hardison, Matthew T -- Noerager, Brett D -- Kinloch, Andrew -- Gaggar, Amit -- Shastry, Suresh -- Rowe, Steven M -- Shim, Yun M -- Hussell, Tracy -- Blalock, J Edwin -- 082727/Z/07/Z/Wellcome Trust/United Kingdom -- 1K23DK075788/DK/NIDDK NIH HHS/ -- 1R03DK084110-01/DK/NIDDK NIH HHS/ -- G0400795/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- HL07783/HL/NHLBI NIH HHS/ -- HL087824/HL/NHLBI NIH HHS/ -- HL090999/HL/NHLBI NIH HHS/ -- HL102371-A1/HL/NHLBI NIH HHS/ -- K08HL091127/HL/NHLBI NIH HHS/ -- P171/03/C1/048/Medical Research Council/United Kingdom -- P30 DK079337/DK/NIDDK NIH HHS/ -- P30AR050948/AR/NIAMS NIH HHS/ -- P30CA13148/CA/NCI NIH HHS/ -- P50 AT00477/AT/NCCIH NIH HHS/ -- R01 HL077783/HL/NHLBI NIH HHS/ -- R01 HL077783-05/HL/NHLBI NIH HHS/ -- R01 HL087824/HL/NHLBI NIH HHS/ -- R01 HL087824-02/HL/NHLBI NIH HHS/ -- R01 HL090999/HL/NHLBI NIH HHS/ -- R01 HL090999-02S1/HL/NHLBI NIH HHS/ -- R01 HL090999-04/HL/NHLBI NIH HHS/ -- R01 HL102371/HL/NHLBI NIH HHS/ -- RR19231/RR/NCRR NIH HHS/ -- U54CA100949/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):90-4. doi: 10.1126/science.1190594. Epub 2010 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. rjs198@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813919" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bronchoalveolar Lavage Fluid/chemistry ; Cells, Cultured ; Chemokines, CXC/metabolism ; Chemotaxis, Leukocyte ; Epoxide Hydrolases/antagonists & inhibitors/isolation & purification/*metabolism ; Female ; Humans ; Inflammation ; Leukotriene B4/metabolism ; Lung/*immunology/metabolism/pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophils/enzymology/immunology/*physiology ; Oligopeptides/*metabolism ; Orthomyxoviridae Infections/immunology/metabolism/pathology ; Pneumococcal Infections/immunology/metabolism/pathology ; Pneumonia/*immunology/metabolism/pathology/therapy ; Proline/*analogs & derivatives/metabolism ; Pulmonary Disease, Chronic Obstructive/immunology/metabolism/pathology ; *Smoke ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-03-27
    Description: Leukemia stem cells (LSCs) are capable of limitless self-renewal and are responsible for the maintenance of leukemia. Because selective eradication of LSCs could offer substantial therapeutic benefit, there is interest in identifying the signaling pathways that control their development. We studied LSCs in mouse models of acute myelogenous leukemia (AML) induced either by coexpression of the Hoxa9 and Meis1a oncogenes or by the fusion oncoprotein MLL-AF9. We show that the Wnt/beta-catenin signaling pathway is required for self-renewal of LSCs that are derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte-macrophage progenitors (GMP). Because the Wnt/beta-catenin pathway is normally active in HSCs but not in GMP, these results suggest that reactivation of beta-catenin signaling is required for the transformation of progenitor cells by certain oncogenes. beta-catenin is not absolutely required for self-renewal of adult HSCs; thus, targeting the Wnt/beta-catenin pathway may represent a new therapeutic opportunity in AML.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yingzi -- Krivtsov, Andrei V -- Sinha, Amit U -- North, Trista E -- Goessling, Wolfram -- Feng, Zhaohui -- Zon, Leonard I -- Armstrong, Scott A -- 5P01CA66996/CA/NCI NIH HHS/ -- 5R01HL048801/HL/NHLBI NIH HHS/ -- P01 CA066996/CA/NCI NIH HHS/ -- P01 CA066996-11A1/CA/NCI NIH HHS/ -- R01 HL048801/HL/NHLBI NIH HHS/ -- R01 HL048801-16/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1650-3. doi: 10.1126/science.1186624.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Cell Transformation, Neoplastic ; Genes, Homeobox ; Granulocyte-Macrophage Progenitor Cells/metabolism/pathology ; Hematopoietic Stem Cells/*metabolism/pathology ; Homeodomain Proteins/genetics ; Indomethacin/pharmacology ; Leukemia, Myeloid, Acute/*metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Neoplasm Proteins/genetics ; Neoplastic Stem Cells/*pathology ; *Signal Transduction ; Transduction, Genetic ; Wnt Proteins/*metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-02-27
    Description: Critical periods are times of pronounced brain plasticity. During a critical period in the postnatal development of the visual cortex, the occlusion of one eye triggers a rapid reorganization of neuronal responses, a process known as ocular dominance plasticity. We have shown that the transplantation of inhibitory neurons induces ocular dominance plasticity after the critical period. Transplanted inhibitory neurons receive excitatory synapses, make inhibitory synapses onto host cortical neurons, and promote plasticity when they reach a cellular age equivalent to that of endogenous inhibitory neurons during the normal critical period. These findings suggest that ocular dominance plasticity is regulated by the execution of a maturational program intrinsic to inhibitory neurons. By inducing plasticity, inhibitory neuron transplantation may facilitate brain repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Southwell, Derek G -- Froemke, Robert C -- Alvarez-Buylla, Arturo -- Stryker, Michael P -- Gandhi, Sunil P -- EY016317/EY/NEI NIH HHS/ -- F32 EY016317/EY/NEI NIH HHS/ -- F32 EY016317-03/EY/NEI NIH HHS/ -- P50 MH077972/MH/NIMH NIH HHS/ -- P50 MH077972-05/MH/NIMH NIH HHS/ -- R01 NS048528/NS/NINDS NIH HHS/ -- R01 NS048528-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1145-8. doi: 10.1126/science.1183962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurological Surgery and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185728" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; *Dominance, Ocular ; Mice ; Mice, Inbred C57BL ; *Neural Inhibition ; *Neuronal Plasticity ; Neurons/*transplantation ; Prosencephalon/cytology/embryology ; Sensory Deprivation ; Synapses/physiology ; Visual Cortex/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-03-06
    Description: The concept that astrocytes release neuroactive molecules (gliotransmitters) to affect synaptic transmission has been a paradigm shift in neuroscience research over the past decade. This concept suggests that astrocytes, together with pre- and postsynaptic neuronal elements, make up a functional synapse. Astrocyte release of gliotransmitters (for example, glutamate and adenosine triphosphate) is generally accepted to be a Ca2+-dependent process. We used two mouse lines to either selectively increase or obliterate astrocytic Gq G protein-coupled receptor Ca2+ signaling to further test the hypothesis that astrocytes release gliotransmitters in a Ca2+-dependent manner to affect synaptic transmission. Neither increasing nor obliterating astrocytic Ca2+ fluxes affects spontaneous and evoked excitatory synaptic transmission or synaptic plasticity. Our findings suggest that, at least in the hippocampus, the mechanisms of gliotransmission need to be reconsidered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agulhon, Cendra -- Fiacco, Todd A -- McCarthy, Ken D -- NS020212/NS/NINDS NIH HHS/ -- NS033938/NS/NINDS NIH HHS/ -- R01 NS020212/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1250-4. doi: 10.1126/science.1184821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina at Chapel Hill, Genetic Medicine Building, CB 7365, Chapel Hill, NC 27599, USA. cendra_agulhon@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203048" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism ; CA1 Region, Hippocampal/cytology/*physiology ; Calcium/*metabolism ; *Calcium Signaling ; Excitatory Postsynaptic Potentials ; GTP-Binding Protein alpha Subunits, Gq-G11/metabolism ; In Vitro Techniques ; *Long-Term Potentiation ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; N-Methylaspartate/metabolism ; *Neuronal Plasticity ; Neurons/physiology ; Neurotransmitter Agents/metabolism ; Receptors, G-Protein-Coupled/genetics/metabolism ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2010-01-02
    Description: Alpha-dystroglycan (alpha-DG) is a cell-surface glycoprotein that acts as a receptor for both extracellular matrix proteins containing laminin-G domains and certain arenaviruses. Receptor binding is thought to be mediated by a posttranslational modification, and defective binding with laminin underlies a subclass of congenital muscular dystrophy. Using mass spectrometry- and nuclear magnetic resonance (NMR)-based structural analyses, we identified a phosphorylated O-mannosyl glycan on the mucin-like domain of recombinant alpha-DG, which was required for laminin binding. We demonstrated that patients with muscle-eye-brain disease and Fukuyama congenital muscular dystrophy, as well as mice with myodystrophy, commonly have defects in a postphosphoryl modification of this phosphorylated O-linked mannose, and that this modification is mediated by the like-acetylglucosaminyltransferase (LARGE) protein. These findings expand our understanding of the mechanisms that underlie congenital muscular dystrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida-Moriguchi, Takako -- Yu, Liping -- Stalnaker, Stephanie H -- Davis, Sarah -- Kunz, Stefan -- Madson, Michael -- Oldstone, Michael B A -- Schachter, Harry -- Wells, Lance -- Campbell, Kevin P -- 1U54NS053672/NS/NINDS NIH HHS/ -- AI55540/AI/NIAID NIH HHS/ -- P30 DK 54759/DK/NIDDK NIH HHS/ -- P30 DK054759/DK/NIDDK NIH HHS/ -- P41 RR018502/RR/NCRR NIH HHS/ -- R01 AI009484/AI/NIAID NIH HHS/ -- R01 AI009484-40/AI/NIAID NIH HHS/ -- R01 AI009484-41/AI/NIAID NIH HHS/ -- R01 AI045927/AI/NIAID NIH HHS/ -- R01 AI045927-08/AI/NIAID NIH HHS/ -- R01 AI045927-09/AI/NIAID NIH HHS/ -- R01 AI045927-10/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, 4283 Carver Biomedical Research Building, 285 Newton Road, Iowa City, IA 52242-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Conformation ; Cell Line ; Dystroglycans/chemistry/*metabolism ; Glycosylation ; Humans ; Laminin/*metabolism ; Magnetic Resonance Spectroscopy ; Mannose/*metabolism ; Mass Spectrometry ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Muscle, Skeletal/metabolism ; Muscular Dystrophies/metabolism ; Muscular Dystrophy, Animal/metabolism ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Phosphorylation ; Protein Binding ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2010-11-13
    Description: Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain's plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life. Removal of this molecular brake enhanced nicotinic acetylcholine receptor signaling. Lynx1 expression thus maintains stability of mature cortical networks in the presence of cholinergic innervation. The results suggest that modulating the balance between excitatory and inhibitory circuits reactivates visual plasticity and may present a therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morishita, Hirofumi -- Miwa, Julie M -- Heintz, Nathaniel -- Hensch, Takao K -- 1 DP1 OD003699-01/OD/NIH HHS/ -- DA-17279/DA/NIDA NIH HHS/ -- DP1 OD003699/OD/NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1238-40. doi: 10.1126/science.1195320. Epub 2010 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Amblyopia/metabolism ; Animals ; Cholinesterase Inhibitors/pharmacology ; Dominance, Ocular ; Evoked Potentials, Visual ; Mecamylamine/pharmacology ; Membrane Glycoproteins/*genetics/metabolism/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural Inhibition ; *Neuronal Plasticity ; Neuropeptides/*genetics/metabolism/*physiology ; Nicotinic Antagonists/pharmacology ; Physostigmine/pharmacology ; Receptors, Nicotinic/genetics/*metabolism ; Sensory Deprivation ; Signal Transduction ; *Vision, Ocular ; Visual Cortex/*physiology ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-09-25
    Description: X-ray tomography is an invaluable tool in biomedical imaging. It can deliver the three-dimensional internal structure of entire organisms as well as that of single cells, and even gives access to quantitative information, crucially important both for medical applications and for basic research. Most frequently such information is based on X-ray attenuation. Phase contrast is sometimes used for improved visibility but remains significantly harder to quantify. Here we describe an X-ray computed tomography technique that generates quantitative high-contrast three-dimensional electron density maps from phase contrast information without reverting to assumptions of a weak phase object or negligible absorption. This method uses a ptychographic coherent imaging approach to record tomographic data sets, exploiting both the high penetration power of hard X-rays and the high sensitivity of lensless imaging. As an example, we present images of a bone sample in which structures on the 100 nm length scale such as the osteocyte lacunae and the interconnective canalicular network are clearly resolved. The recovered electron density map provides a contrast high enough to estimate nanoscale bone density variations of less than one per cent. We expect this high-resolution tomography technique to provide invaluable information for both the life and materials sciences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dierolf, Martin -- Menzel, Andreas -- Thibault, Pierre -- Schneider, Philipp -- Kewish, Cameron M -- Wepf, Roger -- Bunk, Oliver -- Pfeiffer, Franz -- England -- Nature. 2010 Sep 23;467(7314):436-9. doi: 10.1038/nature09419.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics (E17), Technische Universitat Munchen, 85748 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density ; Bone and Bones/*cytology/*radiography ; Femur/cytology/radiography ; Imaging, Three-Dimensional/methods ; Mice ; Mice, Inbred C57BL ; Microscopy/*methods ; Nanotechnology/*methods ; Tomography, X-Ray Computed/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-12-03
    Description: An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host 'danger', including infection and metabolic dysregulation. Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Rongbin -- Yazdi, Amir S -- Menu, Philippe -- Tschopp, Jurg -- England -- Nature. 2011 Jan 13;469(7329):221-5. doi: 10.1038/nature09663. Epub 2010 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124315" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins ; Autophagy/drug effects ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cytoskeletal Proteins/genetics/metabolism ; Endoplasmic Reticulum/metabolism ; Humans ; Immunity, Innate ; Inflammasomes/drug effects/*metabolism ; Inflammation/metabolism/pathology ; Interleukin-1beta/metabolism/secretion ; Macrophages/cytology/metabolism/pathology/secretion ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria/drug effects/*metabolism/pathology ; Reactive Oxygen Species/metabolism ; Thioredoxins/genetics/metabolism ; Voltage-Dependent Anion Channels/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-03-17
    Description: The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagberg, Carolina E -- Falkevall, Annelie -- Wang, Xun -- Larsson, Erik -- Huusko, Jenni -- Nilsson, Ingrid -- van Meeteren, Laurens A -- Samen, Erik -- Lu, Li -- Vanwildemeersch, Maarten -- Klar, Joakim -- Genove, Guillem -- Pietras, Kristian -- Stone-Elander, Sharon -- Claesson-Welsh, Lena -- Yla-Herttuala, Seppo -- Lindahl, Per -- Eriksson, Ulf -- England -- Nature. 2010 Apr 8;464(7290):917-21. doi: 10.1038/nature08945. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tissue Biology Group, Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228789" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/metabolism ; Adipose Tissue, White/metabolism ; Animals ; Biological Transport ; Cell Line ; Cell Nucleus/genetics ; Cells, Cultured ; Endothelium/cytology/*metabolism ; Fatty Acid Transport Proteins/genetics ; Fatty Acids/*metabolism ; Gene Expression Regulation ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Muscles/metabolism ; Myocardium/metabolism ; Neuropilin-1/genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Signal Transduction ; Transcription, Genetic ; Vascular Endothelial Growth Factor B/deficiency/genetics/*metabolism ; Vascular Endothelial Growth Factor Receptor-1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-10-22
    Description: CD4(+) T-helper cells that selectively produce interleukin (IL)-17 (T(H)17), are critical for host defence and autoimmunity. Although crucial for T(H)17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-beta1 have been proposed to be the factors responsible for initiating specification. Here we show that T(H)17 differentiation can occur in the absence of TGF-beta signalling. Neither IL-6 nor IL-23 alone efficiently generated T(H)17 cells; however, these cytokines in combination with IL-1beta effectively induced IL-17 production in naive precursors, independently of TGF-beta. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-beta1, allowing the generation of cells that co-expressed RORgammat (encoded by Rorc) and T-bet. T-bet(+)RORgammat(+) T(H)17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred T(H)17 cells generated with IL-23 without TGF-beta1 were pathogenic in this disease model. These data indicate an alternative mode for T(H)17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghoreschi, Kamran -- Laurence, Arian -- Yang, Xiang-Ping -- Tato, Cristina M -- McGeachy, Mandy J -- Konkel, Joanne E -- Ramos, Haydee L -- Wei, Lai -- Davidson, Todd S -- Bouladoux, Nicolas -- Grainger, John R -- Chen, Qian -- Kanno, Yuka -- Watford, Wendy T -- Sun, Hong-Wei -- Eberl, Gerard -- Shevach, Ethan M -- Belkaid, Yasmine -- Cua, Daniel J -- Chen, Wanjun -- O'Shea, John J -- Z99 AR999999/Intramural NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):967-71. doi: 10.1038/nature09447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ghoreschik@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmune Diseases/immunology/pathology ; Autoimmunity/immunology ; Cell Differentiation/drug effects ; Central Nervous System/pathology ; Inflammation ; Interleukin-10 ; Interleukin-17/secretion ; Interleukin-1beta/immunology ; Interleukin-23/immunology/pharmacology ; Interleukin-6/immunology ; Interleukin-9 ; Interleukins/biosynthesis ; Mice ; Mice, Inbred C57BL ; Mucous Membrane/cytology/immunology ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Receptors, Interleukin/metabolism ; *Signal Transduction ; Th17 Cells/drug effects/metabolism/*pathology ; *Transforming Growth Factor beta
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2010-12-24
    Description: During spatial exploration, hippocampal neurons show a sequential firing pattern in which individual neurons fire specifically at particular locations along the animal's trajectory (place cells). According to the dominant model of hippocampal cell assembly activity, place cell firing order is established for the first time during exploration, to encode the spatial experience, and is subsequently replayed during rest or slow-wave sleep for consolidation of the encoded experience. Here we report that temporal sequences of firing of place cells expressed during a novel spatial experience occurred on a significant number of occasions during the resting or sleeping period preceding the experience. This phenomenon, which is called preplay, occurred in disjunction with sequences of replay of a familiar experience. These results suggest that internal neuronal dynamics during resting or sleep organize hippocampal cellular assemblies into temporal sequences that contribute to the encoding of a related novel experience occurring in the future.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104398/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104398/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dragoi, George -- Tonegawa, Susumu -- P50 MH058880/MH/NIMH NIH HHS/ -- P50 MH058880-06/MH/NIMH NIH HHS/ -- P50 MH058880-07/MH/NIMH NIH HHS/ -- P50 MH058880-08/MH/NIMH NIH HHS/ -- P50 MH058880-09/MH/NIMH NIH HHS/ -- P50 MH058880-10/MH/NIMH NIH HHS/ -- P50-MH58880/MH/NIMH NIH HHS/ -- R01 MH078821/MH/NIMH NIH HHS/ -- R01 MH078821-13/MH/NIMH NIH HHS/ -- R01 MH078821-14/MH/NIMH NIH HHS/ -- R01 MH078821-15/MH/NIMH NIH HHS/ -- R01 MH078821-16/MH/NIMH NIH HHS/ -- R01 MH078821-17/MH/NIMH NIH HHS/ -- R01-MH078821/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jan 20;469(7330):397-401. doi: 10.1038/nature09633. Epub 2010 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Picower Institute for Learning and Memory, RIKEN-MIT Center for Neural Circuit Genetics, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. gdragoi@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179088" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bayes Theorem ; Eating ; Food ; Hippocampus/*cytology/*physiology ; Memory/physiology ; Mice ; Mice, Inbred C57BL ; *Models, Neurological ; Neurons/*physiology ; Orientation/physiology ; Rest/physiology ; Sleep/physiology ; Space Perception/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2010-11-19
    Description: Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2'-O positions of the 5' guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2'-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2'-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2'-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2'-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2'-O methylation of the 5' cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2'-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daffis, Stephane -- Szretter, Kristy J -- Schriewer, Jill -- Li, Jianqing -- Youn, Soonjeon -- Errett, John -- Lin, Tsai-Yu -- Schneller, Stewart -- Zust, Roland -- Dong, Hongping -- Thiel, Volker -- Sen, Ganes C -- Fensterl, Volker -- Klimstra, William B -- Pierson, Theodore C -- Buller, R Mark -- Gale, Michael Jr -- Shi, Pei-Yong -- Diamond, Michael S -- R01 AI074973/AI/NIAID NIH HHS/ -- R01 AI56540/AI/NIAID NIH HHS/ -- R01 CA068782/CA/NCI NIH HHS/ -- R01 CA068782-24/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U54 AI057158/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54 AI057160-06/AI/NIAID NIH HHS/ -- U54 AI081680/AI/NIAID NIH HHS/ -- U54 AI081680-01/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):452-6. doi: 10.1038/nature09489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085181" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Carrier Proteins/genetics/*metabolism ; Cells, Cultured ; Coronavirus/enzymology/genetics/immunology/physiology ; Fibroblasts ; Gene Expression Regulation/genetics/*immunology ; Humans ; Immunity, Innate/genetics/*immunology ; Interferons/deficiency/genetics/*immunology ; Methylation ; Methyltransferases/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Genetic ; Models, Immunological ; Neoplasm Proteins/genetics/metabolism ; Poxviridae/enzymology/genetics/immunology/physiology ; Protein Biosynthesis/immunology ; Proteins/genetics/*metabolism ; RNA Caps/genetics/immunology/*metabolism ; RNA, Viral/genetics/immunology/*metabolism ; Receptor, Interferon alpha-beta/deficiency/genetics ; Survival Rate ; Virus Replication ; West Nile virus/enzymology/genetics/immunology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2010-04-03
    Description: Abnormalities in functional connectivity between brain areas have been postulated as an important pathophysiological mechanism underlying schizophrenia. In particular, macroscopic measurements of brain activity in patients suggest that functional connectivity between the frontal and temporal lobes may be altered. However, it remains unclear whether such dysconnectivity relates to the aetiology of the illness, and how it is manifested in the activity of neural circuits. Because schizophrenia has a strong genetic component, animal models of genetic risk factors are likely to aid our understanding of the pathogenesis and pathophysiology of the disease. Here we study Df(16)A(+/-) mice, which model a microdeletion on human chromosome 22 (22q11.2) that constitutes one of the largest known genetic risk factors for schizophrenia. To examine functional connectivity in these mice, we measured the synchronization of neural activity between the hippocampus and the prefrontal cortex during the performance of a task requiring working memory, which is one of the cognitive functions disrupted in the disease. In wild-type mice, hippocampal-prefrontal synchrony increased during working memory performance, consistent with previous reports in rats. Df(16)A(+/-) mice, which are impaired in the acquisition of the task, showed drastically reduced synchrony, measured both by phase-locking of prefrontal cells to hippocampal theta oscillations and by coherence of prefrontal and hippocampal local field potentials. Furthermore, the magnitude of hippocampal-prefrontal coherence at the onset of training could be used to predict the time it took the Df(16)A(+/-) mice to learn the task and increased more slowly during task acquisition. These data suggest how the deficits in functional connectivity observed in patients with schizophrenia may be realized at the single-neuron level. Our findings further suggest that impaired long-range synchrony of neural activity is one consequence of the 22q11.2 deletion and may be a fundamental component of the pathophysiology underlying schizophrenia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigurdsson, Torfi -- Stark, Kimberly L -- Karayiorgou, Maria -- Gogos, Joseph A -- Gordon, Joshua A -- MH081968/MH/NIMH NIH HHS/ -- MH67068/MH/NIMH NIH HHS/ -- R01 MH081968/MH/NIMH NIH HHS/ -- R01 MH081968-02/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Apr 1;464(7289):763-7. doi: 10.1038/nature08855.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360742" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Alleles ; Animals ; Behavior, Animal/physiology ; Chromosomes, Human, Pair 22/genetics ; Chromosomes, Mammalian/*genetics ; *Disease Models, Animal ; Female ; Genetic Predisposition to Disease/genetics ; Hippocampus/*physiopathology ; Humans ; Male ; Memory/physiology ; Mice ; Mice, Inbred C57BL ; Models, Genetic ; Models, Neurological ; Prefrontal Cortex/*physiopathology ; Schizophrenia/*genetics/*physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2010-09-25
    Description: Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation react with endogenous, luminal sulphur compounds (thiosulphate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to use tetrathionate as an electron acceptor produce a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946174/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946174/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Sebastian E -- Thiennimitr, Parameth -- Winter, Maria G -- Butler, Brian P -- Huseby, Douglas L -- Crawford, Robert W -- Russell, Joseph M -- Bevins, Charles L -- Adams, L Garry -- Tsolis, Renee M -- Roth, John R -- Baumler, Andreas J -- AI040124/AI/NIAID NIH HHS/ -- AI044170/AI/NIAID NIH HHS/ -- AI073120/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI088122/AI/NIAID NIH HHS/ -- R21 AI088122/AI/NIAID NIH HHS/ -- R21 AI088122-01/AI/NIAID NIH HHS/ -- R21 AI088122-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Sep 23;467(7314):426-9. doi: 10.1038/nature09415.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20864996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Respiration ; Colitis/metabolism/microbiology ; Electron Transport ; *Electrons ; Female ; Gastrointestinal Tract/metabolism/*microbiology/*pathology ; Inflammation/metabolism/microbiology/pathology ; Intestinal Mucosa/metabolism/microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Reactive Oxygen Species/metabolism ; Salmonella typhimurium/growth & development/*metabolism ; Tetrathionic Acid/metabolism ; Thiosulfates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2010-11-30
    Description: An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaskelioff, Mariela -- Muller, Florian L -- Paik, Ji-Hye -- Thomas, Emily -- Jiang, Shan -- Adams, Andrew C -- Sahin, Ergun -- Kost-Alimova, Maria -- Protopopov, Alexei -- Cadinanos, Juan -- Horner, James W -- Maratos-Flier, Eleftheria -- Depinho, Ronald A -- R01 CA084628/CA/NCI NIH HHS/ -- R01 CA084628-19/CA/NCI NIH HHS/ -- R01CA84628/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- U01CA141508/CA/NCI NIH HHS/ -- England -- Nature. 2011 Jan 6;469(7328):102-6. doi: 10.1038/nature09603. Epub 2010 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science and Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21113150" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/drug effects/*metabolism/*pathology ; Animals ; Avoidance Learning/drug effects ; Brain/anatomy & histology/cytology/drug effects/pathology ; Cell Differentiation/drug effects ; Cell Proliferation/drug effects ; Cells, Cultured ; DNA Damage/drug effects ; Enzyme Activation/drug effects ; Enzyme Reactivators/pharmacology ; Mice ; Mice, Inbred C57BL ; Models, Animal ; Myelin Sheath/metabolism ; Neural Stem Cells/cytology/drug effects/enzymology/pathology ; Organ Size/drug effects ; Phenotype ; Receptors, Estrogen/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Regenerative Medicine ; Smell/drug effects/physiology ; Tamoxifen/analogs & derivatives/pharmacology ; Telomerase/*deficiency/genetics/*metabolism ; Telomere/drug effects/metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2010-07-03
    Description: The identities of the regulators that mediate commitment of hematopoietic precursors to the T lymphocyte lineage have been unknown. The last stage of T lineage commitment in vivo involves mechanisms to suppress natural killer cell potential, to suppress myeloid and dendritic cell potential, and to silence the stem cell or progenitor cell regulatory functions that initially provide T cell receptor-independent self-renewal capability. The zinc finger transcription factor Bcl11b is T cell-specific in expression among hematopoietic cell types and is first expressed in precursors immediately before T lineage commitment. We found that Bcl11b is necessary for T lineage commitment in mice and is specifically required both to repress natural killer cell-associated genes and to down-regulate a battery of stem cell or progenitor cell genes at the pivotal stage of commitment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935300/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935300/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Leid, Mark -- Rothenberg, Ellen V -- F06 TW002367/TW/FIC NIH HHS/ -- F06 TW002367-01A1/TW/FIC NIH HHS/ -- R01 GM060852/GM/NIGMS NIH HHS/ -- R01 GM060852-04/GM/NIGMS NIH HHS/ -- R01 GM60852/GM/NIGMS NIH HHS/ -- R33 HL089123/HL/NHLBI NIH HHS/ -- R33 HL089123-03/HL/NHLBI NIH HHS/ -- RC2 CA148278/CA/NCI NIH HHS/ -- RC2 CA148278-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):89-93. doi: 10.1126/science.1188989.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595614" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; *Cell Lineage ; Cells, Cultured ; Down-Regulation ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Genes, T-Cell Receptor delta ; Genes, T-Cell Receptor gamma ; Killer Cells, Natural/cytology/physiology ; *Lymphopoiesis/genetics ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Precursor Cells, T-Lymphoid/cytology/immunology/*physiology ; Receptors, Antigen, T-Cell, gamma-delta/metabolism ; Receptors, Notch/metabolism ; Repressor Proteins/deficiency/genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/cytology/metabolism/*physiology ; Transcription Factors/genetics/metabolism ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2010-06-12
    Description: T cells develop in the thymus and are critical for adaptive immunity. Natural killer (NK) lymphocytes constitute an essential component of the innate immune system in tumor surveillance, reproduction, and defense against microbes and viruses. Here, we show that the transcription factor Bcl11b was expressed in all T cell compartments and was indispensable for T lineage development. When Bcl11b was deleted, T cells from all developmental stages acquired NK cell properties and concomitantly lost or decreased T cell-associated gene expression. These induced T-to-natural killer (ITNK) cells, which were morphologically and genetically similar to conventional NK cells, killed tumor cells in vitro, and effectively prevented tumor metastasis in vivo. Therefore, ITNKs may represent a new cell source for cell-based therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628452/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628452/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Burke, Shannon -- Wang, Juexuan -- Chen, Xiongfeng -- Ortiz, Mariaestela -- Lee, Song-Choon -- Lu, Dong -- Campos, Lia -- Goulding, David -- Ng, Bee Ling -- Dougan, Gordon -- Huntly, Brian -- Gottgens, Bertie -- Jenkins, Nancy A -- Copeland, Neal G -- Colucci, Francesco -- Liu, Pentao -- 076962/Wellcome Trust/United Kingdom -- 077186/Wellcome Trust/United Kingdom -- G0501150/Medical Research Council/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- G116/187/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):85-9. doi: 10.1126/science.1188063. Epub 2010 Jun 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20538915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; *Cell Lineage ; Cells, Cultured ; Coculture Techniques ; Cytotoxicity, Immunologic ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Knock-In Techniques ; Genes, T-Cell Receptor beta ; Killer Cells, Natural/cytology/immunology/*physiology ; *Lymphopoiesis/genetics ; Melanoma, Experimental/immunology/therapy ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Oligonucleotide Array Sequence Analysis ; Precursor Cells, T-Lymphoid/cytology/physiology ; Receptors, Antigen, T-Cell, alpha-beta/metabolism ; Repressor Proteins/*genetics/*metabolism ; Signal Transduction ; Stromal Cells/cytology/physiology ; T-Lymphocytes/cytology/immunology/*physiology/transplantation ; Tamoxifen/analogs & derivatives/pharmacology ; Tumor Suppressor Proteins/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2010-12-04
    Description: Synaptic plasticity is a key mechanism for chronic pain. It occurs at different levels of the central nervous system, including spinal cord and cortex. Studies have mainly focused on signaling proteins that trigger these plastic changes, whereas few have addressed the maintenance of plastic changes related to chronic pain. We found that protein kinase M zeta (PKMzeta) maintains pain-induced persistent changes in the mouse anterior cingulate cortex (ACC). Peripheral nerve injury caused activation of PKMzeta in the ACC, and inhibiting PKMzeta by a selective inhibitor, zeta-pseudosubstrate inhibitory peptide (ZIP), erased synaptic potentiation. Microinjection of ZIP into the ACC blocked behavioral sensitization. These results suggest that PKMzeta in the ACC acts to maintain neuropathic pain. PKMzeta could thus be a new therapeutic target for treating chronic pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xiang-Yao -- Ko, Hyoung-Gon -- Chen, Tao -- Descalzi, Giannina -- Koga, Kohei -- Wang, Hansen -- Kim, Susan S -- Shang, Yuze -- Kwak, Chuljung -- Park, Soo-Won -- Shim, Jaehoon -- Lee, Kyungmin -- Collingridge, Graham L -- Kaang, Bong-Kiun -- Zhuo, Min -- CIHR66975/Canadian Institutes of Health Research/Canada -- CIHR84256/Canadian Institutes of Health Research/Canada -- G0601813/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1400-4. doi: 10.1126/science.1191792.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Faculty of Medicine, Center for the Study of Pain, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127255" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/genetics/metabolism ; Analgesics/administration & dosage/pharmacology ; Animals ; Enzyme Inhibitors/administration & dosage/*pharmacology ; Excitatory Postsynaptic Potentials/drug effects ; Gyrus Cinguli/*enzymology/physiology ; Long-Term Potentiation ; Male ; Memory/drug effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neuralgia/*drug therapy/*enzymology ; Patch-Clamp Techniques ; Peptides/administration & dosage/*pharmacology ; Peroneal Nerve/injuries ; Phosphorylation ; Protein Kinase C/*antagonists & inhibitors/*metabolism ; Receptors, AMPA/metabolism ; Sensory Receptor Cells/physiology ; Somatosensory Cortex/physiology ; Synapses/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2010-05-15
    Description: Proper coordination of cholesterol biosynthesis and trafficking is essential to human health. The sterol regulatory element-binding proteins (SREBPs) are key transcription regulators of genes involved in cholesterol biosynthesis and uptake. We show here that microRNAs (miR-33a/b) embedded within introns of the SREBP genes target the adenosine triphosphate-binding cassette transporter A1 (ABCA1), an important regulator of high-density lipoprotein (HDL) synthesis and reverse cholesterol transport, for posttranscriptional repression. Antisense inhibition of miR-33 in mouse and human cell lines causes up-regulation of ABCA1 expression and increased cholesterol efflux, and injection of mice on a western-type diet with locked nucleic acid-antisense oligonucleotides results in elevated plasma HDL. Our findings indicate that miR-33 acts in concert with the SREBP host genes to control cholesterol homeostasis and suggest that miR-33 may represent a therapeutic target for ameliorating cardiometabolic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Najafi-Shoushtari, S Hani -- Kristo, Fjoralba -- Li, Yingxia -- Shioda, Toshi -- Cohen, David E -- Gerszten, Robert E -- Naar, Anders M -- P30 DK034854/DK/NIDDK NIH HHS/ -- P30 DK34854/DK/NIDDK NIH HHS/ -- R01 DK048873/DK/NIDDK NIH HHS/ -- R01 DK056626/DK/NIDDK NIH HHS/ -- R01 GM071449/GM/NIGMS NIH HHS/ -- R01DK48873/DK/NIDDK NIH HHS/ -- R01DK56626/DK/NIDDK NIH HHS/ -- R01GM071449/GM/NIGMS NIH HHS/ -- R21 DK084459/DK/NIDDK NIH HHS/ -- R21DK084459/DK/NIDDK NIH HHS/ -- R37 DK048873/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1566-9. doi: 10.1126/science.1189123. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466882" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Cell Line ; Cholesterol/*metabolism ; Cholesterol, HDL/*blood ; Diet ; Gene Expression Regulation ; Homeostasis ; Humans ; Introns ; Liver/metabolism ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/*metabolism ; Oligonucleotides, Antisense/pharmacology ; RNA Interference ; Sterol Regulatory Element Binding Protein 1/genetics/metabolism ; Sterol Regulatory Element Binding Protein 2/genetics/metabolism ; Sterol Regulatory Element Binding Proteins/*genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2010-03-20
    Description: Stem cells support tissue maintenance by balancing self-renewal and differentiation. In mice, it is believed that a homogeneous stem cell population of single spermatogonia supports spermatogenesis, and that differentiation, which is accompanied by the formation of connected cells (cysts) of increasing length, is linear and nonreversible. We evaluated this model with the use of lineage analysis and live imaging, and found that this putative stem cell population is not homogeneous. Instead, the stem cell pool that supports steady-state spermatogenesis is contained within a subpopulation of single spermatogonia. We also found that cysts are not committed to differentiation and appear to recover stem cell potential by fragmentation, and that the fate of individual spermatogonial populations was markedly altered during regeneration after damage. Thus, there are multiple and reversible paths from stem cells to differentiation, and these may also occur in other systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981100/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981100/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakagawa, Toshinori -- Sharma, Manju -- Nabeshima, Yo-ichi -- Braun, Robert E -- Yoshida, Shosei -- U54 HD042454/HD/NICHD NIH HHS/ -- U54 HD042454-080002/HD/NICHD NIH HHS/ -- U54 HD4254/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):62-7. doi: 10.1126/science.1182868. Epub 2010 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Cadherins/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Gene Expression Profiling ; Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics/metabolism ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Biological ; Nerve Tissue Proteins/genetics/metabolism ; Regeneration ; *Spermatogenesis ; Spermatogonia/*cytology/*physiology ; Stem Cell Niche ; Stem Cells/*cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2010-10-30
    Description: Traumatic fear memories can be inhibited by behavioral therapy for humans, or by extinction training in rodent models, but are prone to recur. Under some conditions, however, these treatments generate a permanent effect on behavior, which suggests that emotional memory erasure has occurred. The neural basis for such disparate outcomes is unknown. We found that a central component of extinction-induced erasure is the synaptic removal of calcium-permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) in the lateral amygdala. A transient up-regulation of this form of plasticity, which involves phosphorylation of the glutamate receptor 1 subunit of the AMPA receptor, defines a temporal window in which fear memory can be degraded by behavioral experience. These results reveal a molecular mechanism for fear erasure and the relative instability of recent memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clem, Roger L -- Huganir, Richard L -- F32 MH087037-01/MH/NIMH NIH HHS/ -- R01 NS036715/NS/NINDS NIH HHS/ -- R01 NS036715-11/NS/NINDS NIH HHS/ -- R01NS036715/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1108-12. doi: 10.1126/science.1195298. Epub 2010 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030604" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/metabolism ; Animals ; Calcium/metabolism ; Conditioning (Psychology) ; *Extinction, Psychological ; Fear/*physiology ; Long-Term Synaptic Depression ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Receptors, AMPA/*metabolism ; Receptors, Glutamate/metabolism ; Thalamus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2010-05-08
    Description: The thickness of the myelin sheath that insulates axons is fitted for optimal nerve conduction velocity. Here, we show that, in Schwann cells, mammalian disks large homolog 1 (Dlg1) interacts with PTEN (phosphatase and tensin homolog deleted on chromosome 10) to inhibit axonal stimulation of myelination. This mechanism limits myelin sheath thickness and prevents overmyelination in mouse sciatic nerves. Removing this brake results also in myelin outfoldings and demyelination, characteristics of some peripheral neuropathies. Indeed, the Dlg1 brake is no longer functional in a mouse model of Charcot-Marie-Tooth disease. Therefore, negative regulation of myelination appears to be essential for optimization of nerve conduction velocity and myelin maintenance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cotter, Laurent -- Ozcelik, Murat -- Jacob, Claire -- Pereira, Jorge A -- Locher, Veronica -- Baumann, Reto -- Relvas, Joao B -- Suter, Ueli -- Tricaud, Nicolas -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1415-8. doi: 10.1126/science.1187735. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, Department of Biology, Eidgenossische Technische Hochschule (ETH) Zurich, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448149" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*metabolism ; Animals ; Axons/physiology ; Coculture Techniques ; Ganglia, Spinal/cytology ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Myelin Sheath/*physiology/ultrastructure ; Nerve Tissue Proteins/genetics/*metabolism ; Neural Conduction ; Neuregulin-1/metabolism ; PTEN Phosphohydrolase/*metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; Rats ; Schwann Cells/*physiology ; Sciatic Nerve/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2010-09-18
    Description: Endosomal Toll-like receptors (TLRs) 7 and 9 recognize viral pathogens and induce signals leading to the activation of nuclear factor kappaB (NF-kappaB)-dependent proinflammatory cytokines and interferon regulatory factor 7 (IRF7)-dependent type I interferons (IFNs). Recognition of viral nucleic acids by TLR9 requires its cleavage in the endolysosomal compartment. Here, we show that TLR9 signals leading to the activation of type I IFN, but not proinflammatory cytokine genes, require TLR9 trafficking from endosomes to a specialized lysosome-related organelle. Furthermore, we identify adapter protein-3 as the protein complex responsible for the trafficking of TLR9 to this subcellular compartment. Our results reveal an intracellular mechanism for bifurcation of TLR9 signals by selective receptor trafficking within the endosomal system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063333/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063333/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasai, Miwa -- Linehan, Melissa M -- Iwasaki, Akiko -- AI054359/AI/NIAID NIH HHS/ -- AI064705/AI/NIAID NIH HHS/ -- AI081884/AI/NIAID NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI054359-07/AI/NIAID NIH HHS/ -- R01 AI064705/AI/NIAID NIH HHS/ -- R01 AI064705-06/AI/NIAID NIH HHS/ -- R01 AI081884/AI/NIAID NIH HHS/ -- R01 AI081884-01A2/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1530-4. doi: 10.1126/science.1187029.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847273" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 3/genetics/*metabolism ; Adaptor Protein Complex beta Subunits ; Animals ; Cells, Cultured ; Cytokines/genetics/immunology/metabolism ; Cytoplasmic Vesicles/metabolism ; Dendritic Cells/*immunology/metabolism ; Endosomes/metabolism ; Interferon Regulatory Factor-7/metabolism ; Interferon Type I/genetics/immunology/metabolism ; Lysosomal-Associated Membrane Protein 2/metabolism ; Macrophages/immunology ; Membrane Transport Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Myeloid Differentiation Factor 88/metabolism ; Oligodeoxyribonucleotides/immunology ; Protein Transport ; Recombinant Fusion Proteins/immunology/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 3/metabolism ; Toll-Like Receptor 9/immunology/*metabolism ; Transcriptional Activation ; Vesicle-Associated Membrane Protein 3/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2010-10-23
    Description: Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719181/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ginhoux, Florent -- Greter, Melanie -- Leboeuf, Marylene -- Nandi, Sayan -- See, Peter -- Gokhan, Solen -- Mehler, Mark F -- Conway, Simon J -- Ng, Lai Guan -- Stanley, E Richard -- Samokhvalov, Igor M -- Merad, Miriam -- AI080884/AI/NIAID NIH HHS/ -- CA112100/CA/NCI NIH HHS/ -- CA26504/CA/NCI NIH HHS/ -- CA32551/CA/NCI NIH HHS/ -- HL086899/HL/NHLBI NIH HHS/ -- MH66290/MH/NIMH NIH HHS/ -- NS38902/NS/NINDS NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 CA032551/CA/NCI NIH HHS/ -- R01 HL060714/HL/NHLBI NIH HHS/ -- R01 HL060714-13/HL/NHLBI NIH HHS/ -- R37 CA026504/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):841-5. doi: 10.1126/science.1194637. Epub 2010 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA. Florent_ginhoux@immunol.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/embryology ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Core Binding Factor Alpha 2 Subunit/genetics/metabolism ; Embryo, Mammalian/cytology/physiology ; Female ; Gene Knock-In Techniques ; Hematopoiesis ; Hematopoietic Stem Cells/cytology ; Homeostasis ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/*cytology ; Mice ; Mice, Inbred C57BL ; Microglia/*cytology ; Myeloid Progenitor Cells/*cytology ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Yolk Sac/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2010-11-27
    Description: Classical studies of mammalian movement control define a prominent role for the primary motor cortex. Investigating the mouse whisker system, we found an additional and equally direct pathway for cortical motor control driven by the primary somatosensory cortex. Whereas activity in primary motor cortex directly evokes exploratory whisker protraction, primary somatosensory cortex directly drives whisker retraction, providing a rapid negative feedback signal for sensorimotor integration. Motor control by sensory cortex suggests the need to reevaluate the functional organization of cortical maps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matyas, Ferenc -- Sreenivasan, Varun -- Marbach, Fred -- Wacongne, Catherine -- Barsy, Boglarka -- Mateo, Celine -- Aronoff, Rachel -- Petersen, Carl C H -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1240-3. doi: 10.1126/science.1195797.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Electric Stimulation ; Feedback, Sensory ; Mice ; Mice, Inbred C57BL ; *Motor Activity ; Motor Cortex/physiology ; Neural Pathways/physiology ; Signal Transduction ; Somatosensory Cortex/*physiology ; Vibrissae/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2010-05-08
    Description: As the human life span increases, the number of people suffering from cognitive decline is rising dramatically. The mechanisms underlying age-associated memory impairment are, however, not understood. Here we show that memory disturbances in the aging brain of the mouse are associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation. Restoration of physiological H4K12 acetylation reinstates the expression of learning-induced genes and leads to the recovery of cognitive abilities. Our data suggest that deregulated H4K12 acetylation may represent an early biomarker of an impaired genome-environment interaction in the aging mouse brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peleg, Shahaf -- Sananbenesi, Farahnaz -- Zovoilis, Athanasios -- Burkhardt, Susanne -- Bahari-Javan, Sanaz -- Agis-Balboa, Roberto Carlos -- Cota, Perla -- Wittnam, Jessica Lee -- Gogol-Doering, Andreas -- Opitz, Lennart -- Salinas-Riester, Gabriella -- Dettenhofer, Markus -- Kang, Hui -- Farinelli, Laurent -- Chen, Wei -- Fischer, Andre -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):753-6. doi: 10.1126/science.1186088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Grisebach Str. 5, D-37077 Goettingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448184" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Aging/*genetics ; Animals ; Chromatin/metabolism ; *Chromatin Assembly and Disassembly ; Conditioning (Psychology) ; Epigenesis, Genetic ; Fear ; Gene Expression Profiling ; *Gene Expression Regulation ; Hippocampus/*metabolism ; Histone Deacetylase Inhibitors/metabolism/pharmacology ; Histones/*metabolism ; Hydroxamic Acids/pharmacology ; Learning/drug effects ; Lysine/metabolism ; Memory/drug effects ; Memory Disorders/*genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/genetics/metabolism ; Nuclear Proteins/genetics/metabolism ; Signal Transduction ; Transcription Initiation Site ; Transcription, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2010-03-20
    Description: The onset of puberty defines a developmental stage when some learning processes are diminished, but the mechanism for this deficit remains unknown. We found that, at puberty, expression of inhibitory alpha4betadelta gamma-aminobutyric acid type A (GABAA) receptors (GABAR) increases perisynaptic to excitatory synapses in CA1 hippocampus. Shunting inhibition via these receptors reduced N-methyl-D-aspartate receptor activation, impairing induction of long-term potentiation (LTP). Pubertal mice also failed to learn a hippocampal, LTP-dependent spatial task that was easily acquired by delta-/- mice. However, the stress steroid THP (3alphaOH-5alpha[beta]-pregnan-20-one), which reduces tonic inhibition at puberty, facilitated learning. Thus, the emergence of alpha4betadelta GABARs at puberty impairs learning, an effect that can be reversed by a stress steroid.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887350/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887350/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Hui -- Sabaliauskas, Nicole -- Sherpa, Ang -- Fenton, Andre A -- Stelzer, Armin -- Aoki, Chiye -- Smith, Sheryl S -- AA12958/AA/NIAAA NIH HHS/ -- DA09618/DA/NIDA NIH HHS/ -- R01 AA012958/AA/NIAAA NIH HHS/ -- R01 AA012958-08/AA/NIAAA NIH HHS/ -- R01 AA012958-09/AA/NIAAA NIH HHS/ -- R01 DA009618/DA/NIDA NIH HHS/ -- R01 DA009618-13/DA/NIDA NIH HHS/ -- R01 DA009618-14/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1515-8. doi: 10.1126/science.1184245.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299596" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/cytology/*metabolism ; Dendrites ; Dendritic Spines/metabolism ; Excitatory Postsynaptic Potentials ; Female ; GABA-A Receptor Antagonists ; *Learning/drug effects ; *Long-Term Potentiation ; Mice ; Mice, Inbred C57BL ; N-Methylaspartate/metabolism ; Neural Inhibition ; Patch-Clamp Techniques ; Pregnanolone/pharmacology ; Pyramidal Cells/metabolism ; Receptors, GABA-A/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; *Sexual Maturation ; Spatial Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2010-06-26
    Description: The lower intestine of adult mammals is densely colonized with nonpathogenic (commensal) microbes. Gut bacteria induce protective immune responses, which ensure host-microbial mutualism. The continuous presence of commensal intestinal bacteria has made it difficult to study mucosal immune dynamics. Here, we report a reversible germ-free colonization system in mice that is independent of diet or antibiotic manipulation. A slow (more than 14 days) onset of a long-lived (half-life over 16 weeks), highly specific anticommensal immunoglobulin A (IgA) response in germ-free mice was observed. Ongoing commensal exposure in colonized mice rapidly abrogated this response. Sequential doses lacked a classical prime-boost effect seen in systemic vaccination, but specific IgA induction occurred as a stepwise response to current bacterial exposure, such that the antibody repertoire matched the existing commensal content.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hapfelmeier, Siegfried -- Lawson, Melissa A E -- Slack, Emma -- Kirundi, Jorum K -- Stoel, Maaike -- Heikenwalder, Mathias -- Cahenzli, Julia -- Velykoredko, Yuliya -- Balmer, Maria L -- Endt, Kathrin -- Geuking, Markus B -- Curtiss, Roy 3rd -- McCoy, Kathy D -- Macpherson, Andrew J -- R01 AI060557/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1705-9. doi: 10.1126/science.1188454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DKF (Maurice Muller Laboratories), MEM, Universitatsklinik fur Viszerale Chirurgie und Medizin (UVCM), University of Bern, 3013 Bern, Switzerland. hapfelmeier@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576892" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Bacterial/biosynthesis/*immunology ; Antibody Specificity ; Colony Count, Microbial ; Dose-Response Relationship, Immunologic ; Escherichia coli/*growth & development/*immunology ; Germ-Free Life ; Half-Life ; Immunoglobulin A/biosynthesis/*immunology ; Immunologic Memory ; Intestinal Mucosa/*immunology/*microbiology ; Intestines/immunology/microbiology ; Mice ; Mice, Inbred C57BL ; Mucous Membrane/immunology ; Plasma Cells/immunology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2010-04-10
    Description: Mice that are transgenic for rearranged antigen-specific T cell receptors (TCRs) are essential tools to study T cell development and function. Such TCRs are usually isolated from the relevant T cells after long-term culture, often after repeated antigen stimulation, which unavoidably skews the T cell population used. Random genomic integration of the TCR alpha and beta chain and expression from nonendogenous promoters represent additional drawbacks of transgenics. Using epigenetic reprogramming via somatic cell nuclear transfer, we demonstrated that T cells with predefined specificities against Toxoplasma gondii can be used to generate mouse models that express the TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940321/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirak, Oktay -- Frickel, Eva-Maria -- Grotenbreg, Gijsbert M -- Suh, Heikyung -- Jaenisch, Rudolf -- Ploegh, Hidde L -- R01 GM062502/GM/NIGMS NIH HHS/ -- R01 GM062502-08/GM/NIGMS NIH HHS/ -- R01-HD045022/HD/NICHD NIH HHS/ -- R37 AI033456/AI/NIAID NIH HHS/ -- R37 AI033456-17/AI/NIAID NIH HHS/ -- R37-CA084198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):243-8. doi: 10.1126/science.1178590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. kirak@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378817" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Protozoan/*immunology ; CD8-Positive T-Lymphocytes/immunology ; Embryonic Stem Cells ; Epitopes, T-Lymphocyte ; Female ; Genes, T-Cell Receptor alpha ; Genes, T-Cell Receptor beta ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; *Mice, Transgenic ; Molecular Sequence Data ; *Nuclear Transfer Techniques ; Protozoan Proteins/genetics/immunology ; Receptors, Antigen, T-Cell, alpha-beta/genetics/*immunology ; Toxoplasma/*immunology ; Toxoplasmosis, Animal/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2010-06-12
    Description: The inhabitants of the mammalian gut are not always relatively benign commensal bacteria but may also include larger and more parasitic organisms, such as worms and protozoa. At some level, all these organisms are capable of interacting with each other. We found that successful establishment of the chronically infecting parasitic nematode Trichuris muris in the large intestine of mice is dependent on microflora and coincident with modulation of the host immune response. By reducing the number of bacteria in the host animal, we significantly reduced the number of hatched T. muris eggs. Critical interactions between bacteria (microflora) and parasites (macrofauna) introduced a new dynamic to the intestinal niche, which has fundamental implications for our current concepts of intestinal homeostasis and regulation of immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayes, K S -- Bancroft, A J -- Goldrick, M -- Portsmouth, C -- Roberts, I S -- Grencis, R K -- 083620/Wellcome Trust/United Kingdom -- 083620Z/Wellcome Trust/United Kingdom -- G0601205/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1391-4. doi: 10.1126/science.1187703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20538949" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Adhesins, Escherichia coli/metabolism ; Animals ; Anti-Bacterial Agents/pharmacology ; Antibodies, Helminth/biosynthesis ; *Bacterial Physiological Phenomena ; Cecum/microbiology/parasitology ; Cytokines/metabolism ; Escherichia coli/physiology ; Fimbriae Proteins/metabolism ; Fimbriae, Bacterial/physiology ; Fluoroquinolones/pharmacology ; Host-Parasite Interactions ; Intestine, Large/*microbiology/*parasitology ; Mice ; Mice, Inbred AKR ; Mice, Inbred C57BL ; Mice, SCID ; Ovum/physiology ; Th2 Cells/immunology ; Trichuriasis/immunology/microbiology/*parasitology ; Trichuris/embryology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2010-09-04
    Description: Gammadelta T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial gammadelta T cell-specific costimulatory molecule, junctional adhesion molecule-like protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished gammadelta T cell activation and delayed wound closure akin to that seen in the absence of gammadelta T cells. Our results identify JAML as a crucial component of epithelial gammadelta T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witherden, Deborah A -- Verdino, Petra -- Rieder, Stephanie E -- Garijo, Olivia -- Mills, Robyn E -- Teyton, Luc -- Fischer, Wolfgang H -- Wilson, Ian A -- Havran, Wendy L -- AI064811/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI52257/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- NS057096/NS/NINDS NIH HHS/ -- R01 AI036964/AI/NIAID NIH HHS/ -- R01 AI052257/AI/NIAID NIH HHS/ -- R01 AI052257-05/AI/NIAID NIH HHS/ -- R01 AI064811/AI/NIAID NIH HHS/ -- R01 AI064811-05/AI/NIAID NIH HHS/ -- R01 GM080301/GM/NIGMS NIH HHS/ -- R37 AI042266/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1205-10. doi: 10.1126/science.1192698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*metabolism ; Cell Line ; Cell Proliferation ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cytokines/metabolism ; Epidermis/cytology/*immunology/injuries ; Epithelial Cells ; Epithelium/immunology/metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/metabolism ; Ligands ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Binding ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Receptors, Virus/*metabolism ; T-Lymphocyte Subsets/*immunology/*metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2010-10-16
    Description: Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rad, Roland -- Rad, Lena -- Wang, Wei -- Cadinanos, Juan -- Vassiliou, George -- Rice, Stephen -- Campos, Lia S -- Yusa, Kosuke -- Banerjee, Ruby -- Li, Meng Amy -- de la Rosa, Jorge -- Strong, Alexander -- Lu, Dong -- Ellis, Peter -- Conte, Nathalie -- Yang, Fang Tang -- Liu, Pentao -- Bradley, Allan -- 077186/Wellcome Trust/United Kingdom -- 079643/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1104-7. doi: 10.1126/science.1193004. Epub 2010 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *DNA Transposable Elements ; *Genes, Neoplasm ; Genetic Testing/*methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; *Mutagenesis, Insertional ; Neoplasms/genetics ; Oncogenes ; Promoter Regions, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2010-07-03
    Description: In early T cell development, progenitors retaining the potential to generate myeloid and natural killer lineages are eventually determined to a specific T cell lineage. The molecular mechanisms that drive this determination step remain unclarified. We show that, when murine hematopoietic progenitors were cultured on immobilized Notch ligand DLL4 protein in the presence of a cocktail of cytokines including interleukin-7, progenitors developing toward T cells were arrested and the arrested cells entered a self-renewal cycle, maintaining non-T lineage potentials. Reduced concentrations of interleukin-7 promoted T cell lineage determination. A similar arrest and self-renewal of progenitors were observed in thymocytes of mice deficient in the transcription factor Bcl11b. Our study thus identifies the earliest checkpoint during T cell development and shows that it is Bcl11b-dependent.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikawa, Tomokatsu -- Hirose, Satoshi -- Masuda, Kyoko -- Kakugawa, Kiyokazu -- Satoh, Rumi -- Shibano-Satoh, Asako -- Kominami, Ryo -- Katsura, Yoshimoto -- Kawamoto, Hiroshi -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):93-6. doi: 10.1126/science.1188995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage ; Cells, Cultured ; Coculture Techniques ; Gene Expression Regulation, Developmental ; Gene Rearrangement, beta-Chain T-Cell Antigen Receptor ; Hematopoietic Stem Cells/cytology/*physiology ; Interleukin-7/metabolism ; Liver/embryology ; *Lymphopoiesis/genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Precursor Cells, T-Lymphoid/cytology/*physiology ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/*cytology/*physiology ; Tumor Suppressor Proteins/genetics/*metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2010-05-15
    Description: Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element-binding factor-2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human cells, miR-33 inhibits the expression of the adenosine triphosphate-binding cassette (ABC) transporter, ABCA1, thereby attenuating cholesterol efflux to apolipoprotein A1. In mouse macrophages, miR-33 also targets ABCG1, reducing cholesterol efflux to nascent high-density lipoprotein (HDL). Lentiviral delivery of miR-33 to mice represses ABCA1 expression in the liver, reducing circulating HDL levels. Conversely, silencing of miR-33 in vivo increases hepatic expression of ABCA1 and plasma HDL levels. Thus, miR-33 appears to regulate both HDL biogenesis in the liver and cellular cholesterol efflux.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rayner, Katey J -- Suarez, Yajaira -- Davalos, Alberto -- Parathath, Saj -- Fitzgerald, Michael L -- Tamehiro, Norimasa -- Fisher, Edward A -- Moore, Kathryn J -- Fernandez-Hernando, Carlos -- 1P30HL101270-01/HL/NHLBI NIH HHS/ -- P30 HL101270/HL/NHLBI NIH HHS/ -- R01 AG020255/AG/NIA NIH HHS/ -- R01 AG020255-09/AG/NIA NIH HHS/ -- R01AG02055/AG/NIA NIH HHS/ -- R01HL074136/HL/NHLBI NIH HHS/ -- R01HL084312/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Leon H. Charney Division of Cardiology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466885" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/metabolism ; Animals ; Apolipoprotein A-I/metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cholesterol/*metabolism ; Cholesterol, Dietary/administration & dosage ; Dietary Fats/administration & dosage ; Gene Expression Regulation ; Homeostasis ; Humans ; Hypercholesterolemia/genetics/metabolism ; Introns ; Lipoproteins/genetics/metabolism ; Lipoproteins, HDL/blood/*metabolism ; Liver/*metabolism ; Macrophages/metabolism ; Macrophages, Peritoneal/metabolism ; Membrane Glycoproteins/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/*metabolism ; Proteins/genetics/metabolism ; Sterol Regulatory Element Binding Protein 2/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2010-05-22
    Description: Elevated leukocyte cell numbers (leukocytosis), and monocytes in particular, promote atherosclerosis; however, how they become increased is poorly understood. Mice deficient in the adenosine triphosphate-binding cassette (ABC) transporters ABCA1 and ABCG1, which promote cholesterol efflux from macrophages and suppress atherosclerosis in hypercholesterolemic mice, displayed leukocytosis, a transplantable myeloproliferative disorder, and a dramatic expansion of the stem and progenitor cell population containing Lin(-)Sca-1(+)Kit+ (LSK) in the bone marrow. Transplantation of Abca1(-/-) Abcg1(-/-) bone marrow into apolipoprotein A-1 transgenic mice with elevated levels of high-density lipoprotein (HDL) suppressed the LSK population, reduced leukocytosis, reversed the myeloproliferative disorder, and accelerated atherosclerosis. The findings indicate that ABCA1, ABCG1, and HDL inhibit the proliferation of hematopoietic stem and multipotential progenitor cells and connect expansion of these populations with leukocytosis and accelerated atherosclerosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032591/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032591/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yvan-Charvet, Laurent -- Pagler, Tamara -- Gautier, Emmanuel L -- Avagyan, Serine -- Siry, Read L -- Han, Seongah -- Welch, Carrie L -- Wang, Nan -- Randolph, Gwendalyn J -- Snoeck, Hans W -- Tall, Alan R -- HL54591/HL/NHLBI NIH HHS/ -- R01 AG029626/AG/NIA NIH HHS/ -- R01 AI049653/AI/NIAID NIH HHS/ -- R01 AI049653-09/AI/NIAID NIH HHS/ -- R01 AI049653-10/AI/NIAID NIH HHS/ -- R01 AI061741/AI/NIAID NIH HHS/ -- R01 AI061741-03/AI/NIAID NIH HHS/ -- R01 AI061741-04/AI/NIAID NIH HHS/ -- R01A1061741/PHS HHS/ -- R01AG016327/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1689-93. doi: 10.1126/science.1189731. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA. ly2159@columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488992" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Binding Cassette Transporter 1 ; ATP-Binding Cassette Transporters/genetics/*metabolism ; Animals ; Apolipoprotein A-I/genetics/metabolism ; Atherosclerosis/metabolism/*physiopathology/therapy ; Bone Marrow Transplantation ; Cell Proliferation ; Cells, Cultured ; Cholesterol/*metabolism ; Hematopoietic Stem Cells/*physiology ; Hypercholesterolemia/metabolism ; Leukocytosis/metabolism/*physiopathology/therapy ; Lipoproteins/genetics/*metabolism ; Lipoproteins, HDL/*metabolism ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Transgenic ; Multipotent Stem Cells/physiology ; Myeloid Progenitor Cells/*physiology ; Myeloproliferative Disorders/metabolism/physiopathology/therapy ; Phenotype ; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism ; Receptors, Interleukin-3/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2010-04-24
    Description: T cell egress from the thymus is essential for adaptive immunity, yet the requirements for and sites of egress are incompletely understood. We have shown that transgenic expression of sphingosine-1-phosphate receptor-1 (S1P1) in immature thymocytes leads to their perivascular accumulation and premature release into circulation. Using an intravascular procedure to label emigrating cells, we found that mature thymocytes exit via blood vessels at the corticomedullary junction. By deleting sphingosine kinases in neural crest-derived pericytes, we provide evidence that these specialized vessel-ensheathing cells contribute to the S1P that promotes thymic egress. Lymphatic endothelial cell-derived S1P was not required. These studies identify the major thymic egress route and suggest a role for pericytes in promoting reverse transmigration of cells across blood vessel endothelium.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107339/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107339/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zachariah, Marcus A -- Cyster, Jason G -- AI74847/AI/NIAID NIH HHS/ -- R01 AI074847/AI/NIAID NIH HHS/ -- R01 AI074847-02/AI/NIAID NIH HHS/ -- R01 AI074847-03/AI/NIAID NIH HHS/ -- R01 AI074847-04/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1129-35. doi: 10.1126/science.1188222. Epub 2010 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, HSE1001, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity ; Blood Vessels/cytology/*physiology ; Cell Movement ; Endothelial Cells/physiology ; Endothelium, Vascular/cytology/physiology ; Flow Cytometry ; Fluorescent Antibody Technique ; Kruppel-Like Transcription Factors/genetics/physiology ; Lymphatic Vessels/cytology/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neural Crest/cytology ; Pericytes/metabolism/*physiology ; Phosphotransferases (Alcohol Group Acceptor)/genetics/metabolism ; Receptors, Lysosphingolipid/genetics/*physiology ; T-Lymphocytes/cytology/metabolism/*physiology ; T-Lymphocytes, Regulatory/immunology/physiology ; Thymus Gland/*blood supply/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2010-03-27
    Description: T cell receptor (TCR)-dependent regulatory T cell (Treg) activity controls effector T cell (Teff) function and is inhibited by the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Protein kinase C-theta (PKC-theta) recruitment to the immunological synapse is required for full Teff activation. In contrast, PKC-theta was sequestered away from the Treg immunological synapse. Furthermore, PKC-theta blockade enhanced Treg function, demonstrating PKC-theta inhibits Treg-mediated suppression. Inhibition of PKC-theta protected Treg from inactivation by TNF-alpha, restored activity of defective Treg from rheumatoid arthritis patients, and enhanced protection of mice from inflammatory colitis. Treg freed of PKC-theta-mediated inhibition can function in the presence of inflammatory cytokines and thus have therapeutic potential in control of inflammatory diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905626/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905626/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanin-Zhorov, Alexandra -- Ding, Yi -- Kumari, Sudha -- Attur, Mukundan -- Hippen, Keli L -- Brown, Maryanne -- Blazar, Bruce R -- Abramson, Steven B -- Lafaille, Juan J -- Dustin, Michael L -- P01 AI056299/AI/NIAID NIH HHS/ -- PN2 EY016586/EY/NEI NIH HHS/ -- PN2 EY016586-06/EY/NEI NIH HHS/ -- R01 AI055037/AI/NIAID NIH HHS/ -- R01 AI055037-06A1/AI/NIAID NIH HHS/ -- R01 AI43542/AI/NIAID NIH HHS/ -- R01 HL056067/HL/NHLBI NIH HHS/ -- R37 AI043542/AI/NIAID NIH HHS/ -- R37 AI043542-12/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):372-6. doi: 10.1126/science.1186068. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Pathogenesis Program, Helen and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339032" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Animals ; Arthritis, Rheumatoid/immunology ; Colitis/immunology/prevention & control ; Enzyme Inhibitors/pharmacology ; Feedback, Physiological ; Humans ; Immunological Synapses/*immunology ; Inflammation/*immunology ; Interferon-gamma/metabolism ; Isoenzymes/antagonists & inhibitors/*metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/*immunology/metabolism ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2010-09-04
    Description: Colonization of mucosal surfaces is the key initial step in most bacterial infections. One mechanism protecting the mucosa is the rapid shedding of epithelial cells, also termed exfoliation, but it is unclear how pathogens counteract this process. We found that carcinoembryonic antigen (CEA)-binding bacteria colonized the urogenital tract of CEA transgenic mice, but not of wild-type mice, by suppressing exfoliation of mucosal cells. CEA binding triggered de novo expression of the transforming growth factor receptor CD105, changing focal adhesion composition and activating beta1 integrins. This manipulation of integrin inside-out signaling promotes efficient mucosal colonization and represents a potential target to prevent or cure bacterial infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muenzner, Petra -- Bachmann, Verena -- Zimmermann, Wolfgang -- Hentschel, Jochen -- Hauck, Christof R -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1197-201. doi: 10.1126/science.1190892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl Zellbiologie, Fachbereich Biologie, Universitat Konstanz, 78457 Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/metabolism ; Antigens, CD/metabolism ; Carcinoembryonic Antigen/genetics/*metabolism ; Cytoskeletal Proteins/metabolism ; Epithelial Cells/microbiology/*pathology ; Female ; Focal Adhesions ; GPI-Linked Proteins ; Glycoproteins/metabolism ; Gonorrhea/*microbiology ; Humans ; Integrin beta Chains/*metabolism ; Intracellular Signaling Peptides and Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mucous Membrane/microbiology ; Neisseria gonorrhoeae/isolation & purification/*metabolism/*pathogenicity ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Vagina/cytology/*microbiology/pathology ; Zyxin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2010-07-09
    Description: Although it is known that the methylation of DNA in 5' promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5' CpG island (CGI) promoters, whereas a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences. Tissue-specific intragenic methylation might reduce, or, paradoxically, enhance transcription elongation efficiency. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes. To investigate the role of intragenic methylation, we generated a map of DNA methylation from the human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were shown to be in intragenic and intergenic regions, whereas less than 3% of CpG islands in 5' promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue- and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maunakea, Alika K -- Nagarajan, Raman P -- Bilenky, Mikhail -- Ballinger, Tracy J -- D'Souza, Cletus -- Fouse, Shaun D -- Johnson, Brett E -- Hong, Chibo -- Nielsen, Cydney -- Zhao, Yongjun -- Turecki, Gustavo -- Delaney, Allen -- Varhol, Richard -- Thiessen, Nina -- Shchors, Ksenya -- Heine, Vivi M -- Rowitch, David H -- Xing, Xiaoyun -- Fiore, Chris -- Schillebeeckx, Maximiliaan -- Jones, Steven J M -- Haussler, David -- Marra, Marco A -- Hirst, Martin -- Wang, Ting -- Costello, Joseph F -- U01 ES017154/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 8;466(7303):253-7. doi: 10.1038/nature09165.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/anatomy & histology/cytology/*metabolism ; Carrier Proteins/genetics ; Cell Line ; Conserved Sequence/*genetics ; CpG Islands/genetics ; *DNA Methylation ; DNA, Intergenic/genetics/metabolism ; Frontal Lobe/metabolism ; Gene Expression Regulation ; Histones/genetics/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Nerve Tissue Proteins ; Organ Specificity ; Promoter Regions, Genetic/*genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2010-07-21
    Description: Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an 'epigenetic memory' of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, K -- Doi, A -- Wen, B -- Ng, K -- Zhao, R -- Cahan, P -- Kim, J -- Aryee, M J -- Ji, H -- Ehrlich, L I R -- Yabuuchi, A -- Takeuchi, A -- Cunniff, K C -- Hongguang, H -- McKinney-Freeman, S -- Naveiras, O -- Yoon, T J -- Irizarry, R A -- Jung, N -- Seita, J -- Hanna, J -- Murakami, P -- Jaenisch, R -- Weissleder, R -- Orkin, S H -- Weissman, I L -- Feinberg, A P -- Daley, G Q -- CA86065/CA/NCI NIH HHS/ -- DP1 OD000256/OD/NIH HHS/ -- DP1 OD000256-01/OD/NIH HHS/ -- HL099999/HL/NHLBI NIH HHS/ -- K99 HL093212/HL/NHLBI NIH HHS/ -- K99 HL093212-01/HL/NHLBI NIH HHS/ -- K99 HL093212-02/HL/NHLBI NIH HHS/ -- K99HL093212-01/HL/NHLBI NIH HHS/ -- P50HG003233/HG/NHGRI NIH HHS/ -- R01 CA086065/CA/NCI NIH HHS/ -- R01 DK059279/DK/NIDDK NIH HHS/ -- R01 DK059279-02/DK/NIDDK NIH HHS/ -- R01 DK059279-10/DK/NIDDK NIH HHS/ -- R01 DK070055/DK/NIDDK NIH HHS/ -- R01 DK070055-01/DK/NIDDK NIH HHS/ -- R01 GM083084/GM/NIGMS NIH HHS/ -- R01 GM083084-04/GM/NIGMS NIH HHS/ -- R01-DK59279/DK/NIDDK NIH HHS/ -- R01-DK70055/DK/NIDDK NIH HHS/ -- R01AI047457/AI/NIAID NIH HHS/ -- R01AI047458/AI/NIAID NIH HHS/ -- R37 HD045022/HD/NICHD NIH HHS/ -- R37CA054358/CA/NCI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2 HL102815-01/HL/NHLBI NIH HHS/ -- RC2-HL102815/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 16;467(7313):285-90. doi: 10.1038/nature09342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20644535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/genetics ; Cell Lineage/genetics ; Cellular Reprogramming/genetics ; DNA Methylation/genetics ; Embryonic Stem Cells/cytology/metabolism ; *Epigenesis, Genetic ; Genome/genetics ; Hematopoietic Stem Cells/cytology/metabolism ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Nuclear Transfer Techniques ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2010-04-16
    Description: We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified approximately 12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020079/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020079/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Tae-Kyung -- Hemberg, Martin -- Gray, Jesse M -- Costa, Allen M -- Bear, Daniel M -- Wu, Jing -- Harmin, David A -- Laptewicz, Mike -- Barbara-Haley, Kellie -- Kuersten, Scott -- Markenscoff-Papadimitriou, Eirene -- Kuhl, Dietmar -- Bito, Haruhiko -- Worley, Paul F -- Kreiman, Gabriel -- Greenberg, Michael E -- DP2OD006461/OD/NIH HHS/ -- MH-053608/MH/NIMH NIH HHS/ -- NS028829/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD018655-25/HD/NICHD NIH HHS/ -- P30 HD018655-26/HD/NICHD NIH HHS/ -- P30 HD018655-27/HD/NICHD NIH HHS/ -- R01 NS028829/NS/NINDS NIH HHS/ -- R21EY019710/EY/NEI NIH HHS/ -- R37 NS028829/NS/NINDS NIH HHS/ -- R37 NS028829-12/NS/NINDS NIH HHS/ -- R37 NS028829-13/NS/NINDS NIH HHS/ -- R37 NS028829-14/NS/NINDS NIH HHS/ -- R37 NS028829-15/NS/NINDS NIH HHS/ -- R37 NS028829-16/NS/NINDS NIH HHS/ -- R37 NS028829-17/NS/NINDS NIH HHS/ -- England -- Nature. 2010 May 13;465(7295):182-7. doi: 10.1038/nature09033. Epub 2010 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393465" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; CREB-Binding Protein/metabolism ; Consensus Sequence/genetics ; Cytoskeletal Proteins/genetics ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; Genes, Reporter ; Genes, fos/genetics ; Histones/metabolism ; Methylation ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/genetics ; Neurons/*metabolism ; RNA Polymerase II/metabolism ; RNA, Untranslated/biosynthesis/genetics ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2010-11-09
    Description: TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML). We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Myunggon -- Huang, Yun -- Jankowska, Anna M -- Pape, Utz J -- Tahiliani, Mamta -- Bandukwala, Hozefa S -- An, Jungeun -- Lamperti, Edward D -- Koh, Kian Peng -- Ganetzky, Rebecca -- Liu, X Shirley -- Aravind, L -- Agarwal, Suneet -- Maciejewski, Jaroslaw P -- Rao, Anjana -- 1 UL1 RR 025758-02/RR/NCRR NIH HHS/ -- K08 HL089150/HL/NHLBI NIH HHS/ -- K24 HL077522/HL/NHLBI NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 AI044432-12/AI/NIAID NIH HHS/ -- R01 AI044432-13/AI/NIAID NIH HHS/ -- R01 AI44432/AI/NIAID NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG4069/HG/NHGRI NIH HHS/ -- R01 HL098522/HL/NHLBI NIH HHS/ -- R37 CA042471/CA/NCI NIH HHS/ -- R37 CA042471-20/CA/NCI NIH HHS/ -- R37 CA042471-21/CA/NCI NIH HHS/ -- RC1 DA028422/DA/NIDA NIH HHS/ -- RC1 DA028422-01/DA/NIDA NIH HHS/ -- RC1 DA028422-02/DA/NIDA NIH HHS/ -- UL1 RR025758/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):839-43. doi: 10.1038/nature09586.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21057493" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Biocatalysis ; Cell Differentiation ; Cell Line ; CpG Islands/genetics ; DNA Methylation ; DNA, Neoplasm/chemistry/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; *Hydroxylation ; Leukemia, Myeloid, Acute/genetics/*metabolism/pathology ; Mice ; Mice, Inbred C57BL ; Mutant Proteins/genetics/*metabolism ; Mutation ; Myelodysplastic Syndromes/genetics/*metabolism/pathology ; Proto-Oncogene Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...