ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-09-02
    Description: Octamer transcription factor-1 (OTF-1) and nuclear factor III (NF-III) are sequence-specific DNA binding proteins that activate transcription and DNA replication, respectively. It is shown here that OTF-1 is physically and biologically indistinguishable from NF-III. This conclusion is based on the following observations. First, the two proteins have identical mobilities by SDS-polyacrylamide gel electrophoresis. Second, OTF-1 binds to the adenovirus origin of DNA replication at the same site and with the same affinity as NF-III. Third, OTF-1 can substitute for NF-III in activating the initiation of adenovirus DNA replication in vitro. Fourth, the ability of OTF-1 to stimulate viral DNA replication is dependent on the presence of an intact NF-III binding site within the origin of replication. Fifth, NF-III can substitute for OTF-1 in activating in vitro transcription from the human histone H2b promoter. These data suggest the possibility that NF-III/OTF-1 is a protein that functions in both cellular DNA replication and transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, E A -- Fletcher, C -- Burrow, C R -- Heintz, N -- Roeder, R G -- Kelly, T J -- CA16519/CA/NCI NIH HHS/ -- CA42567/CA/NCI NIH HHS/ -- R0IGM32544/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1988 Sep 2;241(4870):1210-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3413485" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/physiology ; DNA Replication/*drug effects ; DNA-Binding Proteins/metabolism/*pharmacology ; Electrophoresis, Polyacrylamide Gel ; HeLa Cells ; Histones/genetics ; Host Cell Factor C1 ; Humans ; Molecular Weight ; Nuclear Proteins/metabolism/*pharmacology ; Octamer Transcription Factor-1 ; Promoter Regions, Genetic ; Transcription Factors/metabolism/*pharmacology ; Transcription, Genetic/*drug effects ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-12
    Description: Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (gamma-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chao, Hsiao-Tuan -- Chen, Hongmei -- Samaco, Rodney C -- Xue, Mingshan -- Chahrour, Maria -- Yoo, Jong -- Neul, Jeffrey L -- Gong, Shiaoching -- Lu, Hui-Chen -- Heintz, Nathaniel -- Ekker, Marc -- Rubenstein, John L R -- Noebels, Jeffrey L -- Rosenmund, Christian -- Zoghbi, Huda Y -- 29709/PHS HHS/ -- F31MH078678/MH/NIMH NIH HHS/ -- HD024064/HD/NICHD NIH HHS/ -- HD053862/HD/NICHD NIH HHS/ -- K08 NS052240/NS/NINDS NIH HHS/ -- K08 NS052240-01/NS/NINDS NIH HHS/ -- K08 NS052240-02/NS/NINDS NIH HHS/ -- K08 NS052240-03/NS/NINDS NIH HHS/ -- K08 NS052240-04/NS/NINDS NIH HHS/ -- K08 NS052240-05/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- P30 HD024064-22/HD/NICHD NIH HHS/ -- R01 HD062553/HD/NICHD NIH HHS/ -- R01 NS048884/NS/NINDS NIH HHS/ -- R01 NS057819/NS/NINDS NIH HHS/ -- R01 NS057819-04/NS/NINDS NIH HHS/ -- R01 NS057819-05/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Nov 11;468(7321):263-9. doi: 10.1038/nature09582.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉]Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068835" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/complications/genetics/pathology/*physiopathology ; Brain/cytology ; Compulsive Behavior/complications/genetics/physiopathology ; Disease Models, Animal ; Electroencephalography ; Genotype ; Glutamate Decarboxylase/metabolism ; Hippocampus/pathology/physiopathology ; Homeodomain Proteins/genetics ; Inhibitory Postsynaptic Potentials ; Long-Term Potentiation ; Male ; Methyl-CpG-Binding Protein 2/*deficiency/genetics/*metabolism ; Mice ; Mice, Transgenic ; Neural Inhibition ; Neuronal Plasticity ; Neurons/metabolism ; Phenotype ; Presynaptic Terminals/metabolism ; Psychomotor Disorders/complications/genetics/physiopathology ; Reflex, Startle/genetics ; Respiration ; Rett Syndrome/complications/genetics/pathology/*physiopathology ; Self-Injurious Behavior/complications/genetics/physiopathology ; *Signal Transduction ; Stereotypic Movement Disorder/complications/genetics/pathology/*physiopathology ; Survival Rate ; Synaptic Transmission ; Vesicular Inhibitory Amino Acid Transport Proteins/genetics ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-30
    Description: Orderly progression through the somatic cell division cycle is accompanied by phase-specific transcription of a variety of different genes. During S phase, transcription of mammalian histone H2B genes requires a specific promoter element and its cognate transcription factor Oct1 (OTF1). A possible mechanism for regulating histone H2B transcription during the cell cycle is direct modulation of Oct1 activity by phase-specific posttranslational modifications. Analysis of Oct1 during progression through the cell cycle revealed a complex temporal program of phosphorylation. A p34cdc2-related protein kinase that is active during mitosis may be responsible for one mitotic phosphorylation of Oct1. However, the temporally controlled appearance of Oct1 phosphopeptides suggests the involvement of multiple kinases and phosphatases. These results support the idea that cell cycle-regulated transcription factors may be direct substrates for phase-specific regulatory enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, S B -- Segil, N -- Heintz, N -- GM 13752/GM/NIGMS NIH HHS/ -- GM 32544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 30;253(5023):1022-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887216" target="_blank"〉PubMed〈/a〉
    Keywords: CDC2 Protein Kinase/metabolism ; *Cell Cycle ; DNA-Binding Proteins/isolation & purification/*metabolism ; HeLa Cells/cytology/physiology ; Histones/genetics ; Host Cell Factor C1 ; Humans ; Mitosis ; Octamer Transcription Factor-1 ; Peptide Mapping ; Phosphopeptides/isolation & purification ; Phosphorylation ; S Phase ; Transcription Factors/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-12-20
    Description: Oct-1 is a transcription factor involved in the cell cycle regulation of histone H2B gene transcription and in the transcription of other cellular housekeeping genes. Oct-1 is hyperphosphorylated as cells enter mitosis, and mitosis-specific phosphorylation is reversed as cells exit mitosis. A mitosis-specific phosphorylation site in the homeodomain of Oct-1 was phosphorylated in vitro by protein kinase A. Phosphorylation of this site correlated with inhibition of Oct-1 DNA binding activity in vivo and in vitro. The inhibition of Oct-1 DNA binding during mitosis suggests a mechanism by which the general inhibition of transcription during mitosis might occur.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segil, N -- Roberts, S B -- Heintz, N -- GM 13752/GM/NIGMS NIH HHS/ -- GM 32544/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1814-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1684878" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cattle ; Cell Cycle ; Cloning, Molecular ; DNA, Neoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Genes, Homeobox ; HeLa Cells ; Histones/genetics ; Host Cell Factor C1 ; Humans ; Mitosis ; Molecular Sequence Data ; Myocardium/enzymology ; Octamer Transcription Factor-1 ; Oligodeoxyribonucleotides ; Peptide Mapping ; Phosphopeptides/isolation & purification ; Phosphorylation ; Protein Kinases/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-11-13
    Description: Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain's plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life. Removal of this molecular brake enhanced nicotinic acetylcholine receptor signaling. Lynx1 expression thus maintains stability of mature cortical networks in the presence of cholinergic innervation. The results suggest that modulating the balance between excitatory and inhibitory circuits reactivates visual plasticity and may present a therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morishita, Hirofumi -- Miwa, Julie M -- Heintz, Nathaniel -- Hensch, Takao K -- 1 DP1 OD003699-01/OD/NIH HHS/ -- DA-17279/DA/NIDA NIH HHS/ -- DP1 OD003699/OD/NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1238-40. doi: 10.1126/science.1195320. Epub 2010 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Amblyopia/metabolism ; Animals ; Cholinesterase Inhibitors/pharmacology ; Dominance, Ocular ; Evoked Potentials, Visual ; Mecamylamine/pharmacology ; Membrane Glycoproteins/*genetics/metabolism/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural Inhibition ; *Neuronal Plasticity ; Neuropeptides/*genetics/metabolism/*physiology ; Nicotinic Antagonists/pharmacology ; Physostigmine/pharmacology ; Receptors, Nicotinic/genetics/*metabolism ; Sensory Deprivation ; Signal Transduction ; *Vision, Ocular ; Visual Cortex/*physiology ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-04-19
    Description: Vertebrate central nervous system (CNS) histogenesis depends on glia-guided migration of postmitotic neurons to form neuronal laminae. Previous studies have established that the neuronal protein astrotactin functions in murine cerebellar granule cell migration in vitro. The gene encoding astrotactin predicts a protein with three epidermal growth factor repeats and two fibronectin type III repeats. Astrotactin messenger RNA is expressed in postmitotic neuronal precursors in the cerebellum, hippocampus, cerebrum, and olfactory bulb, where migration establishes laminar structures. Fab fragments of antibodies to a recombinant astrotactin peptide blocked migration of cerebellar granule neurons in vitro along astroglial fibers. Transfection of astrotactin complementary DNA into 3T3 cells indicated that astrotactin acts as a ligand for neuron-glia binding during neuronal migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, C -- Heintz, N -- Hatten, M E -- NS15429/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1996 Apr 19;272(5260):417-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021-6399, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8602532" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Astrocytes/metabolism ; Blotting, Northern ; Brain/*metabolism ; Cell Movement ; Cerebellum/cytology/metabolism ; Gene Expression ; Glycoproteins/chemistry/*genetics/*physiology ; Hippocampus/metabolism ; Ligands ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/chemistry/*genetics/*physiology ; Neuroglia/*metabolism ; Neurons/cytology/*physiology ; Olfactory Bulb/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-18
    Description: Despite the importance of epigenetic regulation in neurological disorders, little is known about neuronal chromatin. Cerebellar Purkinje neurons have large and euchromatic nuclei, whereas granule cell nuclei are small and have a more typical heterochromatin distribution. While comparing the abundance of 5-methylcytosine in Purkinje and granule cell nuclei, we detected the presence of an unusual DNA nucleotide. Using thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry, we identified the nucleotide as 5-hydroxymethyl-2'-deoxycytidine (hmdC). hmdC constitutes 0.6% of total nucleotides in Purkinje cells, 0.2% in granule cells, and is not present in cancer cell lines. hmdC is a constituent of nuclear DNA that is highly abundant in the brain, suggesting a role in epigenetic control of neuronal function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kriaucionis, Skirmantas -- Heintz, Nathaniel -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):929-30. doi: 10.1126/science.1169786. Epub 2009 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cerebellum/*chemistry/cytology ; Chromatography, High Pressure Liquid ; Chromatography, Thin Layer ; Cytosine/*analogs & derivatives/analysis ; DNA/*chemistry ; DNA Damage ; Deoxycytidine/*analogs & derivatives/analysis ; Humans ; Mass Spectrometry ; Mice ; Purkinje Cells/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Trends in Biochemical Sciences 16 (1991), S. 430-435 
    ISSN: 0968-0004
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Current Opinion in Cell Biology 1 (1989), S. 275-278 
    ISSN: 0955-0674
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...