ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-25
    Description: Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-03-21
    Description: The T cell receptor (TCR) inherently has dual specificity. T cells must recognize self-antigens in the thymus during maturation and then discriminate between foreign pathogens in the periphery. A molecular basis for this cross-reactivity is elucidated by the crystal structure of the alloreactive 2C TCR bound to self peptide-major histocompatibility complex (pMHC) antigen H-2Kb-dEV8 refined against anisotropic 3.0 angstrom resolution x-ray data. The interface between peptide and TCR exhibits extremely poor shape complementarity, and the TCR beta chain complementarity-determining region 3 (CDR3) has minimal interaction with the dEV8 peptide. Large conformational changes in three of the TCR CDR loops are induced upon binding, providing a mechanism of structural plasticity to accommodate a variety of different peptide antigens. Extensive TCR interaction with the pMHC alpha helices suggests a generalized orientation that is mediated by the Valpha domain of the TCR and rationalizes how TCRs can effectively "scan" different peptides bound within a large, low-affinity MHC structural framework for those that provide the slight additional kinetic stabilization required for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Pease, L R -- Huang, M -- Peterson, P A -- Teyton, L -- Wilson, I A -- AI42266/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- R01 CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Feb 20;279(5354):1166-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9469799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; H-2 Antigens/*chemistry/*immunology/metabolism ; Ligands ; Mice ; Mice, Transgenic ; Models, Molecular ; Mutation ; Oligopeptides/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/*immunology/metabolism ; Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-04-25
    Description: Susceptibility to murine and human insulin-dependent diabetes mellitus correlates strongly with major histocompatibility complex (MHC) class II I-A or HLA-DQ alleles that lack an aspartic acid at position beta57. I-Ag7 lacks this aspartate and is the only class II allele expressed by the nonobese diabetic mouse. The crystal structure of I-Ag7 was determined at 2.6 angstrom resolution as a complex with a high-affinity peptide from the autoantigen glutamic acid decarboxylase (GAD) 65. I-Ag7 has a substantially wider peptide-binding groove around beta57, which accounts for distinct peptide preferences compared with other MHC class II alleles. Loss of Asp(beta57) leads to an oxyanion hole in I-Ag7 that can be filled by peptide carboxyl residues or, perhaps, through interaction with the T cell receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corper, A L -- Stratmann, T -- Apostolopoulos, V -- Scott, C A -- Garcia, K C -- Kang, A S -- Wilson, I A -- Teyton, L -- CA58896/CA/NCI NIH HHS/ -- DK55037/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):505-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775108" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; Diabetes Mellitus, Type 1/*immunology ; Drosophila melanogaster ; *Genes, MHC Class II ; Glutamate Decarboxylase/metabolism ; Histocompatibility Antigens Class II/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Mice ; Mice, Inbred NOD ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-01-15
    Description: Although gammadelta T cells are implicated in regulating immune responses, gammadelta T cell-ligand pairs that could mediate such regulatory functions have not been identified. Here, the expression of the major histocompatibility complex (MHC) class Ib T22 and the closely related T10 molecules is shown to be activation-induced, and they confer specificity to about 0.4% of the gammadelta T cells in normal mice. Thus, the increased expression of T22 and/or T10 might trigger immunoregulatory gammadelta T cells during immune responses. Furthermore, the fast on-rates and slow off-rates that characterize this receptor/ligand interaction would compensate for the low ligand stability and suggest a high threshold for gammadelta T cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowley, M P -- Fahrer, A M -- Baumgarth, N -- Hampl, J -- Gutgemann, I -- Teyton, L -- Chien, Y -- AI33431/AI/NIAID NIH HHS/ -- AI34762-34/AI/NIAID NIH HHS/ -- AI42267/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):314-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Immunology, Department of Microbiology and Immunology, and Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634788" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cricetinae ; Dimerization ; Histocompatibility Antigens Class I/*immunology/metabolism ; Ligands ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Proteins/*immunology/metabolism ; Receptors, Antigen, T-Cell, alpha-beta/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/*immunology ; beta 2-Microglobulin/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-11-28
    Description: Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hovhannisyan, Zaruhi -- Weiss, Angela -- Martin, Alexandra -- Wiesner, Martina -- Tollefsen, Stig -- Yoshida, Kenji -- Ciszewski, Cezary -- Curran, Shane A -- Murray, Joseph A -- David, Chella S -- Sollid, Ludvig M -- Koning, Frits -- Teyton, Luc -- Jabri, Bana -- DK42086/DK/NIDDK NIH HHS/ -- DK55037/DK/NIDDK NIH HHS/ -- DK67180/DK/NIDDK NIH HHS/ -- R01 DK067180/DK/NIDDK NIH HHS/ -- R01 DK067180-04/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Nov 27;456(7221):534-8. doi: 10.1038/nature07524.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037317" target="_blank"〉PubMed〈/a〉
    Keywords: Amides/chemistry ; Animals ; CD4-Positive T-Lymphocytes/*immunology ; Celiac Disease/*genetics/*immunology ; Complementarity Determining Regions/chemistry/immunology ; Cross Reactions ; Epitopes, T-Lymphocyte/chemistry/immunology ; Gliadin/chemistry/immunology ; Glutens/chemistry/*immunology ; HLA-DQ Antigens/chemistry/*genetics/immunology ; Humans ; Hybridomas/immunology ; Mice ; Mice, Transgenic ; Polymorphism, Genetic/*genetics ; Receptors, Antigen, T-Cell/chemistry/immunology ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-24
    Description: CD1d-restricted autoreactive natural killer (NK1.1+) T cells function as regulatory cells in various disease conditions. Using improved tetramer tracking methodology, we identified a NK1.1- thymic precursor and followed its differentiation and emigration to tissues by direct cell transfer and in situ cell labeling studies. A major lineage expansion occurred within the thymus after positive selection and before NK receptor expression. Surprisingly, cytokine analysis of the developmental intermediates between NK and NK+ stages showed a T helper cell TH2 to TH1 conversion, suggesting that the regulatory functions of NK T cells may be developmentally controlled. These findings characterize novel thymic and postthymic developmental pathways that expand autoreactive cells and differentiate them into regulatory cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benlagha, Kamel -- Kyin, Tim -- Beavis, Andrew -- Teyton, Luc -- Bendelac, Albert -- AI38339/AI/NIAID NIH HHS/ -- AI62267/AI/NIAID NIH HHS/ -- CA87060/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):553-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11968185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/analysis ; Antigens, CD1/analysis/immunology ; Antigens, CD1d ; Antigens, CD44/analysis ; Antigens, Ly ; Antigens, Surface ; Cell Differentiation ; Cell Division ; *Cell Lineage ; Interferon-gamma/biosynthesis ; Interleukins/biosynthesis ; Killer Cells, Natural/cytology/*immunology ; Lectins, C-Type ; Liver/cytology/immunology ; Lymphocyte Activation ; Mice ; NK Cell Lectin-Like Receptor Subfamily B ; Proteins/analysis ; Receptors, Antigen, T-Cell, alpha-beta/analysis/immunology ; Receptors, Immunologic/analysis/immunology ; Spleen/cytology/immunology ; T-Lymphocyte Subsets/cytology/*immunology ; T-Lymphocytes, Helper-Inducer/cytology/*immunology ; Thymus Gland/*cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2003-12-20
    Description: It is now established that CD1 molecules present lipid antigens to T cells, although it is not clear how the exchange of lipids between membrane compartments and the CD1 binding groove is assisted. We report that mice deficient in prosaposin, the precursor to a family of endosomal lipid transfer proteins (LTP), exhibit specific defects in CD1d-mediated antigen presentation and lack Valpha14 NKT cells. In vitro, saposins extracted monomeric lipids from membranes and from CD1, thereby promoting the loading as well as the editing of lipids on CD1. Transient complexes between CD1, lipid, and LTP suggested a "tug-of-war" model in which lipid exchange between CD1 and LTP is on the basis of their respective affinities for lipids. LTPs constitute a previously unknown link between lipid metabolism and immunity and are likely to exert a profound influence on the repertoire of self, tumor, and microbial lipid antigens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918537/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918537/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Dapeng -- Cantu, Carlos 3rd -- Sagiv, Yuval -- Schrantz, Nicolas -- Kulkarni, Ashok B -- Qi, Xiaoyang -- Mahuran, Don J -- Morales, Carlos R -- Grabowski, Gregory A -- Benlagha, Kamel -- Savage, Paul -- Bendelac, Albert -- Teyton, Luc -- 10435/Canadian Institutes of Health Research/Canada -- AI38339/AI/NIAID NIH HHS/ -- AI50867/AI/NIAID NIH HHS/ -- P01 AI53725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 23;303(5657):523-7. Epub 2003 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684827" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigen-Presenting Cells/immunology/metabolism ; Antigens, CD1/*immunology/metabolism ; Antigens, CD1d ; Carrier Proteins/*metabolism ; Endosomes/*metabolism ; G(M2) Activator Protein ; Glycolipids/immunology ; Glycoproteins/deficiency/genetics/metabolism/*physiology ; Killer Cells, Natural/immunology ; Lipid Metabolism ; Lipids/*immunology ; Mice ; Proteins/metabolism ; Receptors, Antigen, T-Cell/immunology ; Saposins ; Sphingolipid Activator Proteins ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-11-13
    Description: NKT cells represent a distinct lineage of T cells that coexpress a conserved alphabeta T cell receptor (TCR) and natural killer (NK) receptors. Although the TCR of NKT cells is characteristically autoreactive to CD1d, a lipid-presenting molecule, endogenous ligands for these cells have not been identified. We show that a lysosomal glycosphingolipid of previously unknown function, isoglobotrihexosylceramide (iGb3), is recognized both by mouse and human NKT cells. Impaired generation of lysosomal iGb3 in mice lacking beta-hexosaminidase b results in severe NKT cell deficiency, suggesting that this lipid also mediates development of NKT cells in the mouse. We suggest that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Dapeng -- Mattner, Jochen -- Cantu, Carlos 3rd -- Schrantz, Nicolas -- Yin, Ning -- Gao, Ying -- Sagiv, Yuval -- Hudspeth, Kelly -- Wu, Yun-Ping -- Yamashita, Tadashi -- Teneberg, Susann -- Wang, Dacheng -- Proia, Richard L -- Levery, Steven B -- Savage, Paul B -- Teyton, Luc -- Bendelac, Albert -- AI053725/AI/NIAID NIH HHS/ -- AI50847/AI/NIAID NIH HHS/ -- P20RR16459/RR/NCRR NIH HHS/ -- R01 AI38339/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1786-9. Epub 2004 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Chicago, Department of Pathology, Chicago, IL 60637, USA. dzhou@midway.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15539565" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens, CD1/immunology/metabolism ; Antigens, CD1d ; Autoimmunity ; Cell Line ; Cell Line, Tumor ; Cells, Cultured ; Dendritic Cells/immunology ; Galactosyltransferases/genetics/metabolism ; Globosides/chemistry/*immunology/metabolism ; Humans ; Hybridomas ; Infection/immunology ; Killer Cells, Natural/*immunology ; Ligands ; Lymphocyte Activation ; Lymphocyte Count ; Lysosomes/*metabolism ; Mice ; Mice, Inbred C57BL ; Neoplasms/immunology ; Plant Lectins/immunology ; Rats ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Saposins/metabolism ; T-Lymphocyte Subsets/*immunology ; beta-N-Acetylhexosaminidases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-10-11
    Description: The central event in the cellular immune response to invading microorganisms is the specific recognition of foreign peptides bound to major histocompatibility complex (MHC) molecules by the alphabeta T cell receptor (TCR). The x-ray structure of the complete extracellular fragment of a glycosylated alphabeta TCR was determined at 2.5 angstroms, and its orientation bound to a class I MHC-peptide (pMHC) complex was elucidated from crystals of the TCR-pMHC complex. The TCR resembles an antibody in the variable Valpha and Vbeta domains but deviates in the constant Calpha domain and in the interdomain pairing of Calpha with Cbeta. Four of seven possible asparagine-linked glycosylation sites have ordered carbohydrate moieties, one of which lies in the Calpha-Cbeta interface. The TCR combining site is relatively flat except for a deep hydrophobic cavity between the hypervariable CDR3s (complementarity-determining regions) of the alpha and beta chains. The 2C TCR covers the class I MHC H-2Kb binding groove so that the Valpha CDRs 1 and 2 are positioned over the amino-terminal region of the bound dEV8 peptide, the Vbeta chain CDRs 1 and 2 are over the carboxyl-terminal region of the peptide, and the Valpha and Vbeta CDR3s straddle the peptide between the helices around the central position of the peptide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Degano, M -- Stanfield, R L -- Brunmark, A -- Jackson, M R -- Peterson, P A -- Teyton, L -- Wilson, I A -- R01 CA58896/CA/NCI NIH HHS/ -- T32-A107244/PHS HHS/ -- New York, N.Y. -- Science. 1996 Oct 11;274(5285):209-19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute of Chemical Biology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8824178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Sequence ; Cells, Cultured ; Crystallization ; Crystallography, X-Ray ; Drosophila melanogaster ; Glycosylation ; H-2 Antigens/*chemistry/immunology/metabolism ; Hydrogen Bonding ; Major Histocompatibility Complex ; Mice ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry/immunology/metabolism ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism ; Recombinant Proteins ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-04
    Description: Gammadelta T cells present in epithelial tissues provide a crucial first line of defense against environmental insults, including infection, trauma, and malignancy, yet the molecular events surrounding their activation remain poorly defined. Here we identify an epithelial gammadelta T cell-specific costimulatory molecule, junctional adhesion molecule-like protein (JAML). Binding of JAML to its ligand Coxsackie and adenovirus receptor (CAR) provides costimulation leading to cellular proliferation and cytokine and growth factor production. Inhibition of JAML costimulation leads to diminished gammadelta T cell activation and delayed wound closure akin to that seen in the absence of gammadelta T cells. Our results identify JAML as a crucial component of epithelial gammadelta T cell biology and have broader implications for CAR and JAML in tissue homeostasis and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Witherden, Deborah A -- Verdino, Petra -- Rieder, Stephanie E -- Garijo, Olivia -- Mills, Robyn E -- Teyton, Luc -- Fischer, Wolfgang H -- Wilson, Ian A -- Havran, Wendy L -- AI064811/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI52257/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- NS057096/NS/NINDS NIH HHS/ -- R01 AI036964/AI/NIAID NIH HHS/ -- R01 AI052257/AI/NIAID NIH HHS/ -- R01 AI052257-05/AI/NIAID NIH HHS/ -- R01 AI064811/AI/NIAID NIH HHS/ -- R01 AI064811-05/AI/NIAID NIH HHS/ -- R01 GM080301/GM/NIGMS NIH HHS/ -- R37 AI042266/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1205-10. doi: 10.1126/science.1192698.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813954" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*metabolism ; Cell Line ; Cell Proliferation ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cytokines/metabolism ; Epidermis/cytology/*immunology/injuries ; Epithelial Cells ; Epithelium/immunology/metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/metabolism ; Ligands ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Binding ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Receptors, Virus/*metabolism ; T-Lymphocyte Subsets/*immunology/*metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...