ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (1,508)
  • Chemical Engineering
  • LUNAR AND PLANETARY EXPLORATION
  • American Association for the Advancement of Science (AAAS)  (1,513)
Collection
Keywords
Publisher
Years
  • 101
    Publication Date: 2012-09-08
    Description: Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkuhn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-beta (TGF-beta) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, Hiroyuki -- Ajima, Rieko -- Luo, Christine T -- Yamaguchi, Terry P -- Stappenbeck, Thaddeus S -- 5T35DK074375/DK/NIDDK NIH HHS/ -- DK90251/DK/NIDDK NIH HHS/ -- P30-DK52574/DK/NIDDK NIH HHS/ -- R01 DK071619/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):108-13. doi: 10.1126/science.1223821. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement/drug effects/physiology ; Cell Proliferation/drug effects ; Cells, Cultured ; Colon/embryology/*injuries/*physiology ; Culture Media, Conditioned/pharmacology ; Homeostasis/drug effects/physiology ; Intestinal Mucosa/embryology/injuries/physiology ; Ligands ; Mesoderm/cytology/embryology ; Mice ; Mice, Knockout ; Receptor Tyrosine Kinase-like Orphan Receptors/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Stem Cells/cytology/drug effects/physiology ; Tamoxifen/pharmacology ; Transforming Growth Factor beta/*metabolism ; Wnt Proteins/genetics/pharmacology/*physiology ; Wound Healing/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savage, Phillip E -- New York, N.Y. -- Science. 2012 Nov 23;338(6110):1039-40. doi: 10.1126/science.1224310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA. psavage@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23180853" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cell Culture Techniques ; Chemical Engineering ; Chlorophyta/*chemistry/growth & development ; *Hot Temperature ; *Hydrostatic Pressure ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-02-22
    Description: Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton and possess useful biological and electronic functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aida, T -- Meijer, E W -- Stupp, S I -- 2R01DE015920-06/DE/NIDCR NIH HHS/ -- 2R01EB003806-06A2/EB/NIBIB NIH HHS/ -- R01 DE015920/DE/NIDCR NIH HHS/ -- R01 DE015920-06/DE/NIDCR NIH HHS/ -- R01 EB003806/EB/NIBIB NIH HHS/ -- R01 EB003806-06A2/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):813-7. doi: 10.1126/science.1205962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomimetic Materials/chemistry ; Forecasting ; Humans ; Molecular Structure ; Nanofibers ; Nanotubes ; *Polymers/chemistry ; Semiconductors ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2012-04-14
    Description: Computational approaches are breaking new ground in understanding how embryos form. Here, we discuss recent studies that couple precise measurements in the embryo with appropriately matched modeling and computational methods to investigate classic embryonic patterning strategies. We include signaling gradients, activator-inhibitor systems, and coupled oscillators, as well as emerging paradigms such as tissue deformation. Parallel progress in theory and experiment will play an increasingly central role in deciphering developmental patterning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morelli, Luis G -- Uriu, Koichiro -- Ares, Saul -- Oates, Andrew C -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):187-91. doi: 10.1126/science.1215478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Computational Biology ; *Computer Simulation ; Drosophila/embryology ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; *Models, Biological ; Signal Transduction ; Zebrafish/embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2012-06-08
    Description: The composition and activity of the gut microbiota codevelop with the host from birth and is subject to a complex interplay that depends on the host genome, nutrition, and life-style. The gut microbiota is involved in the regulation of multiple host metabolic pathways, giving rise to interactive host-microbiota metabolic, signaling, and immune-inflammatory axes that physiologically connect the gut, liver, muscle, and brain. A deeper understanding of these axes is a prerequisite for optimizing therapeutic strategies to manipulate the gut microbiota to combat disease and improve health.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicholson, Jeremy K -- Holmes, Elaine -- Kinross, James -- Burcelin, Remy -- Gibson, Glenn -- Jia, Wei -- Pettersson, Sven -- R01AA020212/AA/NIAAA NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1262-7. doi: 10.1126/science.1223813. Epub 2012 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK. j.nicholson@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22674330" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Bacteria/*metabolism ; Diet ; Gastrointestinal Tract/*metabolism/*microbiology ; Health ; Humans ; Immune System/physiology ; Inflammation ; Liver/metabolism ; Metabolic Diseases/metabolism/*microbiology ; *Metabolic Networks and Pathways ; *Metagenome ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2012-06-02
    Description: Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tingting -- Liu, Zixu -- Song, Chuanjun -- Hu, Yunfei -- Han, Zhifu -- She, Ji -- Fan, Fangfang -- Wang, Jiawei -- Jin, Changwen -- Chang, Junbiao -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1160-4. doi: 10.1126/science.1218867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654057" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/immunology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Chitin/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Multimerization ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/*chemistry/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-05
    Description: The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not previously observed upon deletion of individual shelterin proteins. The shelterin-free telomeres are processed by microhomology-mediated alternative-NHEJ when Ku70/80 is absent and are attacked by nucleolytic degradation in the absence of 53BP1. The data establish that the end-protection problem is specified by six pathways [ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) signaling, classical-NHEJ, alt-NHEJ, homologous recombination, and resection] and show how shelterin acts with general DNA damage response factors to solve this problem.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 CA076027/CA/NCI NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):593-7. doi: 10.1126/science.1218498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Nuclear/genetics/metabolism ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Ligases/metabolism ; DNA Repair ; DNA-Binding Proteins/genetics/metabolism ; Homologous Recombination ; Mice ; Mice, Knockout ; Poly(ADP-ribose) Polymerases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Telomere/*metabolism/ultrastructure ; *Telomere Homeostasis ; Telomere-Binding Proteins/genetics/*metabolism ; Telomeric Repeat Binding Protein 1/genetics/metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2012-12-15
    Description: Although the gonad primarily functions in procreation, it also affects animal life span. Here, we show that removal of the Caenorhabditis elegans germ line triggers a switch in the regulatory state of the organism to promote longevity, co-opting components involved in larval developmental timing circuits. These components include the DAF-12 steroid receptor, which is involved in the larval stage two-to-stage three (L2-L3) transition and up-regulates members of the let-7 microRNA (miRNA) family. The miRNAs target an early larval nuclear factor lin-14 and akt-1/kinase, thereby stimulating DAF-16/FOXO signaling to extend life. Our studies suggest that metazoan life span is coupled to the gonad through elements of a developmental timer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909774/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909774/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Yidong -- Wollam, Joshua -- Magner, Daniel -- Karalay, Oezlem -- Antebi, Adam -- R01 AG027498/AG/NIA NIH HHS/ -- T32 GM008231/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1472-6. doi: 10.1126/science.1228967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, D-50931 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/*physiology ; Forkhead Transcription Factors ; Gene Expression Regulation, Developmental ; Germ Cells/metabolism ; Gonads/*metabolism ; Larva/genetics/growth & development/physiology ; Longevity/genetics/*physiology ; MicroRNAs/genetics/*metabolism ; Nuclear Proteins/genetics/physiology ; Proto-Oncogene Proteins c-akt/genetics/physiology ; Receptors, Cytoplasmic and Nuclear/genetics/*physiology ; Receptors, Steroid/genetics/*physiology ; Signal Transduction ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2012-06-09
    Description: Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osterloh, Jeannette M -- Yang, Jing -- Rooney, Timothy M -- Fox, A Nicole -- Adalbert, Robert -- Powell, Eric H -- Sheehan, Amy E -- Avery, Michelle A -- Hackett, Rachel -- Logan, Mary A -- MacDonald, Jennifer M -- Ziegenfuss, Jennifer S -- Milde, Stefan -- Hou, Ying-Ju -- Nathan, Carl -- Ding, Aihao -- Brown, Robert H Jr -- Conforti, Laura -- Coleman, Michael -- Tessier-Lavigne, Marc -- Zuchner, Stephan -- Freeman, Marc R -- 5R01-NS050557-05/NS/NINDS NIH HHS/ -- AI030165/AI/NIAID NIH HHS/ -- R01NS059991/NS/NINDS NIH HHS/ -- R01NS072248/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- U54NS065712/NS/NINDS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):481-4. doi: 10.1126/science.1223899. Epub 2012 Jun 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Apoptosis ; Armadillo Domain Proteins/analysis/*genetics/*physiology ; Axons/*physiology/ultrastructure ; Axotomy ; Cell Survival ; Cells, Cultured ; Cytoskeletal Proteins/analysis/*genetics/*physiology ; Denervation ; Drosophila/embryology/genetics/physiology ; Drosophila Proteins/analysis/*genetics/*physiology ; Mice ; Mutation ; Neurons/*physiology ; Sciatic Nerve/injuries/physiology ; Signal Transduction ; Superior Cervical Ganglion/cytology ; Tissue Culture Techniques ; *Wallerian Degeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2012-11-01
    Description: Vasopressin- and oxytocin-related neuropeptides are key regulators of animal physiology, including water balance and reproduction. Although these neuropeptides also modulate social behavior and cognition in mammals, the mechanism for influencing behavioral plasticity and the evolutionary origin of these effects are not well understood. Here, we present a functional vasopressin- and oxytocin-like signaling system in the nematode Caenorhabditis elegans. Through activation of its receptor NTR-1, a vasopressin/oxytocin-related neuropeptide, designated nematocin, facilitates the experience-driven modulation of salt chemotaxis, a type of gustatory associative learning in C. elegans. Our study suggests that vasopressin and oxytocin neuropeptides have ancient roles in modulating sensory processing in neural circuits that underlie behavioral plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beets, Isabel -- Janssen, Tom -- Meelkop, Ellen -- Temmerman, Liesbet -- Suetens, Nick -- Rademakers, Suzanne -- Jansen, Gert -- Schoofs, Liliane -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):543-5. doi: 10.1126/science.1226860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Functional Genomics and Proteomics Unit, KU Leuven, 3000 Leuven, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans ; Proteins/agonists/chemistry/genetics/metabolism/pharmacology/*physiology ; Learning/drug effects/*physiology ; Male ; Molecular Sequence Data ; Neuropeptides/chemistry/genetics/pharmacology/*physiology ; Oxytocin/chemistry/genetics/pharmacology/*physiology ; Receptors, G-Protein-Coupled/agonists/genetics/metabolism/*physiology ; Signal Transduction ; Taste/drug effects/*physiology ; Vasopressins/chemistry/genetics/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2012-07-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):408. doi: 10.1126/science.337.6093.408-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beetles/*anatomy & histology/growth & development/*physiology ; Female ; Flight, Animal ; Horns/*anatomy & histology/growth & development ; Insulin/*metabolism ; Male ; *Mating Preference, Animal ; Signal Transduction ; Wings, Animal/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2012-10-16
    Description: The opportunistic pathogen Pseudomonas aeruginosa uses a cell-cell communication system termed "quorum sensing" to control production of public goods, extracellular products that can be used by any community member. Not all individuals respond to quorum-sensing signals and synthesize public goods. Such social cheaters enjoy the benefits of the products secreted by cooperators. There are some P. aeruginosa cellular enzymes controlled by quorum sensing, and we show that quorum sensing-controlled expression of such private goods can put a metabolic constraint on social cheating and prevent a tragedy of the commons. Metabolic constraint of social cheating provides an explanation for private-goods regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587168/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587168/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dandekar, Ajai A -- Chugani, Sudha -- Greenberg, E Peter -- GM-59026/GM/NIGMS NIH HHS/ -- P30 DK 89507/DK/NIDDK NIH HHS/ -- P30 DK089507/DK/NIDDK NIH HHS/ -- R01 GM059026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):264-6. doi: 10.1126/science.1227289.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066081" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl-Butyrolactones/metabolism ; Adenosine/*metabolism ; Bacterial Proteins/genetics/metabolism ; Caseins/metabolism ; Culture Media/metabolism ; Microarray Analysis ; Mutation ; Pseudomonas aeruginosa/genetics/*growth & development/*metabolism ; Quorum Sensing/genetics/*physiology ; Signal Transduction ; Social Behavior ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-06-30
    Description: Nitrogen (N)-based fertilizers increase agricultural productivity but have detrimental effects on the environment and human health. Research is generating improved understanding of the signaling components plants use to sense N and regulate metabolism, physiology, and growth and development. However, we still need to integrate these regulatory factors into signal transduction pathways and connect them to downstream response pathways. Systems biology approaches facilitate identification of new components and N-regulatory networks linked to other plant processes. A holistic view of plant N nutrition should open avenues to translate this knowledge into effective strategies to improve N-use efficiency and enhance crop production systems for more sustainable agricultural practices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gutierrez, Rodrigo A -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1673-5. doi: 10.1126/science.1217620.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉FONDAP Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Catolica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile. rgutierrez@bio.puc.cl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745422" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Fertilizers ; Forecasting ; Nitrogen/*metabolism ; Plants/*metabolism ; Signal Transduction ; *Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2012-11-10
    Description: The zebrafish regenerates its brain after injury and hence is a useful model organism to study the mechanisms enabling regenerative neurogenesis, which is poorly manifested in mammals. Yet the signaling mechanisms initiating such a regenerative response in fish are unknown. Using cerebroventricular microinjection of immunogenic particles and immunosuppression assays, we showed that inflammation is required and sufficient for enhancing the proliferation of neural progenitors and subsequent neurogenesis by activating injury-induced molecular programs that can be observed after traumatic brain injury. We also identified cysteinyl leukotriene signaling as an essential component of inflammation in the regenerative process of the adult zebrafish brain. Thus, our results demonstrate that in zebrafish, in contrast to mammals, inflammation is a positive regulator of neuronal regeneration in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kyritsis, Nikos -- Kizil, Caghan -- Zocher, Sara -- Kroehne, Volker -- Kaslin, Jan -- Freudenreich, Dorian -- Iltzsche, Anne -- Brand, Michael -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1353-6. doi: 10.1126/science.1228773. Epub 2012 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Deutsche Forshungsgemeinschaft-Center for Regenerative Therapies Dresden-Cluster of Excellence, Technische Universitat Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23138980" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Animals ; Brain Injuries/*physiopathology ; Encephalitis/*physiopathology ; Leukotrienes/metabolism ; Neural Stem Cells/*physiology ; *Neurogenesis ; Receptors, Leukotriene/metabolism ; *Regeneration ; Signal Transduction ; Zebrafish/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2012-09-29
    Description: Although coagulation factors play a role in host defense for "living fossils" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor kappaB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor "decoration" of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doronin, Konstantin -- Flatt, Justin W -- Di Paolo, Nelson C -- Khare, Reeti -- Kalyuzhniy, Oleksandr -- Acchione, Mauro -- Sumida, John P -- Ohto, Umeharu -- Shimizu, Toshiyuki -- Akashi-Takamura, Sachiko -- Miyake, Kensuke -- MacDonald, James W -- Bammler, Theo K -- Beyer, Richard P -- Farin, Frederico M -- Stewart, Phoebe L -- Shayakhmetov, Dmitry M -- AI065429/AI/NIAID NIH HHS/ -- CA141439/CA/NCI NIH HHS/ -- P30ES07033/ES/NIEHS NIH HHS/ -- R01 AI065429/AI/NIAID NIH HHS/ -- R01 CA141439/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):795-8. doi: 10.1126/science.1226625. Epub 2012 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019612" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae Infections/*immunology/metabolism/virology ; Adenoviruses, Human/genetics/*immunology/*metabolism ; Animals ; CHO Cells ; Capsid Proteins/chemistry/genetics/metabolism ; Cell Line, Tumor ; Cricetinae ; Cricetulus ; Cryoelectron Microscopy ; Cytokines/metabolism ; Factor X/chemistry/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation ; Hepatocytes/virology ; Humans ; *Immunity, Innate ; Macrophages/metabolism/virology ; Mice ; Mice, Inbred C57BL ; Molecular Dynamics Simulation ; Mutation ; NF-kappa B/metabolism ; Signal Transduction ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2012-08-28
    Description: The function of bone morphogenetic protein (BMP) signaling in dorsoventral (DV) patterning of animal embryos is conserved among Bilateria. In vertebrates, the BMP ligand antidorsalizing morphogenetic protein (Admp) is expressed dorsally and moves to the opposite side to specify the ventral fate. Here, we show that Pinhead is an antagonist specific for Admp with a role in establishing the DV axis of the trunk epidermis in embryos of the ascidian Ciona intestinalis. Pinhead and Admp exist in tandem in the genomes of various animals from arthropods to vertebrates. This genomic configuration is important for mutually exclusive expression of these genes, because Pinhead transcription directly disturbs the action of the Admp enhancer. Our data suggest that this dual negative regulatory mechanism is widely conserved in animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imai, Kaoru S -- Daido, Yutaka -- Kusakabe, Takehiro G -- Satou, Yutaka -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):964-7. doi: 10.1126/science.1222488.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biodiversity, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923581" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; Bone Morphogenetic Protein 2/genetics/metabolism ; Bone Morphogenetic Protein 4/genetics/metabolism ; Bone Morphogenetic Proteins/chemistry/*genetics/metabolism ; Ciona intestinalis/*embryology/genetics/metabolism ; Embryo, Nonmammalian/*metabolism ; Embryonic Development ; Enhancer Elements, Genetic ; Epidermis/embryology ; Gastrula/metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Oligodeoxyribonucleotides, Antisense ; Oryzias/embryology/genetics/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazar, Mitchell A -- Birnbaum, Morris J -- P01 CA093615/CA/NCI NIH HHS/ -- P01 DK49210/DK/NIDDK NIH HHS/ -- R01 DK056886/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1651-2. doi: 10.1126/science.1221834.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745413" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Metabolic Diseases/metabolism ; *Metabolism ; Neoplasms/metabolism ; Signal Transduction ; Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2012-11-20
    Description: The epicardium encapsulates the heart and functions as a source of multipotent progenitor cells and paracrine factors essential for cardiac development and repair. Injury of the adult heart results in reactivation of a developmental gene program in the epicardium, but the transcriptional basis of epicardial gene expression has not been delineated. We established a mouse embryonic heart organ culture and gene expression system that facilitated the identification of epicardial enhancers activated during heart development and injury. Epicardial activation of these enhancers depends on a combinatorial transcriptional code centered on CCAAT/enhancer binding protein (C/EBP) transcription factors. Disruption of C/EBP signaling in the adult epicardium reduced injury-induced neutrophil infiltration and improved cardiac function. These findings reveal a transcriptional basis for epicardial activation and heart injury, providing a platform for enhancing cardiac regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Guo N -- Thatcher, Jeffrey E -- McAnally, John -- Kong, Yongli -- Qi, Xiaoxia -- Tan, Wei -- DiMaio, J Michael -- Amatruda, James F -- Gerard, Robert D -- Hill, Joseph A -- Bassel-Duby, Rhonda -- Olson, Eric N -- 1K99HL114738/HL/NHLBI NIH HHS/ -- HL100401-01/HL/NHLBI NIH HHS/ -- K99 HL114738/HL/NHLBI NIH HHS/ -- R01 HL077439/HL/NHLBI NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL111665/HL/NHLBI NIH HHS/ -- U01 HL100401/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1599-603. doi: 10.1126/science.1229765. Epub 2012 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23160954" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/genetics/metabolism ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Protein-beta/genetics/metabolism ; CCAAT-Enhancer-Binding Protein-delta/genetics/metabolism ; CCAAT-Enhancer-Binding Proteins/genetics/*metabolism ; Enhancer Elements, Genetic ; Female ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Heart/embryology/*physiopathology ; Male ; Mice ; Mice, Transgenic ; Models, Genetic ; Myocardial Contraction ; Myocardial Infarction/*genetics/metabolism ; Myocardial Reperfusion Injury/*genetics/metabolism ; Neutrophil Infiltration ; Oligonucleotide Array Sequence Analysis ; Organ Culture Techniques ; Pericardium/cytology/*embryology/*metabolism ; Signal Transduction ; Uroplakin III/genetics/metabolism ; Ventricular Remodeling ; WT1 Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2012 Nov 2;338(6107):590. doi: 10.1126/science.338.6107.590.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23118158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cellular Reprogramming ; Gene Expression Regulation ; *Immunity, Innate ; Induced Pluripotent Stem Cells/*physiology ; Retroviridae/genetics/immunology/*physiology ; Signal Transduction ; Toll-Like Receptor 3/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2012-01-24
    Description: Tolerant self-antigen-specific CD8 T cells fail to proliferate in response to antigen, thereby preventing autoimmune disease. By using an in vivo mouse model, we show that tolerant T cells proliferate and become functional under lymphopenic conditions, even in a tolerogenic environment. However, T cell rescue is only transient, with tolerance reimposed upon lymphorepletion even in the absence of tolerogen (self-antigen), challenging the prevailing paradigm that continuous antigen exposure is critical to maintain tolerance. Genome-wide messenger RNA and microRNA profiling revealed that tolerant T cells have a tolerance-specific gene profile that can be temporarily overridden under lymphopenic conditions but is inevitably reimposed, which suggests epigenetic regulation. These insights into the regulatory mechanisms that maintain or break self-tolerance may lead to new strategies for the treatment of cancer and autoimmunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schietinger, Andrea -- Delrow, Jeffrey J -- Basom, Ryan S -- Blattman, Joseph N -- Greenberg, Philip D -- K01 CA117985/CA/NCI NIH HHS/ -- P30 CA015704/CA/NCI NIH HHS/ -- P30 CA015704-35/CA/NCI NIH HHS/ -- P30 DK 56465/DK/NIDDK NIH HHS/ -- P30 DK056465/DK/NIDDK NIH HHS/ -- R01 CA033084/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):723-7. doi: 10.1126/science.1214277. Epub 2012 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Washington (UW), Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267581" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Autoantigens/immunology ; CD8-Positive T-Lymphocytes/*immunology/physiology/transplantation ; Cell Proliferation ; Epigenesis, Genetic ; Gene Expression Profiling ; Gene Expression Regulation ; Homeostasis ; Immunologic Memory ; Lymphocyte Activation ; Lymphocyte Count ; Lymphopenia/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; MicroRNAs/genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; *Self Tolerance/genetics ; Signal Transduction ; T-Lymphocyte Subsets/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2012-07-07
    Description: The impact of glial neurotransmitter receptors in vivo is still elusive. In the cerebellum, Bergmann glial (BG) cells express alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) composed exclusively of GluA1 and/or GluA4 subunits. With the use of conditional gene inactivation, we found that the majority of cerebellar GluA1/A4-type AMPARs are expressed in BG cells. In young mice, deletion of BG AMPARs resulted in retraction of glial appendages from Purkinje cell (PC) synapses, increased amplitude and duration of evoked PC currents, and a delayed formation of glutamatergic synapses. In adult mice, AMPAR inactivation also caused retraction of glial processes. The physiological and structural changes were accompanied by behavioral impairments in fine motor coordination. Thus, BG AMPARs are essential to optimize synaptic integration and cerebellar output function throughout life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saab, Aiman S -- Neumeyer, Alexander -- Jahn, Hannah M -- Cupido, Alexander -- Simek, Antonia A M -- Boele, Henk-Jan -- Scheller, Anja -- Le Meur, Karim -- Gotz, Magdalena -- Monyer, Hannah -- Sprengel, Rolf -- Rubio, Maria E -- Deitmer, Joachim W -- De Zeeuw, Chris I -- Kirchhoff, Frank -- R01-DC006881/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):749-53. doi: 10.1126/science.1221140. Epub 2012 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology, University of Saarland, Homburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22767895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism/ultrastructure ; Cerebellar Cortex/*cytology/growth & development/physiology ; Conditioning, Eyelid ; Excitatory Postsynaptic Potentials ; Locomotion ; Mice ; Mice, Knockout ; *Motor Activity ; Neurites/physiology/ultrastructure ; Patch-Clamp Techniques ; Psychomotor Performance ; Purkinje Cells/cytology/physiology ; Receptors, AMPA/*metabolism ; Signal Transduction ; Synapses/physiology/ultrastructure ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2012-12-12
    Description: How neural circuits associated with sexually dimorphic organs are differentially assembled during development is unclear. Here, we report a sexually dimorphic pattern of mouse mammary gland sensory innervation and the mechanism of its formation. Brain-derived neurotrophic factor (BDNF), emanating from mammary mesenchyme and signaling through its receptor TrkB on sensory axons, is required for establishing mammary gland sensory innervation of both sexes at early developmental stages. Subsequently, in males, androgens promote mammary mesenchymal expression of a truncated form of TrkB, which prevents BDNF-TrkB signaling in sensory axons and leads to a rapid loss of mammary gland innervation independent of neuronal apoptosis. Thus, sex hormone regulation of a neurotrophic factor signal directs sexually dimorphic axonal growth and maintenance, resulting in generation of a sex-specific neural circuit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826154/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826154/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yin -- Rutlin, Michael -- Huang, Siyi -- Barrick, Colleen A -- Wang, Fan -- Jones, Kevin R -- Tessarollo, Lino -- Ginty, David D -- DE019440/DE/NIDCR NIH HHS/ -- EY014998/EY/NEI NIH HHS/ -- NS34814/NS/NINDS NIH HHS/ -- P30 NS050274/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1357-60. doi: 10.1126/science.1228258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23224557" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/metabolism ; Animals ; Axons/*physiology ; Brain-Derived Neurotrophic Factor/genetics/*metabolism ; Female ; Male ; Mammary Glands, Animal/*embryology/*innervation ; Mice ; Mice, Inbred C57BL ; Receptor, trkB/genetics/metabolism ; *Sex Characteristics ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2012-06-23
    Description: The autonomic nervous system, which includes the sympathetic neurons and adrenal medulla, originates from the neural crest. Combining avian blood vessel-specific gene manipulation and mouse genetics, we addressed a long-standing question of how neural crest cells (NCCs) generate sympathetic and medullary lineages during embryogenesis. We found that the dorsal aorta acts as a morphogenetic signaling center that coordinates NCC migration and cell lineage segregation. Bone morphogenetic proteins (BMPs) produced by the dorsal aorta are critical for the production of the chemokine stromal cell-derived factor-1 (SDF -1) and Neuregulin 1 in the para-aortic region, which act as chemoattractants for early migration. Later, BMP signaling is directly involved in the sympatho-medullary segregation. This study provides insights into the complex developmental signaling cascade that instructs one of the earliest events of neurovascular interactions guiding embryonic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saito, Daisuke -- Takase, Yuta -- Murai, Hidetaka -- Takahashi, Yoshiko -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1578-81. doi: 10.1126/science.1222369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723422" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex/embryology/metabolism ; Adrenal Medulla/*cytology/embryology ; Animals ; Aorta/*embryology/*metabolism ; Avian Proteins/metabolism ; Bone Morphogenetic Proteins/*metabolism ; Cell Line ; Cell Lineage ; Cell Movement ; Chemokine CXCL12/metabolism ; Chemotactic Factors/metabolism ; Chick Embryo ; Coculture Techniques ; Embryonic Development ; Ganglia, Sympathetic/*cytology ; Mice ; Mice, Knockout ; Morphogenesis ; Neural Crest/*cytology/physiology ; Neuregulin-1/metabolism ; Signal Transduction ; Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2012-09-18
    Description: Early social isolation results in adult behavioral and cognitive dysfunction that correlates with white matter alterations. However, how social deprivation influences myelination and the significance of these myelin defects in the adult remained undefined. We show that mice isolated for 2 weeks immediately after weaning have alterations in prefrontal cortex function and myelination that do not recover with reintroduction into a social environment. These alterations, which occur only during this critical period, are phenocopied by loss of oligodendrocyte ErbB3 receptors, and social isolation leads to reduced expression of the ErbB3 ligand neuregulin-1. These findings indicate that social experience regulates prefrontal cortex myelination through neuregulin-1/ErbB3 signaling and that this is essential for normal cognitive function, thus providing a cellular and molecular context to understand the consequences of social isolation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makinodan, Manabu -- Rosen, Kenneth M -- Ito, Susumu -- Corfas, Gabriel -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- R01 NS035884/NS/NINDS NIH HHS/ -- R01 NS35884/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1357-60. doi: 10.1126/science.1220845.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Neurobiology Center, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984073" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelin Sheath/*metabolism ; Neuregulin-1/genetics/metabolism ; Oligodendroglia/cytology/*metabolism ; Prefrontal Cortex/cytology/*metabolism ; Receptor, ErbB-3/genetics/metabolism ; Signal Transduction ; *Social Isolation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2012-05-05
    Description: Major features of the transcellular signaling mechanism responsible for endothelium-dependent regulation of vascular smooth muscle tone are unresolved. We identified local calcium (Ca(2+)) signals ("sparklets") in the vascular endothelium of resistance arteries that represent Ca(2+) influx through single TRPV4 cation channels. Gating of individual TRPV4 channels within a four-channel cluster was cooperative, with activation of as few as three channels per cell causing maximal dilation through activation of endothelial cell intermediate (IK)- and small (SK)-conductance, Ca(2+)-sensitive potassium (K(+)) channels. Endothelial-dependent muscarinic receptor signaling also acted largely through TRPV4 sparklet-mediated stimulation of IK and SK channels to promote vasodilation. These results support the concept that Ca(2+) influx through single TRPV4 channels is leveraged by the amplifier effect of cooperative channel gating and the high Ca(2+) sensitivity of IK and SK channels to cause vasodilation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonkusare, Swapnil K -- Bonev, Adrian D -- Ledoux, Jonathan -- Liedtke, Wolfgang -- Kotlikoff, Michael I -- Heppner, Thomas J -- Hill-Eubanks, David C -- Nelson, Mark T -- 1P01HL095488/HL/NHLBI NIH HHS/ -- 2-P20-RR-016435-06/RR/NCRR NIH HHS/ -- GM086736/GM/NIGMS NIH HHS/ -- HL044455/HL/NHLBI NIH HHS/ -- P01 HL095488/HL/NHLBI NIH HHS/ -- R01 HL098243/HL/NHLBI NIH HHS/ -- R01HL098243/HL/NHLBI NIH HHS/ -- R37 DK053832/DK/NIDDK NIH HHS/ -- R37DK053832/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):597-601. doi: 10.1126/science.1216283.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; *Calcium Signaling ; Endothelial Cells/drug effects/*metabolism/physiology ; Endothelium, Vascular/drug effects/metabolism/physiology ; Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism ; Ion Channel Gating ; Leucine/analogs & derivatives/pharmacology ; Mesenteric Arteries/drug effects/*metabolism/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Patch-Clamp Techniques ; Receptors, Muscarinic/metabolism ; Signal Transduction ; Small-Conductance Calcium-Activated Potassium Channels/metabolism ; Sulfonamides/pharmacology ; TRPV Cation Channels/agonists/antagonists & inhibitors/*metabolism ; *Vasodilation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2012-05-05
    Description: Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khalil, Ashraf M -- Cambier, John C -- Shlomchik, Mark J -- AI43603/AI/NIAID NIH HHS/ -- AR44077/AR/NIAMS NIH HHS/ -- R01 AI043603/AI/NIAID NIH HHS/ -- R01 AR044077/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1178-81. doi: 10.1126/science.1213368. Epub 2012 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22555432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity ; Antigen Presentation ; Antigens/immunology ; Antigens, CD79/metabolism ; B-Lymphocytes/enzymology/*immunology/metabolism ; Calcium/metabolism ; Cell Cycle ; Down-Regulation ; Germinal Center/cytology/*immunology ; Intracellular Signaling Peptides and Proteins/metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Models, Immunological ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, B-Cell/*immunology/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2012-09-18
    Description: Unidirectional fluid flow plays an essential role in the breaking of left-right (L-R) symmetry in mouse embryos, but it has remained unclear how the flow is sensed by the embryo. We report that the Ca(2+) channel Polycystin-2 (Pkd2) is required specifically in the perinodal crown cells for sensing the nodal flow. Examination of mutant forms of Pkd2 shows that the ciliary localization of Pkd2 is essential for correct L-R patterning. Whereas Kif3a mutant embryos, which lack all cilia, failed to respond to an artificial flow, restoration of primary cilia in crown cells rescued the response to the flow. Our results thus suggest that nodal flow is sensed in a manner dependent on Pkd2 by the cilia of crown cells located at the edge of the node.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711115/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711115/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshiba, Satoko -- Shiratori, Hidetaka -- Kuo, Ivana Y -- Kawasumi, Aiko -- Shinohara, Kyosuke -- Nonaka, Shigenori -- Asai, Yasuko -- Sasaki, Genta -- Belo, Jose Antonio -- Sasaki, Hiroshi -- Nakai, Junichi -- Dworniczak, Bernd -- Ehrlich, Barbara E -- Pennekamp, Petra -- Hamada, Hiroshi -- P30 DK090744/DK/NIDDK NIH HHS/ -- P50 DK057328/DK/NIDDK NIH HHS/ -- R01 DK087844/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):226-31. doi: 10.1126/science.1222538. Epub 2012 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, 565-0871 Osaka, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22983710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Fluids/physiology ; *Body Patterning ; Calcium/metabolism ; Cilia/metabolism/physiology ; Embryo, Mammalian/anatomy & histology/cytology/*physiology ; Gene Expression Regulation, Developmental ; Intercellular Signaling Peptides and Proteins/metabolism ; Kinesin/genetics ; Left-Right Determination Factors/genetics/*metabolism ; Mice ; Mice, Mutant Strains ; Mutation ; Organizers, Embryonic/cytology/*physiology ; Signal Transduction ; TRPP Cation Channels/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2012-02-11
    Description: Pathogen-associated molecular patterns decisively influence antiviral immune responses, whereas the contribution of endogenous signals of tissue damage, also known as damage-associated molecular patterns or alarmins, remains ill defined. We show that interleukin-33 (IL-33), an alarmin released from necrotic cells, is necessary for potent CD8(+) T cell (CTL) responses to replicating, prototypic RNA and DNA viruses in mice. IL-33 signaled through its receptor on activated CTLs, enhanced clonal expansion in a CTL-intrinsic fashion, determined plurifunctional effector cell differentiation, and was necessary for virus control. Moreover, recombinant IL-33 augmented vaccine-induced CTL responses. Radio-resistant cells of the splenic T cell zone produced IL-33, and efficient CTL responses required IL-33 from radio-resistant cells but not from hematopoietic cells. Thus, alarmin release by radio-resistant cells orchestrates protective antiviral CTL responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonilla, Weldy V -- Frohlich, Anja -- Senn, Karin -- Kallert, Sandra -- Fernandez, Marylise -- Johnson, Susan -- Kreutzfeldt, Mario -- Hegazy, Ahmed N -- Schrick, Christina -- Fallon, Padraic G -- Klemenz, Roman -- Nakae, Susumu -- Adler, Heiko -- Merkler, Doron -- Lohning, Max -- Pinschewer, Daniel D -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):984-9. doi: 10.1126/science.1215418. Epub 2012 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323740" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Arenaviridae Infections/*immunology/pathology ; Cell Differentiation ; Gene Expression Profiling ; Herpesviridae Infections/*immunology ; Interleukin-33 ; Interleukins/genetics/immunology/*metabolism ; Lymphocyte Activation ; Lymphocytic choriomeningitis virus/*immunology/physiology ; Mice ; Mice, Transgenic ; Necrosis ; Receptors, Interleukin/genetics/metabolism ; Recombinant Proteins/immunology ; Rhadinovirus/*immunology ; Signal Transduction ; Stromal Cells/immunology/metabolism ; T-Lymphocytes, Cytotoxic/*immunology/transplantation ; Tumor Virus Infections/immunology ; Up-Regulation ; Vaccinia virus/immunology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2012-04-14
    Description: During animal development, several planar cell polarity (PCP) pathways control tissue shape by coordinating collective cell behavior. Here, we characterize by means of multiscale imaging epithelium morphogenesis in the Drosophila dorsal thorax and show how the Fat/Dachsous/Four-jointed PCP pathway controls morphogenesis. We found that the proto-cadherin Dachsous is polarized within a domain of its tissue-wide expression gradient. Furthermore, Dachsous polarizes the myosin Dachs, which in turn promotes anisotropy of junction tension. By combining physical modeling with quantitative image analyses, we determined that this tension anisotropy defines the pattern of local tissue contraction that contributes to shaping the epithelium mainly via oriented cell rearrangements. Our results establish how tissue planar polarization coordinates the local changes of cell mechanical properties to control tissue morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bosveld, Floris -- Bonnet, Isabelle -- Guirao, Boris -- Tlili, Sham -- Wang, Zhimin -- Petitalot, Ambre -- Marchand, Raphael -- Bardet, Pierre-Luc -- Marcq, Philippe -- Graner, Francois -- Bellaiche, Yohanns -- New York, N.Y. -- Science. 2012 May 11;336(6082):724-7. doi: 10.1126/science.1221071. Epub 2012 Apr 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 Rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisotropy ; Cadherins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Polarity ; Cell Shape ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/*growth & development/metabolism ; Epithelial Cells/cytology/metabolism ; Intercellular Junctions/metabolism/physiology ; Membrane Glycoproteins/genetics/*metabolism ; Metamorphosis, Biological ; Models, Biological ; *Morphogenesis ; Myosins/metabolism ; Pupa/growth & development/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thorax/cytology/growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2012-06-23
    Description: The quantitatively minor phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P(2)] fulfills many cellular functions in the plasma membrane (PM), whereas its synthetic precursor, phosphatidylinositol 4-phosphate (PI4P), has no assigned PM roles apart from PI(4,5)P(2) synthesis. We used a combination of pharmacological and chemical genetic approaches to probe the function of PM PI4P, most of which was not required for the synthesis or functions of PI(4,5)P(2). However, depletion of both lipids was required to prevent PM targeting of proteins that interact with acidic lipids or activation of the transient receptor potential vanilloid 1 cation channel. Therefore, PI4P contributes to the pool of polyanionic lipids that define plasma membrane identity and to some functions previously attributed specifically to PI(4,5)P(2), which may be fulfilled by a more general polyanionic lipid requirement.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammond, Gerald R V -- Fischer, Michael J -- Anderson, Karen E -- Holdich, Jon -- Koteci, Ardita -- Balla, Tamas -- Irvine, Robin F -- ZIA HD000196-12/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):727-30. doi: 10.1126/science.1222483. Epub 2012 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK. gerald.hammond@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Membrane/*metabolism ; Cercopithecus aethiops ; Endocytosis ; HEK293 Cells ; Humans ; Membrane Proteins/metabolism ; Peptide Fragments/metabolism ; Phosphatidylinositol 4,5-Diphosphate/antagonists & ; inhibitors/biosynthesis/*metabolism ; Phosphatidylinositol Phosphates/*metabolism ; Phosphoric Monoester Hydrolases/genetics/metabolism ; Polymers ; Receptor, Muscarinic M1/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Signal Transduction ; Static Electricity ; TRPV Cation Channels/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-07-28
    Description: Nearly half of the world's population harbors helminth infections or suffers from allergic disorders. A common feature of this population is the so-called "type 2 immune response," which confers protection against helminths, but also promotes pathologic responses associated with allergic inflammation. However, the mechanisms that initiate and control type 2 responses remain enigmatic. Recent advances have revealed a role for the innate immune system in orchestrating type 2 responses against a bewildering array of stimuli, from nanometer-sized allergens to 20-meter-long helminth parasites. Here, we review these advances and suggest that the human immune system has evolved multiple mechanisms of sensing such stimuli, from recognition of molecular patterns via innate immune receptors to detecting metabolic changes and tissue damage caused by these stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pulendran, Bali -- Artis, David -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI083480/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- HHSN266200700006C/PHS HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R37AI48638/AI/NIAID NIH HHS/ -- R37DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U19AI057266/AI/NIAID NIH HHS/ -- U19AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54AI057157/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):431-5. doi: 10.1126/science.1221064.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA. bpulend@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22837519" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/*immunology ; Animals ; Basophils/immunology ; Biological Evolution ; Cell Communication ; Cellular Microenvironment ; Dendritic Cells/immunology ; Helminthiasis/*immunology ; Helminths/*immunology ; Humans ; Hypersensitivity/*immunology ; *Immunity, Innate ; Inflammation/immunology ; Receptors, Pattern Recognition/immunology/metabolism ; Signal Transduction ; Th2 Cells/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2011-06-04
    Description: A blood cell type termed crystal cell in Drosophila functions in clotting and wound healing and requires Notch for specification and maintenance. We report that crystal cells express elevated levels of Sima protein orthologous to mammalian hypoxia-inducible factor-alpha (Hif-alpha) even under conditions of normal oxygen availability. In these platelet-like crystal cells, Sima activates full-length Notch receptor signaling via a noncanonical, ligand-independent mechanism that promotes hemocyte survival during both normal hematopoietic development and hypoxic stress. This interaction initiates in early endosomes, is independent of Hif-beta (Tauangomicron in Drosophila), and does not activate hypoxia response targets. Studies in vertebrate myeloid cells have shown a similar up-regulation of Hif-alpha protein in well-oxygenated environments. This study provides a mechanistic paradigm for Hif-alpha/Notch interaction that may be conserved in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412745/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412745/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukherjee, Tina -- Kim, William Sang -- Mandal, Lolitika -- Banerjee, Utpal -- R01 HL067395/HL/NHLBI NIH HHS/ -- R01HL067395/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1210-3. doi: 10.1126/science.1199643.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aryl Hydrocarbon Receptor Nuclear Translocator/chemistry/genetics/metabolism ; Calcium-Binding Proteins/metabolism ; Cell Hypoxia ; Cell Survival ; Cytoplasmic Vesicles/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila/*cytology/genetics/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Endocytosis ; Hematopoiesis ; Hemocytes/*cytology/*physiology ; Hypoxia-Inducible Factor 1, alpha Subunit/metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Ligands ; Membrane Proteins/metabolism ; Receptors, Notch/*metabolism ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2011-02-12
    Description: The identities of the digits of the avian forelimb are disputed. Whereas paleontological findings support the position that the digits correspond to digits one, two, and three, embryological evidence points to digit two, three, and four identities. By using transplantation and cell-labeling experiments, we found that the posteriormost digit in the wing does not correspond to digit four in the hindlimb; its progenitor segregates early from the zone of polarizing activity, placing it in the domain of digit three specification. We suggest that an avian-specific shift uncouples the digit anlagen from the molecular mechanisms that pattern them, resulting in the imposition of digit one, two, and three identities on the second, third, and fourth anlagens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, Koji -- Nomura, Naoki -- Seki, Ryohei -- Yonei-Tamura, Sayuri -- Yokoyama, Hitoshi -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):753-7. doi: 10.1126/science.1198229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai 980-8578, Japan. tam@m.tohoku.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311019" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Chick Embryo/*embryology ; Coturnix/*embryology ; Forelimb/embryology/transplantation ; Hedgehog Proteins/metabolism ; Hindlimb/embryology/transplantation ; Limb Buds/embryology ; Mice ; Signal Transduction ; Toes/embryology ; Wings, Animal/*embryology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2011-02-19
    Description: Although formation and stabilization of long-lasting associative memories are thought to require time-dependent coordinated hippocampal-cortical interactions, the underlying mechanisms remain unclear. Here, we present evidence that neurons in the rat cortex must undergo a "tagging process" upon encoding to ensure the progressive hippocampal-driven rewiring of cortical networks that support remote memory storage. This process was AMPA- and N-methyl-D-aspartate receptor-dependent, information-specific, and capable of modulating remote memory persistence by affecting the temporal dynamics of hippocampal-cortical interactions. Post-learning reinforcement of the tagging process via time-limited epigenetic modifications resulted in improved remote memory retrieval. Thus, early tagging of cortical networks is a crucial neurobiological process for remote memory formation whose functional properties fit the requirements imposed by the extended time scale of systems-level memory consolidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesburgueres, Edith -- Gobbo, Oliviero L -- Alaux-Cantin, Stephanie -- Hambucken, Anne -- Trifilieff, Pierre -- Bontempi, Bruno -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):924-8. doi: 10.1126/science.1196164.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Maladies Neurodegeneratives, CNRS UMR 5293, Universites Bordeaux 1 et 2, Talence, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330548" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Epigenesis, Genetic ; Excitatory Amino Acid Antagonists/pharmacology ; Food Preferences ; Frontal Lobe/*physiology ; Hippocampus/*physiology ; Histones/metabolism ; Learning ; Male ; *Memory, Long-Term ; Neural Pathways ; Neuronal Plasticity ; Neurons/cytology/*physiology ; Odors ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Reinforcement (Psychology) ; Signal Transduction ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elsasser, Simon J -- Allis, C David -- Lewis, Peter W -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1145-6. doi: 10.1126/science.1203280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385704" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics/metabolism ; Chromatin/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Helicases/*genetics/metabolism ; *Epigenesis, Genetic ; *Genes, Tumor Suppressor ; Histones/metabolism ; Humans ; Mutation ; Neuroendocrine Tumors/*genetics/metabolism ; Nuclear Proteins/*genetics/metabolism ; Nucleosomes/metabolism ; Pancreatic Neoplasms/*genetics/metabolism ; Proto-Oncogene Proteins/*genetics/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2011-03-12
    Description: The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFRs) and disturbed the TNFalpha-TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFalpha-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFalpha signaling, and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFalpha-mediated pathologies and conditions, including rheumatoid arthritis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3104397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Wei -- Lu, Yi -- Tian, Qing-Yun -- Zhang, Yan -- Guo, Feng-Jin -- Liu, Guang-Yi -- Syed, Nabeel Muzaffar -- Lai, Yongjie -- Lin, Edward Alan -- Kong, Li -- Su, Jeffrey -- Yin, Fangfang -- Ding, Ai-Hao -- Zanin-Zhorov, Alexandra -- Dustin, Michael L -- Tao, Jian -- Craft, Joseph -- Yin, Zhinan -- Feng, Jian Q -- Abramson, Steven B -- Yu, Xiu-Ping -- Liu, Chuan-ju -- AI43542/AI/NIAID NIH HHS/ -- AR040072/AR/NIAMS NIH HHS/ -- AR050620/AR/NIAMS NIH HHS/ -- AR053210/AR/NIAMS NIH HHS/ -- GM061710/GM/NIGMS NIH HHS/ -- R01 AI030165/AI/NIAID NIH HHS/ -- R01 AI030165-20/AI/NIAID NIH HHS/ -- R01 GM061710/GM/NIGMS NIH HHS/ -- R01 GM061710-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):478-84. doi: 10.1126/science.1199214. Epub 2011 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393509" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/metabolism/pharmacology/therapeutic use ; Arthritis, Experimental/*drug therapy/*immunology/pathology/physiopathology ; Cartilage, Articular/metabolism/pathology ; Female ; Humans ; Intercellular Signaling Peptides and ; Proteins/chemistry/genetics/*metabolism/therapeutic use ; Ligands ; Male ; Mice ; Mice, Inbred Strains ; Mice, Knockout ; Mice, Transgenic ; Middle Aged ; Protein Interaction Domains and Motifs ; Receptors, Tumor Necrosis Factor, Type I/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Type II/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism/pharmacology/therapeutic use ; Recombinant Proteins/therapeutic use ; Signal Transduction ; T-Lymphocytes, Regulatory/immunology/physiology ; Tumor Necrosis Factor-alpha/*metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2011-09-17
    Description: Neural circuits regulate cytokine production to prevent potentially damaging inflammation. A prototypical vagus nerve circuit, the inflammatory reflex, inhibits tumor necrosis factor-alpha production in spleen by a mechanism requiring acetylcholine signaling through the alpha7 nicotinic acetylcholine receptor expressed on cytokine-producing macrophages. Nerve fibers in spleen lack the enzymatic machinery necessary for acetylcholine production; therefore, how does this neural circuit terminate in cholinergic signaling? We identified an acetylcholine-producing, memory phenotype T cell population in mice that is integral to the inflammatory reflex. These acetylcholine-producing T cells are required for inhibition of cytokine production by vagus nerve stimulation. Thus, action potentials originating in the vagus nerve regulate T cells, which in turn produce the neurotransmitter, acetylcholine, required to control innate immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosas-Ballina, Mauricio -- Olofsson, Peder S -- Ochani, Mahendar -- Valdes-Ferrer, Sergio I -- Levine, Yaakov A -- Reardon, Colin -- Tusche, Michael W -- Pavlov, Valentin A -- Andersson, Ulf -- Chavan, Sangeeta -- Mak, Tak W -- Tracey, Kevin J -- R01 GM057226/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 7;334(6052):98-101. doi: 10.1126/science.1209985. Epub 2011 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921156" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/*biosynthesis ; Action Potentials ; Animals ; CD4-Positive T-Lymphocytes/*immunology/*metabolism ; Choline O-Acetyltransferase/metabolism ; Cholinergic Agents/metabolism ; Female ; *Immunity, Innate ; Immunologic Memory ; Inflammation ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; *Neuroimmunomodulation ; Norepinephrine/pharmacology ; Receptors, Nicotinic/metabolism ; Signal Transduction ; Spleen/immunology/innervation/metabolism ; T-Lymphocyte Subsets/immunology/metabolism ; Tumor Necrosis Factor-alpha/blood ; Vagus Nerve/*physiology ; Vagus Nerve Stimulation ; alpha7 Nicotinic Acetylcholine Receptor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2011-01-29
    Description: Proper regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-kappaB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-kappaB-inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-kappaB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-kappaB pathway in B lymphoproliferative disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosebeck, Shaun -- Madden, Lisa -- Jin, Xiaohong -- Gu, Shufang -- Apel, Ingrid J -- Appert, Alex -- Hamoudi, Rifat A -- Noels, Heidi -- Sagaert, Xavier -- Van Loo, Peter -- Baens, Mathijs -- Du, Ming-Qing -- Lucas, Peter C -- McAllister-Lucas, Linda M -- R01 CA124540/CA/NCI NIH HHS/ -- R01 CA124540-04/CA/NCI NIH HHS/ -- R01 HL082914/HL/NHLBI NIH HHS/ -- R01CA124540/CA/NCI NIH HHS/ -- T32-HD07513/HD/NICHD NIH HHS/ -- T32-HL007622-21A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):468-72. doi: 10.1126/science.1198946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273489" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; B-Lymphocytes/*metabolism ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; I-kappa B Kinase/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics/*metabolism ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit/metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2011-04-23
    Description: Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4(+) T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3(+) regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Round, June L -- Lee, S Melanie -- Li, Jennifer -- Tran, Gloria -- Jabri, Bana -- Chatila, Talal A -- Mazmanian, Sarkis K -- AI 080002/AI/NIAID NIH HHS/ -- AI 088626/AI/NIAID NIH HHS/ -- DK 078938/DK/NIDDK NIH HHS/ -- DK 083633/DK/NIDDK NIH HHS/ -- R01 AI085090/AI/NIAID NIH HHS/ -- R01 AI085090-01/AI/NIAID NIH HHS/ -- R01 AI085090-01S1/AI/NIAID NIH HHS/ -- R01 AI085090-02/AI/NIAID NIH HHS/ -- R01 AI085090-03/AI/NIAID NIH HHS/ -- R01 DK078938/DK/NIDDK NIH HHS/ -- R01 DK078938-01A2/DK/NIDDK NIH HHS/ -- R01 DK078938-02/DK/NIDDK NIH HHS/ -- R01 DK078938-03/DK/NIDDK NIH HHS/ -- R01 DK078938-04/DK/NIDDK NIH HHS/ -- R21 AI080002/AI/NIAID NIH HHS/ -- R21 AI080002-01/AI/NIAID NIH HHS/ -- R21 AI080002-02/AI/NIAID NIH HHS/ -- R21 AI088626/AI/NIAID NIH HHS/ -- R21 AI088626-01/AI/NIAID NIH HHS/ -- R21 AI088626-02/AI/NIAID NIH HHS/ -- R21 DK083633/DK/NIDDK NIH HHS/ -- R21 DK083633-01A1/DK/NIDDK NIH HHS/ -- R21 DK083633-02/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):974-7. doi: 10.1126/science.1206095. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA. jround@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512004" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroides fragilis/*growth & development/*immunology ; Colon/immunology/microbiology ; Germ-Free Life ; Homeostasis ; Humans ; *Immune Tolerance ; Immunity, Mucosal ; Interleukin-10/metabolism ; Intestinal Mucosa/*immunology/*microbiology ; Metagenome ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Polysaccharides, Bacterial/immunology/*metabolism ; Signal Transduction ; Specific Pathogen-Free Organisms ; Symbiosis ; T-Lymphocytes, Regulatory/immunology ; Th17 Cells/immunology ; Toll-Like Receptor 2/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2011-10-08
    Description: Pathological fasting hypoglycemia in humans is usually explained by excessive circulating insulin or insulin-like molecules or by inborn errors of metabolism impairing liver glucose production. We studied three unrelated children with unexplained, recurrent, and severe fasting hypoglycemia and asymmetrical growth. All were found to carry the same de novo mutation, p.Glu17Lys, in the serine/threonine kinase AKT2, in two cases as heterozygotes and in one case in mosaic form. In heterologous cells, the mutant AKT2 was constitutively recruited to the plasma membrane, leading to insulin-independent activation of downstream signaling. Thus, systemic metabolic disease can result from constitutive, cell-autonomous activation of signaling pathways normally controlled by insulin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204221/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204221/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hussain, K -- Challis, B -- Rocha, N -- Payne, F -- Minic, M -- Thompson, A -- Daly, A -- Scott, C -- Harris, J -- Smillie, B J L -- Savage, D B -- Ramaswami, U -- De Lonlay, P -- O'Rahilly, S -- Barroso, I -- Semple, R K -- 077016/Wellcome Trust/United Kingdom -- 077016/Z/05/Z/Wellcome Trust/United Kingdom -- 078986/Wellcome Trust/United Kingdom -- 078986/Z/06/Z/Wellcome Trust/United Kingdom -- 080952/Wellcome Trust/United Kingdom -- 080952/Z/06/Z/Wellcome Trust/United Kingdom -- 091551/Wellcome Trust/United Kingdom -- 091551/Z/10/Z/Wellcome Trust/United Kingdom -- 095515/Wellcome Trust/United Kingdom -- G0502115/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):474. doi: 10.1126/science.1210878. Epub 2011 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clinical and Molecular Genetics Unit, Developmental Endocrinology Research Group, Institute of Child Health, University College London, London WC1N 1EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21979934" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Child ; Female ; Growth ; HeLa Cells ; Heterozygote ; Humans ; Hypoglycemia/*genetics/*metabolism ; Insulin/blood/metabolism ; Male ; Mosaicism ; *Mutation ; Pedigree ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins c-akt/chemistry/*genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2011-10-25
    Description: Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nomura, Daniel K -- Morrison, Bradley E -- Blankman, Jacqueline L -- Long, Jonathan Z -- Kinsey, Steven G -- Marcondes, Maria Cecilia G -- Ward, Anna M -- Hahn, Yun Kyung -- Lichtman, Aron H -- Conti, Bruno -- Cravatt, Benjamin F -- 5P01DA009789/DA/NIDA NIH HHS/ -- AG028040/AG/NIA NIH HHS/ -- DA017259/DA/NIDA NIH HHS/ -- DA026261/DA/NIDA NIH HHS/ -- F31 DA026261-03/DA/NIDA NIH HHS/ -- K99 DA030908/DA/NIDA NIH HHS/ -- K99 DA030908-01/DA/NIDA NIH HHS/ -- K99DA030908/DA/NIDA NIH HHS/ -- P01 DA009789/DA/NIDA NIH HHS/ -- P01 DA009789-14/DA/NIDA NIH HHS/ -- P01 DA017259/DA/NIDA NIH HHS/ -- P01 DA017259-08/DA/NIDA NIH HHS/ -- P01DA01725/DA/NIDA NIH HHS/ -- R00 DA030908/DA/NIDA NIH HHS/ -- R00 DA030908-02/DA/NIDA NIH HHS/ -- R00DA030908/DA/NIDA NIH HHS/ -- R01 AG028040/AG/NIA NIH HHS/ -- R01 AG028040-04/AG/NIA NIH HHS/ -- R03 DA027936/DA/NIDA NIH HHS/ -- R03 DA027936-02/DA/NIDA NIH HHS/ -- R03DA027936/DA/NIDA NIH HHS/ -- T32 DA007027/DA/NIDA NIH HHS/ -- T32 DA007027-33/DA/NIDA NIH HHS/ -- T32DA007027/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):809-13. doi: 10.1126/science.1209200. Epub 2011 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. dnomura@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonic Acid/metabolism ; Arachidonic Acids/*metabolism ; Benzodioxoles/pharmacology ; Brain/drug effects/*metabolism/pathology ; Cannabinoid Receptor Modulators/*metabolism ; Cyclooxygenase 1/metabolism ; Cytokines/metabolism ; Eicosanoids/metabolism ; *Endocannabinoids ; Enzyme Inhibitors/pharmacology ; Glycerides/*metabolism ; Hydrolysis ; Inflammation/*metabolism/pathology ; Inflammation Mediators/pharmacology ; Lipopolysaccharides/pharmacology ; Liver/metabolism ; Lung/metabolism ; Metabolomics ; Mice ; Mice, Inbred C57BL ; Monoacylglycerol Lipases/antagonists & inhibitors/genetics/*metabolism ; Neuroprotective Agents/pharmacology ; Parkinsonian Disorders/metabolism/pathology ; Phospholipases A2/genetics/metabolism ; Piperidines/pharmacology ; Prostaglandins/biosynthesis/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-10
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tracey, Kevin J -- R01 GM057226/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 6;332(6030):673-4. doi: 10.1126/science.1206353.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Feinstein Institute for Medical Research, Manhasset, NY 11030, USA. kjtracey@nshs.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21551052" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Afferent Pathways ; Animals ; Caenorhabditis elegans/*immunology/microbiology ; Caenorhabditis elegans Proteins/genetics/*physiology ; Cytokines/metabolism ; Humans ; *Immunity, Innate ; Pseudomonas aeruginosa/*immunology/pathogenicity ; Receptors, G-Protein-Coupled/genetics/*physiology ; Sensory Receptor Cells/*physiology ; Signal Transduction ; *Unfolded Protein Response
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2011-03-26
    Description: Axon-dendrite polarization is crucial for neural network wiring and information processing in the brain. Polarization begins with the transformation of a single neurite into an axon and its subsequent rapid extension, which requires coordination of cellular energy status to allow for transport of building materials to support axon growth. We found that activation of the energy-sensing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway suppressed axon initiation and neuronal polarization. Phosphorylation of the kinesin light chain of the Kif5 motor protein by AMPK disrupted the association of the motor with phosphatidylinositol 3-kinase (PI3K), preventing PI3K targeting to the axonal tip and inhibiting polarization and axon growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, Stephen -- Liu, Xiuxin -- Zheng, Bin -- Cantley, Lewis -- Rakic, Pasko -- Man, Heng-Ye -- GM41890/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- K99CA133245/CA/NCI NIH HHS/ -- MH07907/MH/NIMH NIH HHS/ -- R00 CA133245/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 NS014841/NS/NINDS NIH HHS/ -- R01 NS014841-32/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):247-51. doi: 10.1126/science.1201678. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436401" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Aminoimidazole Carboxamide/analogs & derivatives/pharmacology ; Animals ; Axons/enzymology/*physiology/ultrastructure ; *Cell Polarity/drug effects ; Cells, Cultured ; Hippocampus/cytology/embryology ; Metformin/pharmacology ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/cytology/drug effects/enzymology/*physiology ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Ribonucleotides/pharmacology ; Signal Transduction ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2011-01-06
    Description: Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Joana M -- Ferguson, David J P -- Blackman, Michael J -- Soldati-Favre, Dominique -- MC_U117532063/Medical Research Council/United Kingdom -- U117532063/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):473-7. doi: 10.1126/science.1199284. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Faculty of Medicine, University of Geneva, 1 rue-Michel Servet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205639" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Division ; Cell Membrane/metabolism ; Cells, Cultured ; Fibroblasts/parasitology ; Humans ; Membrane Proteins/chemistry/genetics/*metabolism ; Movement ; Mutant Proteins/metabolism ; Plasmodium falciparum ; Protozoan Proteins/chemistry/genetics/*metabolism ; Serine Proteases/genetics/metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Araque, Alfonso -- Navarrete, Marta -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1587-8. doi: 10.1126/science.1212525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain. araque@cajal.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921188" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adenosine Triphosphate/metabolism ; Animals ; Axons/*physiology ; Calcium Signaling ; Cells, Cultured ; Electric Stimulation ; Ganglia, Spinal/cytology ; Glutamic Acid/metabolism ; Myelin Basic Protein/*metabolism ; Myelin Sheath/*physiology ; Neural Stem Cells/cytology/metabolism ; Oligodendroglia/cytology/*metabolism ; Signal Transduction ; Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2011-06-18
    Description: Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Dongping -- Lin, Wenwei -- Gao, Xiquan -- Wu, Shujing -- Cheng, Cheng -- Avila, Julian -- Heese, Antje -- Devarenne, Timothy P -- He, Ping -- Shan, Libo -- R01 GM092893/GM/NIGMS NIH HHS/ -- R01 GM092893-02/GM/NIGMS NIH HHS/ -- R01 GM097247/GM/NIGMS NIH HHS/ -- R01GM092893/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1439-42. doi: 10.1126/science.1204903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680842" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Peptide Fragments/immunology ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Interaction Domains and Motifs ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Pseudomonas syringae/growth & development/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2011-10-01
    Description: Lymphocytes egress from lymphoid organs in response to sphingosine-1-phosphate (S1P); minutes later they migrate from blood into tissue against the S1P gradient. The mechanisms facilitating cell movement against the gradient have not been defined. Here, we show that heterotrimeric guanine nucleotide-binding protein-coupled receptor kinase-2 (GRK2) functions in down-regulation of S1P receptor-1 (S1PR1) on blood-exposed lymphocytes. T and B cell movement from blood into lymph nodes is reduced in the absence of GRK2 but is restored in S1P-deficient mice. In the spleen, B cell movement between the blood-rich marginal zone and follicles is disrupted by GRK2 deficiency and by mutation of an S1PR1 desensitization motif. Moreover, delivery of systemic antigen into follicles is impaired. Thus, GRK2-dependent S1PR1 desensitization allows lymphocytes to escape circulatory fluids and migrate into lymphoid tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnon, Tal I -- Xu, Ying -- Lo, Charles -- Pham, Trung -- An, Jinping -- Coughlin, Shaun -- Dorn, Gerald W -- Cyster, Jason G -- AI74847/AI/NIAID NIH HHS/ -- R01 AI074847/AI/NIAID NIH HHS/ -- R01 AI074847-05/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1898-903. doi: 10.1126/science.1208248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960637" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Antibody Complex/immunology ; B-Lymphocytes/immunology/*physiology ; Blood ; Cell Movement ; Chemokines/physiology ; Chemotaxis, Leukocyte ; Down-Regulation ; G-Protein-Coupled Receptor Kinase 2/*metabolism ; Ligands ; Lymph Nodes/cytology ; Lysophospholipids/metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Receptors, Lysosphingolipid/genetics/*metabolism ; Signal Transduction ; Sphingosine/analogs & derivatives/metabolism ; Spleen/cytology/immunology ; T-Lymphocytes/immunology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2011-08-13
    Description: Midbrain dopamine neurons regulate many important behavioral processes, and their dysfunctions are associated with several human neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD) and schizophrenia. Here, we report that these neurons in mice selectively express guanylyl cyclase-C (GC-C), a membrane receptor previously thought to be expressed mainly in the intestine. GC-C activation potentiates the excitatory responses mediated by glutamate and acetylcholine receptors via the activity of guanosine 3',5'-monophosphate-dependent protein kinase (PKG). Mice in which GC-C has been knocked out exhibit hyperactivity and attention deficits. Moreover, their behavioral phenotypes are reversed by ADHD therapeutics and a PKG activator. These results indicate important behavioral and physiological functions for the GC-C/PKG signaling pathway within the brain and suggest new therapeutic targets for neuropsychiatric disorders related to the malfunctions of midbrain dopamine neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Rong -- Ding, Cheng -- Hu, Ji -- Lu, Yao -- Liu, Fei -- Mann, Elizabeth -- Xu, Fuqiang -- Cohen, Mitchell B -- Luo, Minmin -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1642-6. doi: 10.1126/science.1207675. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835979" target="_blank"〉PubMed〈/a〉
    Keywords: Amphetamine/administration & dosage ; Animals ; Attention ; Attention Deficit Disorder with Hyperactivity/genetics/*metabolism ; Behavior, Animal/drug effects ; Cyclic GMP/metabolism ; Cyclic GMP-Dependent Protein Kinases/*metabolism ; Disease Models, Animal ; Dopamine/metabolism ; Enzyme Activation ; Gastrointestinal Hormones/metabolism/pharmacology ; Glycine/analogs & derivatives/metabolism/pharmacology ; Impulsive Behavior ; Ligands ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/drug effects ; Natriuretic Peptides/metabolism/pharmacology ; Neurons/*metabolism ; Patch-Clamp Techniques ; Receptors, Glutamate/metabolism ; Receptors, Guanylate Cyclase-Coupled/genetics/*metabolism ; Receptors, Muscarinic/metabolism ; Receptors, Peptide/genetics/*metabolism ; Resorcinols/metabolism/pharmacology ; Signal Transduction ; Substantia Nigra/cytology/*metabolism ; Ventral Tegmental Area/cytology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2011-01-06
    Description: Rhizobium-root nodule symbiosis is generally considered to be unique for legumes. However, there is one exception, and that is Parasponia. In this nonlegume, the rhizobial nodule symbiosis evolved independently and is, as in legumes, induced by rhizobium Nod factors. We used Parasponia andersonii to identify genetic constraints underlying evolution of Nod factor signaling. Part of the signaling cascade, downstream of Nod factor perception, has been recruited from the more-ancient arbuscular endomycorrhizal symbiosis. However, legume Nod factor receptors that activate this common signaling pathway are not essential for arbuscular endomycorrhizae. Here, we show that in Parasponia a single Nod factor-like receptor is indispensable for both symbiotic interactions. Therefore, we conclude that the Nod factor perception mechanism also is recruited from the widespread endomycorrhizal symbiosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Op den Camp, Rik -- Streng, Arend -- De Mita, Stephane -- Cao, Qingqin -- Polone, Elisa -- Liu, Wei -- Ammiraju, Jetty S S -- Kudrna, Dave -- Wing, Rod -- Untergasser, Andreas -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):909-12. doi: 10.1126/science.1198181. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Wageningen University, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205637" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cloning, Molecular ; Evolution, Molecular ; Gene Duplication ; Genes, Plant ; Glomeromycota/physiology ; Lipopolysaccharides/*metabolism ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/genetics/*metabolism ; RNA Interference ; Root Nodules, Plant/microbiology/physiology ; Signal Transduction ; Sinorhizobium/*physiology ; *Symbiosis ; Ulmaceae/genetics/*microbiology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2011-08-27
    Description: Uterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients. The Mediator complex is a 26-subunit transcriptional regulator that bridges DNA regulatory sequences to the RNA polymerase II initiation complex. All mutations resided in exon 2, suggesting that aberrant function of this region of MED12 contributes to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makinen, Netta -- Mehine, Miika -- Tolvanen, Jaana -- Kaasinen, Eevi -- Li, Yilong -- Lehtonen, Heli J -- Gentile, Massimiliano -- Yan, Jian -- Enge, Martin -- Taipale, Minna -- Aavikko, Mervi -- Katainen, Riku -- Virolainen, Elina -- Bohling, Tom -- Koski, Taru A -- Launonen, Virpi -- Sjoberg, Jari -- Taipale, Jussi -- Vahteristo, Pia -- Aaltonen, Lauri A -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):252-5. doi: 10.1126/science.1208930. Epub 2011 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868628" target="_blank"〉PubMed〈/a〉
    Keywords: Codon ; Exons ; Female ; Gene Expression Profiling ; Humans ; INDEL Mutation ; Introns ; Leiomyoma/*genetics/metabolism ; Mediator Complex/*genetics ; Mutation ; Mutation, Missense ; Signal Transduction ; Uterine Neoplasms/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2011-05-28
    Description: Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Hu, Jimmy Kuang-Hsien -- ten Berge, Derk -- Fernandez-Teran, Marian -- Ros, Maria A -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37 HD032443-17/HD/NICHD NIH HHS/ -- R37HD032443/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1083-6. doi: 10.1126/science.1199499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Proliferation ; Cells, Cultured ; Chick Embryo ; Chondrogenesis ; Culture Media ; Extremities/*embryology ; Fibroblast Growth Factors/metabolism/pharmacology ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/metabolism ; Limb Buds/cytology/*embryology/metabolism ; Mesoderm/cytology/embryology/metabolism ; Neoplasm Proteins/genetics/metabolism ; Signal Transduction ; Tretinoin/metabolism/pharmacology ; Wnt Proteins/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2011-06-18
    Description: Sirtuin 6 (SIRT6) is a mammalian homolog of the yeast Sir2 deacetylase. Mice deficient for SIRT6 exhibit genome instability. Here, we show that in mammalian cells subjected to oxidative stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and stimulates DSB repair, through both nonhomologous end joining and homologous recombination. Our results indicate that SIRT6 physically associates with poly[adenosine diphosphate (ADP)-ribose] polymerase 1 (PARP1) and mono-ADP-ribosylates PARP1 on lysine residue 521, thereby stimulating PARP1 poly-ADP-ribosylase activity and enhancing DSB repair under oxidative stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mao, Zhiyong -- Hine, Christopher -- Tian, Xiao -- Van Meter, Michael -- Au, Matthew -- Vaidya, Amita -- Seluanov, Andrei -- Gorbunova, Vera -- F31 AG041603/AG/NIA NIH HHS/ -- R01 AG027237/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1443-6. doi: 10.1126/science.1202723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, Rochester, NY 14627, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680843" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA/metabolism ; *DNA Breaks, Double-Stranded ; *DNA Repair ; Humans ; Mice ; Mice, Knockout ; *Oxidative Stress ; Paraquat/pharmacology ; Point Mutation ; Poly Adenosine Diphosphate Ribose/metabolism ; Poly(ADP-ribose) Polymerases/genetics/*metabolism ; Recombination, Genetic ; Signal Transduction ; Sirtuins/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benoist, Christophe -- Hacohen, Nir -- New York, N.Y. -- Science. 2011 May 6;332(6030):677-8. doi: 10.1126/science.1206351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA. cb@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21551055" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Marrow Cells/*cytology/*metabolism ; Flow Cytometry/*methods ; Humans ; Lymphocyte Subsets/*cytology/*metabolism ; Mass Spectrometry/*methods ; Metabolic Networks and Pathways ; Metals, Rare Earth ; Signal Transduction ; Single-Cell Analysis/*methods ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowman, Alan F -- Tonkin, Christopher J -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):409-10. doi: 10.1126/science.1201692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. cowman@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273475" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/*metabolism ; Cell Division ; Cell Membrane/metabolism ; Membrane Proteins/metabolism ; Phosphorylation ; Protozoan Proteins/*metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2011-12-14
    Description: Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharjee, Saikat -- Halane, Morgan K -- Kim, Sang Hee -- Gassmann, Walter -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1405-8. doi: 10.1126/science.1211592.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22158819" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*immunology/*metabolism/microbiology ; Arabidopsis Proteins/genetics/*metabolism ; Bacterial Proteins/*metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; *Immunity, Innate ; Models, Biological ; Plant Diseases/immunology/microbiology ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Pseudomonas syringae/growth & development ; Signal Transduction ; Tobacco/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2011-01-29
    Description: Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-beta signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellal, Farida -- Hurtado, Andres -- Ruschel, Jorg -- Flynn, Kevin C -- Laskowski, Claudia J -- Umlauf, Martina -- Kapitein, Lukas C -- Strikis, Dinara -- Lemmon, Vance -- Bixby, John -- Hoogenraad, Casper C -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 HD057632-04/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-03/NS/NINDS NIH HHS/ -- R01 NS059866-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):928-31. doi: 10.1126/science.1201148. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/metabolism ; Cicatrix/pathology/*prevention & control ; Female ; Ganglia, Spinal/cytology ; Kinesin/metabolism ; Microtubules/drug effects/*metabolism ; Paclitaxel/*administration & dosage/pharmacology ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sensory Receptor Cells/physiology ; Signal Transduction ; Smad2 Protein/metabolism ; Spinal Cord/cytology/drug effects ; Spinal Cord Injuries/*drug therapy/pathology/*physiopathology ; *Spinal Cord Regeneration ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2011-01-06
    Description: Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabl, Julius -- Leibundgut, Marc -- Ataide, Sandro F -- Haag, Andrea -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):730-6. doi: 10.1126/science.1198308. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protozoan Proteins/chemistry/metabolism ; RNA, Messenger/chemistry ; RNA, Protozoan/chemistry ; RNA, Ribosomal, 18S/*chemistry ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/*chemistry/metabolism/*ultrastructure ; Signal Transduction ; Tetrahymena thermophila/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2011-06-28
    Description: Synthetic biology has advanced the design of genetic devices that can be used to reprogram metabolic activities in mammalian cells. By functionally linking the signal transduction of melanopsin to the control circuit of the nuclear factor of activated T cells, we have designed a synthetic signaling cascade enabling light-inducible transgene expression in different cell lines grown in culture or bioreactors or implanted into mice. In animals harboring intraperitoneal hollow-fiber or subcutaneous implants containing light-inducible transgenic cells, the serum levels of the human glycoprotein secreted alkaline phosphatase could be remote-controlled with fiber optics or transdermally regulated through direct illumination. Light-controlled expression of the glucagon-like peptide 1 was able to attenuate glycemic excursions in type II diabetic mice. Synthetic light-pulse-transcription converters may have applications in therapeutics and protein expression technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Haifeng -- Daoud-El Baba, Marie -- Peng, Ren-Wang -- Fussenegger, Martin -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1565-8. doi: 10.1126/science.1203535.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosystems Science and Engineering, Eidgenossische Technische Hochschule (ETH) Zurich, Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700876" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics/metabolism ; Animals ; Bioreactors ; Blood Glucose/*metabolism ; Cell Line ; Cell Line, Tumor ; Diabetes Mellitus, Type 2/genetics/*metabolism ; GPI-Linked Proteins/genetics/metabolism ; *Gene Expression Regulation ; Genes, Reporter ; Genetic Engineering/*methods ; Glucagon-Like Peptide 1/genetics/metabolism ; Homeostasis ; Humans ; Insulin/blood ; Isoenzymes/genetics/metabolism ; *Light ; Light Signal Transduction ; Mice ; NFATC Transcription Factors/genetics/metabolism ; Optical Fibers ; Rod Opsins/genetics/metabolism ; Signal Transduction ; Synthetic Biology/*methods ; *Transcription, Genetic ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brakenhoff, Ruud H -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1102-3. doi: 10.1126/science.1210986.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, 1007 MB Amsterdam, Netherlands. rh.brakenhoff@vumc.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868662" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma/*genetics/metabolism ; Carcinoma, Squamous Cell ; Cell Cycle Proteins/genetics/metabolism ; Cell Differentiation ; Exons ; F-Box Proteins/genetics/metabolism ; *Genes, Tumor Suppressor ; Head and Neck Neoplasms/*genetics/metabolism ; Humans ; Mutation ; Neoplasms, Squamous Cell/*genetics/metabolism ; Receptor, Notch1/*genetics/*metabolism ; Sequence Analysis, DNA ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2011-09-10
    Description: How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Quan -- Xiang, Yang -- Yan, Zhiqiang -- Han, Chun -- Jan, Lily Yeh -- Jan, Yuh Nung -- 2R37NS040929/NS/NINDS NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1458-62. doi: 10.1126/science.1207121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Physiology and Biochemistry, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cyclic AMP/metabolism ; Darkness ; Dendrites/*physiology/ultrastructure ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/genetics/growth & development/*physiology ; Larva/physiology ; *Light ; *Light Signal Transduction ; Membrane Proteins/genetics/*metabolism ; Mutation ; *Neuronal Plasticity ; Neurons/physiology/ultrastructure ; Photoreceptor Cells, Invertebrate/*physiology/ultrastructure ; Signal Transduction ; Synapses/*physiology ; Visual Pathways
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2011-12-17
    Description: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Chia-Lin -- Lin, Weiyu -- Seshasayee, Dhaya -- Chen, Yung-Hsiang -- Ding, Xiao -- Lin, Zhonghua -- Suto, Eric -- Huang, Zhiyu -- Lee, Wyne P -- Park, Hyunjoo -- Xu, Min -- Sun, Mei -- Rangell, Linda -- Lutman, Jeff L -- Ulufatu, Sheila -- Stefanich, Eric -- Chalouni, Cecile -- Sagolla, Meredith -- Diehl, Lauri -- Fielder, Paul -- Dean, Brian -- Balazs, Mercedesz -- Martin, Flavius -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):89-92. doi: 10.1126/science.1213682. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174130" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Animals ; Apoptosis ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Histiocytosis/*physiopathology ; *Homeostasis ; Humans ; Hydrogen-Ion Concentration ; Listeriosis/immunology/microbiology ; Lysosomal Storage Diseases/physiopathology ; Lysosomes/*physiology/ultrastructure ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/immunology/*physiology/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelopoiesis ; Nucleoside Transport Proteins/genetics/*physiology ; Phagocytosis ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Signal Transduction ; Thymocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2011-12-17
    Description: Mutations often have consequences that vary across individuals. Here, we show that the stimulation of a stress response can reduce mutation penetrance in Caenorhabditis elegans. Moreover, this induced mutation buffering varies across isogenic individuals because of interindividual differences in stress signaling. This variation has important consequences in wild-type animals, producing some individuals with higher stress resistance but lower reproductive fitness and other individuals with lower stress resistance and higher reproductive fitness. This may be beneficial in an unpredictable environment, acting as a "bet-hedging" strategy to diversify risk. These results illustrate how transient environmental stimuli can induce protection against mutations, how environmental responses can underlie variable mutation buffering, and how a fitness trade-off may make variation in stress signaling advantageous.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casanueva, M Olivia -- Burga, Alejandro -- Lehner, Ben -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):82-5. doi: 10.1126/science.1213491. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory-Center for Genomic Regulation (EMBL-CRG) Systems Biology Unit, CRG and Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174126" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/*genetics/growth & development/physiology ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Nucleus/metabolism ; Environment ; Forkhead Transcription Factors ; *Genetic Fitness ; HSP90 Heat-Shock Proteins/genetics/metabolism ; Heat-Shock Proteins/genetics/metabolism ; *Mutation ; *Penetrance ; Phenotype ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Stress, Physiological ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2011-01-22
    Description: Intracellular pathogens such as Listeria monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon (IFN)-stimulated genes (ISGs). IFN-lambda expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1(+/-) mice or when lntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-lambda-mediated immune response to control bacterial colonization of the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lebreton, Alice -- Lakisic, Goran -- Job, Viviana -- Fritsch, Lauriane -- Tham, To Nam -- Camejo, Ana -- Mattei, Pierre-Jean -- Regnault, Beatrice -- Nahori, Marie-Anne -- Cabanes, Didier -- Gautreau, Alexis -- Ait-Si-Ali, Slimane -- Dessen, Andrea -- Cossart, Pascale -- Bierne, Helene -- 233348/European Research Council/International -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1319-21. doi: 10.1126/science.1200120. Epub 2011 Jan 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Unite des Interactions Bacteries Cellules, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Chromatin/*metabolism ; Chromosomal Proteins, Non-Histone/*metabolism ; Down-Regulation ; Gene Expression Profiling ; Gene Expression Regulation ; Host-Pathogen Interactions ; Humans ; Interferons/genetics/immunology/*metabolism ; Interleukins/genetics/immunology/*metabolism ; Listeria monocytogenes/genetics/metabolism/*pathogenicity ; Listeriosis/*immunology/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; Signal Transduction ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2011-07-23
    Description: Manicassamy et al. (Reports, 13 August 2010, p. 849) deleted beta-catenin in intestinal immune cells using a CD11c-driven Cre recombinase, which decreased anti-inflammatory mediators and increased inflammatory bowel disease. However, the deletion of beta-catenin in macrophages remains a caveat to their interpretation that Wnt signaling programs dendritic cells into a tolerogenic state. Development of strains expressing Cre in a more finely lineage-restricted pattern may help resolve this issue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, Kenneth M -- R01 AI056499/AI/NIAID NIH HHS/ -- R01 DK057665/DK/NIDDK NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):405; author reply 405. doi: 10.1126/science.1198277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. kmurphy@wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778384" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD11c/analysis/genetics ; Dendritic Cells/*immunology/metabolism ; Gene Deletion ; *Immune Tolerance ; Integrases/metabolism ; Intestines/*immunology ; Macrophages/*immunology/metabolism ; Mice ; Mice, Transgenic ; Recombination, Genetic ; Signal Transduction ; beta Catenin/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2011-01-06
    Description: Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Daniel F -- Shackelford, David B -- Mihaylova, Maria M -- Gelino, Sara -- Kohnz, Rebecca A -- Mair, William -- Vasquez, Debbie S -- Joshi, Aashish -- Gwinn, Dana M -- Taylor, Rebecca -- Asara, John M -- Fitzpatrick, James -- Dillin, Andrew -- Viollet, Benoit -- Kundu, Mondira -- Hansen, Malene -- Shaw, Reuben J -- 1P01CA120964/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-05/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 DK080425/DK/NIDDK NIH HHS/ -- R01 DK080425-04/DK/NIDDK NIH HHS/ -- R01 DK080425-05/DK/NIDDK NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-29/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205641" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Energy Metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Mitochondria, Liver/metabolism/ultrastructure ; Phenformin/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohde, John R -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1271-2. doi: 10.1126/science.1203271.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada. john.rohde@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; DNA/chemistry/metabolism ; Epithelial Cells/*microbiology ; Gene Expression Regulation ; Gene Silencing ; Host-Pathogen Interactions ; Humans ; Interferons/immunology/*metabolism ; Interleukins/immunology/*metabolism ; Listeria monocytogenes/genetics/*pathogenicity ; Listeriosis/immunology/*microbiology ; Mice ; Signal Transduction ; Virulence Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-09-03
    Description: A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits "from scratch" that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches are providing fundamental insights into the regulatory architecture, dynamics, and evolution of genetic circuits and enabling new levels of control across diverse biological systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nandagopal, Nagarajan -- Elowitz, Michael B -- 5R01GM079771/GM/NIGMS NIH HHS/ -- 5R01GM086793/GM/NIGMS NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- P50GM068763/GM/NIGMS NIH HHS/ -- R01 GM079771/GM/NIGMS NIH HHS/ -- R01 GM086793/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1244-8. doi: 10.1126/science.1207084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885772" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Processes ; *Gene Regulatory Networks ; *Genetic Engineering ; Signal Transduction ; Synthetic Biology/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2011-07-30
    Description: Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stransky, Nicolas -- Egloff, Ann Marie -- Tward, Aaron D -- Kostic, Aleksandar D -- Cibulskis, Kristian -- Sivachenko, Andrey -- Kryukov, Gregory V -- Lawrence, Michael S -- Sougnez, Carrie -- McKenna, Aaron -- Shefler, Erica -- Ramos, Alex H -- Stojanov, Petar -- Carter, Scott L -- Voet, Douglas -- Cortes, Maria L -- Auclair, Daniel -- Berger, Michael F -- Saksena, Gordon -- Guiducci, Candace -- Onofrio, Robert C -- Parkin, Melissa -- Romkes, Marjorie -- Weissfeld, Joel L -- Seethala, Raja R -- Wang, Lin -- Rangel-Escareno, Claudia -- Fernandez-Lopez, Juan Carlos -- Hidalgo-Miranda, Alfredo -- Melendez-Zajgla, Jorge -- Winckler, Wendy -- Ardlie, Kristin -- Gabriel, Stacey B -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- Garraway, Levi A -- Grandis, Jennifer R -- P50 CA097190/CA/NCI NIH HHS/ -- R01 CA077308/CA/NCI NIH HHS/ -- R01 CA098372/CA/NCI NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1157-60. doi: 10.1126/science.1208130. Epub 2011 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798893" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Apoptosis ; Carcinoma/*genetics/metabolism/virology ; Carcinoma, Squamous Cell ; Cell Differentiation ; Exons ; Head and Neck Neoplasms/*genetics/metabolism/virology ; Humans ; *Mutation ; Neoplasms, Squamous Cell/*genetics/metabolism/virology ; Papillomaviridae/isolation & purification ; Papillomavirus Infections/virology ; Point Mutation ; Receptor, Notch1/*genetics/metabolism ; *Sequence Analysis, DNA ; Sequence Deletion ; Signal Transduction ; Smoking ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2011-11-05
    Description: The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H(+)-adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid-sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211112/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoncu, Roberto -- Bar-Peled, Liron -- Efeyan, Alejo -- Wang, Shuyu -- Sancak, Yasemin -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-07/CA/NCI NIH HHS/ -- R01 CA103866-08/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- R37 AI047389-11/AI/NIAID NIH HHS/ -- R37 AI047389-12/AI/NIAID NIH HHS/ -- R37 AI047389-13/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):678-83. doi: 10.1126/science.1207056.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; Cell Line ; Drosophila ; GTP Phosphohydrolases/metabolism ; Humans ; Lysosomes/*metabolism ; Multiprotein Complexes ; Proteins/*metabolism ; RNA Interference ; Signal Transduction ; TOR Serine-Threonine Kinases ; Vacuolar Proton-Translocating ATPases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-30
    Description: Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the plant Arabidopsis thaliana containing about 6200 highly reliable interactions between about 2700 proteins. A global organization of plant biological processes emerges from community analyses of the resulting network, together with large numbers of novel hypothetical functional links between proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication events, providing evidence for a model of evolution acting upon interactome networks. This and future plant interactome maps should facilitate systems approaches to better understand plant biology and improve crops.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arabidopsis Interactome Mapping Consortium -- F005806/Biotechnology and Biological Sciences Research Council/United Kingdom -- F32 HG004098/HG/NHGRI NIH HHS/ -- F32 HG004098-02/HG/NHGRI NIH HHS/ -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32 HG004830-03/HG/NHGRI NIH HHS/ -- F32HG004098/HG/NHGRI NIH HHS/ -- F32HG004830/HG/NHGRI NIH HHS/ -- R01 GM066025/GM/NIGMS NIH HHS/ -- R01 GM066025-07/GM/NIGMS NIH HHS/ -- R01 HG001715/HG/NHGRI NIH HHS/ -- R01 HG001715-13/HG/NHGRI NIH HHS/ -- R01GM066025/GM/NIGMS NIH HHS/ -- R01HG001715/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):601-7. doi: 10.1126/science.1203877.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798944" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins/metabolism ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Evolution, Molecular ; Genes, Plant ; Plant Growth Regulators/metabolism ; *Protein Interaction Mapping ; Proteome ; Signal Transduction ; Transcription Factors/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2011-10-29
    Description: Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pretreatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from proapoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280949/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280949/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni Chonghaile, Triona -- Sarosiek, Kristopher A -- Vo, Thanh-Trang -- Ryan, Jeremy A -- Tammareddi, Anupama -- Moore, Victoria Del Gaizo -- Deng, Jing -- Anderson, Kenneth C -- Richardson, Paul -- Tai, Yu-Tzu -- Mitsiades, Constantine S -- Matulonis, Ursula A -- Drapkin, Ronny -- Stone, Richard -- Deangelo, Daniel J -- McConkey, David J -- Sallan, Stephen E -- Silverman, Lewis -- Hirsch, Michelle S -- Carrasco, Daniel Ruben -- Letai, Anthony -- P01CA068484/CA/NCI NIH HHS/ -- P01CA139980/CA/NCI NIH HHS/ -- R01 CA129974/CA/NCI NIH HHS/ -- R01 CA129974-05/CA/NCI NIH HHS/ -- R01CA129974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1129-33. doi: 10.1126/science.1206727. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033517" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Animals ; Antineoplastic Agents/*therapeutic use ; *Apoptosis ; Cell Line, Tumor ; Cell Proliferation ; Child ; Disease-Free Survival ; Drug Resistance, Neoplasm ; Female ; Humans ; Leukemia, Myeloid, Acute/drug therapy/physiopathology ; Male ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; Middle Aged ; Mitochondria/*physiology ; Multiple Myeloma/drug therapy/physiopathology ; Neoplasms/*drug therapy/*physiopathology ; Ovarian Neoplasms/drug therapy/physiopathology ; Peptide Fragments/metabolism ; Permeability ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/physiopathology ; Proto-Oncogene Proteins c-bcl-2/chemistry/metabolism ; Remission Induction ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazzaro, Brian P -- Rolff, Jens -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):43-4. doi: 10.1126/science.1200486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Homeostasis ; Immune System/*physiology ; Insects/immunology/microbiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2011-04-09
    Description: The unfolded protein response (UPR), which is activated when unfolded or misfolded proteins accumulate in the endoplasmic reticulum, has been implicated in the normal physiology of immune defense and in several human diseases, including diabetes, cancer, neurodegenerative disease, and inflammatory disease. In this study, we found that the nervous system controlled the activity of a noncanonical UPR pathway required for innate immunity in Caenorhabditis elegans. OCTR-1, a putative octopamine G protein-coupled catecholamine receptor (GPCR, G protein-coupled receptor), functioned in sensory neurons designated ASH and ASI to actively suppress innate immune responses by down-regulating the expression of noncanonical UPR genes pqn/abu in nonneuronal tissues. Our findings suggest a molecular mechanism by which the nervous system may sense inflammatory responses and respond by controlling stress-response pathways at the organismal level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jingru -- Singh, Varsha -- Kajino-Sakamoto, Rie -- Aballay, Alejandro -- GM070977/GM/NIGMS NIH HHS/ -- R01 GM070977/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 May 6;332(6030):729-32. doi: 10.1126/science.1203411. Epub 2011 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Load ; Caenorhabditis elegans/*genetics/*immunology/microbiology ; Caenorhabditis elegans Proteins/genetics/metabolism/*physiology ; Down-Regulation ; Endoplasmic Reticulum/metabolism ; *Genes, Helminth ; *Immunity, Innate ; Intestines/metabolism ; Membrane Proteins/genetics/metabolism ; Mitogen-Activated Protein Kinases/genetics/metabolism ; Mutation ; Pharynx/metabolism ; Pseudomonas aeruginosa/*immunology/pathogenicity ; Receptors, G-Protein-Coupled/genetics/*physiology ; Sensory Receptor Cells/*physiology ; Signal Transduction ; Stress, Physiological ; Transcription, Genetic ; Unfolded Protein Response/*genetics ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Le Goff, Loic -- Lecuit, Thomas -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1141-2. doi: 10.1126/science.1203270.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Institute of Marseilles-Luminy (IBDML), UMR6216 CNRS-Universite de la Mediterranee, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385701" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Drosophila Proteins/*metabolism ; Drosophila melanogaster/cytology/*growth & development/metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Larva/cytology/growth & development/metabolism ; Models, Biological ; Morphogenesis ; Signal Transduction ; Wings, Animal/cytology/*growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2011-07-23
    Description: Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paolicelli, Rosa C -- Bolasco, Giulia -- Pagani, Francesca -- Maggi, Laura -- Scianni, Maria -- Panzanelli, Patrizia -- Giustetto, Maurizio -- Ferreira, Tiago Alves -- Guiducci, Eva -- Dumas, Laura -- Ragozzino, Davide -- Gross, Cornelius T -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1456-8. doi: 10.1126/science.1202529. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00015 Monterotondo, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*growth & development/physiology ; Chemokine CX3CL1/metabolism ; Dendritic Spines/physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Guanylate Kinase/analysis ; Hippocampus/*growth & development/*physiology ; Long-Term Synaptic Depression ; Membrane Proteins/analysis ; Mice ; Mice, Knockout ; Microglia/*physiology ; Miniature Postsynaptic Potentials ; Neuronal Plasticity ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Receptors, Chemokine/genetics/metabolism ; Receptors, Cytokine/genetics/metabolism ; Receptors, HIV/genetics/metabolism ; Signal Transduction ; Synapses/*physiology ; Synaptosomal-Associated Protein 25/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackem, Susan -- Lewandoski, Mark -- New York, N.Y. -- Science. 2011 May 27;332(6033):1038-9. doi: 10.1126/science.1207554.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. mackems@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617061" target="_blank"〉PubMed〈/a〉
    Keywords: Amphibians/physiology ; Animals ; Body Patterning ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Chick Embryo ; Extremities/*embryology ; Fibroblast Growth Factors/*metabolism ; Limb Buds/*cytology/embryology/metabolism ; Mice ; Models, Biological ; Regeneration ; Signal Transduction ; Stem Cells/*cytology/metabolism ; Tretinoin/*metabolism/pharmacology ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Luke A J -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1386-7. doi: 10.1126/science.1208448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland. laoneill@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680829" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Mutant Proteins/chemistry/metabolism ; Mutation ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Pseudomonas/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2011-08-06
    Description: Formation of myelin, the electrical insulation on axons produced by oligodendrocytes, is controlled by complex cell-cell signaling that regulates oligodendrocyte development and myelin formation on appropriate axons. If electrical activity could stimulate myelin induction, then neurodevelopment and the speed of information transmission through circuits could be modified by neural activity. We find that release of glutamate from synaptic vesicles along axons of mouse dorsal root ganglion neurons in culture promotes myelin induction by stimulating formation of cholesterol-rich signaling domains between oligodendrocytes and axons, and increasing local synthesis of the major protein in the myelin sheath, myelin basic protein, through Fyn kinase-dependent signaling. This axon-oligodendrocyte signaling would promote myelination of electrically active axons to regulate neural development and function according to environmental experience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482340/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482340/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wake, Hiroaki -- Lee, Philip R -- Fields, R Douglas -- Z99 HD999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1647-51. doi: 10.1126/science.1206998. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817014" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Adenosine Triphosphate/metabolism ; Animals ; Axons/*physiology ; Calcium/metabolism ; Calcium Signaling ; Cell Differentiation ; Cells, Cultured ; Electric Stimulation ; Ganglia, Spinal/cytology/embryology ; Glutamic Acid/metabolism ; Mice ; Myelin Basic Protein/*biosynthesis/genetics/metabolism ; Myelin Sheath/*physiology ; Neural Stem Cells/cytology/metabolism ; Oligodendroglia/cytology/*metabolism ; Proto-Oncogene Proteins c-fyn/metabolism ; Receptors, Transferrin/metabolism ; Signal Transduction ; Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2011-11-26
    Description: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walter, Peter -- Ron, David -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1081-6. doi: 10.1126/science.1209038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. peter@walterlab.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116877" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 6/metabolism ; Animals ; Apoptosis ; Endoplasmic Reticulum/*metabolism ; *Endoplasmic Reticulum Stress ; Endoplasmic Reticulum-Associated Degradation ; Endoribonucleases/metabolism ; Gene Expression Regulation ; Homeostasis ; Humans ; Protein-Serine-Threonine Kinases/metabolism ; Proteolysis ; Signal Transduction ; *Unfolded Protein Response ; Yeasts/genetics/metabolism ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kereszt, Attila -- Kondorosi, Eva -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):865-6. doi: 10.1126/science.1202342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Plant Genomics, Human Biotechnology and Bioenergy, Bay Zoltan Foundation for Applied Research, Szeged, Hungary. kereszta@baygen.hu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330522" target="_blank"〉PubMed〈/a〉
    Keywords: Evolution, Molecular ; Fabaceae/*microbiology/physiology ; Lipopolysaccharides/metabolism ; Mycorrhizae/physiology ; Nitrogen Fixation ; Plant Proteins/*metabolism ; Plant Root Nodulation ; Protein Kinases/*metabolism ; Rhizobium/*physiology ; Root Nodules, Plant/microbiology/physiology ; Signal Transduction ; *Symbiosis ; Ulmaceae/*microbiology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2011-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- New York, N.Y. -- Science. 2011 Apr 15;332(6027):297. doi: 10.1126/science.332.6027.297.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21493836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aortic Aneurysm/etiology/metabolism/*prevention & control ; Clinical Trials as Topic ; Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors/*metabolism ; Humans ; Losartan/*pharmacology/therapeutic use ; MAP Kinase Signaling System ; Marfan Syndrome/*drug therapy/*metabolism ; Mice ; Protein Kinase Inhibitors/*pharmacology/therapeutic use ; Signal Transduction ; Transforming Growth Factor beta/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2011-09-10
    Description: We report that in heart cells, physiologic stretch rapidly activates reduced-form nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) to produce reactive oxygen species (ROS) in a process dependent on microtubules (X-ROS signaling). ROS production occurs in the sarcolemmal and t-tubule membranes where NOX2 is located and sensitizes nearby ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). This triggers a burst of Ca(2+) sparks, the elementary Ca(2+) release events in heart. Although this stretch-dependent "tuning" of RyRs increases Ca(2+) signaling sensitivity in healthy cardiomyocytes, in disease it enables Ca(2+) sparks to trigger arrhythmogenic Ca(2+) waves. In the mouse model of Duchenne muscular dystrophy, hyperactive X-ROS signaling contributes to cardiomyopathy through aberrant Ca(2+) release from the SR. X-ROS signaling thus provides a mechanistic explanation for the mechanotransduction of Ca(2+) release in the heart and offers fresh therapeutic possibilities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prosser, Benjamin L -- Ward, Christopher W -- Lederer, W J -- L40 AR056534/AR/NIAMS NIH HHS/ -- P01 HL67849/HL/NHLBI NIH HHS/ -- R01 HL106059/HL/NHLBI NIH HHS/ -- R01 HL36974/HL/NHLBI NIH HHS/ -- RC2 NR011968/NR/NINR NIH HHS/ -- S10 RR023028/RR/NCRR NIH HHS/ -- T32 HL072751-07/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1440-5. doi: 10.1126/science.1202768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD 21209, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903813" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Signaling ; Electric Stimulation ; *Mechanotransduction, Cellular ; Membrane Glycoproteins/antagonists & inhibitors/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred mdx ; Microtubules/metabolism ; Muscular Dystrophy, Animal/metabolism/physiopathology ; Myocardial Contraction ; Myocytes, Cardiac/metabolism/*physiology ; NADPH Oxidase/antagonists & inhibitors/*metabolism ; Oxidation-Reduction ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species/*metabolism ; Ryanodine Receptor Calcium Release Channel/metabolism ; Sarcolemma/metabolism ; Sarcoplasmic Reticulum/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim-Muller, Ja Young -- Accili, Domenico -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1529-31. doi: 10.1126/science.1204504.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436429" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diabetes Mellitus, Type 2/drug therapy/metabolism ; Fibroblast Growth Factors/*metabolism/therapeutic use ; Glucose/metabolism ; Humans ; Insulin/*metabolism ; Insulin Resistance ; Lipoproteins/metabolism ; Liver/*metabolism ; Liver Glycogen/metabolism ; Mice ; Protein Biosynthesis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2011-11-26
    Description: Evolutionarily old and conserved homeostatic systems in the brain, including the hypothalamus, are organized into nuclear structures of heterogeneous and diverse neuron populations. To investigate whether such circuits can be functionally reconstituted by synaptic integration of similarly diverse populations of neurons, we generated physically chimeric hypothalami by microtransplanting small numbers of embryonic enhanced green fluorescent protein-expressing, leptin-responsive hypothalamic cells into hypothalami of postnatal leptin receptor-deficient (db/db) mice that develop morbid obesity. Donor neurons differentiated and integrated as four distinct hypothalamic neuron subtypes, formed functional excitatory and inhibitory synapses, partially restored leptin responsiveness, and ameliorated hyperglycemia and obesity in db/db mice. These experiments serve as a proof of concept that transplanted neurons can functionally reconstitute complex neuronal circuitry in the mammalian brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770458/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770458/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Czupryn, Artur -- Zhou, Yu-Dong -- Chen, Xi -- McNay, David -- Anderson, Matthew P -- Flier, Jeffrey S -- Macklis, Jeffrey D -- DKR37-28082/PHS HHS/ -- K02 NS054674/NS/NINDS NIH HHS/ -- NS054674/NS/NINDS NIH HHS/ -- NS057444/NS/NINDS NIH HHS/ -- NS070295/NS/NINDS NIH HHS/ -- NS41590/NS/NINDS NIH HHS/ -- NS45523/NS/NINDS NIH HHS/ -- NS49553/NS/NINDS NIH HHS/ -- R01 NS041590/NS/NINDS NIH HHS/ -- R01 NS045523/NS/NINDS NIH HHS/ -- R01 NS049553/NS/NINDS NIH HHS/ -- R01 NS057444/NS/NINDS NIH HHS/ -- R21 NS070295/NS/NINDS NIH HHS/ -- R37 DK028082/DK/NIDDK NIH HHS/ -- R37 NS041590/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1133-7. doi: 10.1126/science.1209870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/analysis ; Body Weight ; Cell Shape ; Electrophysiological Phenomena ; Excitatory Postsynaptic Potentials ; Glucose/administration & dosage ; Hypothalamus/*cytology/metabolism ; Hypothalamus, Middle/*cytology/metabolism/*physiopathology ; Inhibitory Postsynaptic Potentials ; Insulin/administration & dosage/blood ; Leptin/administration & dosage/*metabolism ; Membrane Potentials ; Mice ; Mice, Obese ; Neurogenesis ; Neurons/cytology/*physiology/*transplantation ; Obesity/metabolism/*physiopathology/*therapy ; Receptors, Leptin/*metabolism ; Signal Transduction ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2011-05-21
    Description: Transcriptionally silent genes can be marked by histone modifications and regulatory proteins that indicate the genes' potential to be activated. Such marks have been identified in pluripotent cells, but it is unknown how such marks occur in descendant, multipotent embryonic cells that have restricted cell fate choices. We isolated mouse embryonic endoderm cells and assessed histone modifications at regulatory elements of silent genes that are activated upon liver or pancreas fate choices. We found that the liver and pancreas elements have distinct chromatin patterns. Furthermore, the histone acetyltransferase P300, recruited via bone morphogenetic protein signaling, and the histone methyltransferase Ezh2 have modulatory roles in the fate choice. These studies reveal a functional "prepattern" of chromatin states within multipotent progenitors and potential targets to modulate cell fate induction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128430/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128430/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Cheng-Ran -- Cole, Philip A -- Meyers, David J -- Kormish, Jay -- Dent, Sharon -- Zaret, Kenneth S -- R01 GM062437/GM/NIGMS NIH HHS/ -- R01 GM062437-12/GM/NIGMS NIH HHS/ -- R01 GM067718/GM/NIGMS NIH HHS/ -- R01 GM067718-08/GM/NIGMS NIH HHS/ -- R37 GM036477/GM/NIGMS NIH HHS/ -- R37 GM036477-28/GM/NIGMS NIH HHS/ -- R37GM36477/GM/NIGMS NIH HHS/ -- U01 DK072503/DK/NIDDK NIH HHS/ -- U01 DK072503-05/DK/NIDDK NIH HHS/ -- U01DK072503/DK/NIDDK NIH HHS/ -- U54MH084691/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):963-6. doi: 10.1126/science.1202845.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596989" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bone Morphogenetic Proteins/metabolism ; Cell Culture Techniques ; Cell Differentiation ; Cell Separation ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Embryonic Development ; Embryonic Induction ; Endoderm/*cytology ; *Gene Expression Regulation, Developmental ; Hepatocytes/cytology ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/*metabolism ; Homeodomain Proteins/genetics/metabolism ; Liver/cytology/*embryology/metabolism ; Mice ; Multipotent Stem Cells/*cytology/metabolism ; Pancreas/cytology/*embryology/metabolism ; Polycomb Repressive Complex 2 ; Protein Processing, Post-Translational ; Regulatory Elements, Transcriptional ; Signal Transduction ; Trans-Activators/genetics/metabolism ; Transcription Factors/metabolism ; p300-CBP Transcription Factors/antagonists & inhibitors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bland, Michelle L -- Birnbaum, Morris J -- P01 DK049210/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1387-8. doi: 10.1126/science.1208444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680830" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adenosine Diphosphate/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/metabolism ; *Energy Metabolism ; Models, Biological ; Phosphorylation ; Protein Subunits/chemistry/metabolism ; Signal Transduction ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2011-03-26
    Description: Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076083/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076083/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kir, Serkan -- Beddow, Sara A -- Samuel, Varman T -- Miller, Paul -- Previs, Stephen F -- Suino-Powell, Kelly -- Xu, H Eric -- Shulman, Gerald I -- Kliewer, Steven A -- Mangelsdorf, David J -- DK40936/DK/NIDDK NIH HHS/ -- DK62434/DK/NIDDK NIH HHS/ -- DK67158/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK040936-23/DK/NIDDK NIH HHS/ -- R01 DK067158/DK/NIDDK NIH HHS/ -- R01 DK067158-09/DK/NIDDK NIH HHS/ -- R24 DK085638/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- U24 DK059635-05/DK/NIDDK NIH HHS/ -- U24 DK076169/DK/NIDDK NIH HHS/ -- U24 DK076169-05/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1621-4. doi: 10.1126/science.1198363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Diabetes Mellitus, Experimental/metabolism ; Eukaryotic Initiation Factors/metabolism ; Fibroblast Growth Factors/*metabolism/*pharmacology ; Glucose/metabolism ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hep G2 Cells ; Humans ; Insulin/*metabolism/pharmacology ; Liver/drug effects/*metabolism ; Liver Glycogen/*biosynthesis ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; *Protein Biosynthesis ; Proto-Oncogene Proteins c-akt/metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardie, D Grahame -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):410-1. doi: 10.1126/science.1201691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Life Sciences, University of Dundee, Scotland DD1 5EH, UK. d.g.hardie@dundee.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273476" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins/metabolism ; AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Cell Survival ; Energy Metabolism ; Evolution, Molecular ; Glucose/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/*metabolism ; Mice ; Mutant Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/physiology ; Signal Transduction ; Stress, Physiological ; TOR Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2011-10-01
    Description: Multiple inhibitory molecules create a profoundly immunuosuppressive environment during chronic viral infections in humans and mice. Therefore, eliciting effective immunity in this context represents a challenge. Here, we report that during a murine chronic viral infection, interleukin-6 (IL-6) was produced by irradiation-resistant cells in a biphasic manner, with late IL-6 being absolutely essential for viral control. The underlying mechanism involved IL-6 signaling on virus-specific CD4 T cells that caused up-regulation of the transcription factor Bcl6 and enhanced T follicular helper cell responses at late, but not early, stages of chronic viral infection. This resulted in escalation of germinal center reactions and improved antibody responses. Our results uncover an antiviral strategy that helps to safely resolve a persistent infection in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harker, James A -- Lewis, Gavin M -- Mack, Lauren -- Zuniga, Elina I -- AI072752/AI/NIAID NIH HHS/ -- AI081923/AI/NIAID NIH HHS/ -- AI09484/AI/NIAID NIH HHS/ -- R01 AI081923/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):825-9. doi: 10.1126/science.1208421. Epub 2011 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/blood/immunology ; Antibody Affinity ; Arenaviridae Infections/*immunology/virology ; B-Lymphocytes/immunology ; Chronic Disease ; Cytokines/blood ; DNA-Binding Proteins/metabolism ; Germinal Center/immunology ; Interleukin-6/blood/*immunology/*metabolism ; Lymphocytic choriomeningitis virus/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Receptors, Interleukin-6/genetics/metabolism ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Slack, Jonathan M W -- New York, N.Y. -- Science. 2011 May 13;332(6031):799-800. doi: 10.1126/science.1206913.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Institute, The University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA. slack017@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566180" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Separation ; Cell Survival ; Flow Cytometry ; Gene Expression ; Genes, Helminth ; Head ; Helminth Proteins/genetics/metabolism ; Hydrolases/genetics/metabolism ; Planarians/*cytology/*physiology ; Pluripotent Stem Cells/cytology/*physiology ; *Regeneration ; Signal Transduction ; Tail ; Wnt Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2011-09-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ransohoff, Richard M -- Stevens, Beth -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1391-2. doi: 10.1126/science.1212112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. ransohr@ccf.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Brain/*growth & development/physiology ; Chemokine CX3CL1/metabolism ; Dendritic Spines/physiology/ultrastructure ; Hippocampus/*growth & development/physiology ; Mice ; Mice, Knockout ; Microglia/*physiology ; Neuronal Plasticity ; Receptors, Cytokine/genetics/metabolism ; Receptors, HIV/genetics/metabolism ; Signal Transduction ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-08-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smyth, Mark J -- Kershaw, Michael H -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):944-5. doi: 10.1126/science.1210801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, 3002 Victoria, Australia. mark.smyth@petermac.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852479" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; *Adjuvants, Immunologic ; Animals ; Antibodies, Monoclonal/*immunology/metabolism ; Antigen Presentation ; Antigen-Presenting Cells/immunology ; Antigens, CD40/*immunology ; Dendritic Cells/immunology ; Immunoglobulin Fc Fragments/immunology/metabolism ; Lymphocyte Activation ; Mice ; Neoplasms/immunology/therapy ; Ovalbumin/immunology ; Receptors, IgG/immunology/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183821/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183821/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Hao -- Siegel, Richard M -- R01 AI045937/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):427-8. doi: 10.1126/science.1205992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/metabolism/pharmacology ; Arthritis, Experimental/drug therapy/*immunology/*metabolism ; Binding, Competitive ; Humans ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism/pharmacology ; Ligands ; Mice ; Protein Binding ; Protein Interaction Domains and Motifs ; Receptors, Tumor Necrosis Factor, Type I/chemistry/*metabolism ; Receptors, Tumor Necrosis Factor, Type II/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism/pharmacology ; Signal Transduction ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2011-11-26
    Description: Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soon, Fen-Fen -- Ng, Ley-Moy -- Zhou, X Edward -- West, Graham M -- Kovach, Amanda -- Tan, M H Eileen -- Suino-Powell, Kelly M -- He, Yuanzheng -- Xu, Yong -- Chalmers, Michael J -- Brunzelle, Joseph S -- Zhang, Huiming -- Yang, Huaiyu -- Jiang, Hualiang -- Li, Jun -- Yong, Eu-Leong -- Cutler, Sean -- Zhu, Jian-Kang -- Griffin, Patrick R -- Melcher, Karsten -- Xu, H Eric -- GM084041/GM/NIGMS NIH HHS/ -- R01 GM059138/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):85-8. doi: 10.1126/science.1215106. Epub 2011 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116026" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/chemistry/*metabolism ; Amino Acid Sequence ; Arabidopsis/chemistry/*metabolism ; Arabidopsis Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2010-12-15
    Description: Insulin-like growth factor 1 (IGF-1) induces skeletal muscle maturation and enlargement (hypertrophy). These responses require protein synthesis and myofibril formation (myofibrillogenesis). However, the signaling mechanisms of myofibrillogenesis remain obscure. We found that IGF-1-induced phosphatidylinositol 3-kinase-Akt signaling formed a complex of nebulin and N-WASP at the Z bands of myofibrils by interfering with glycogen synthase kinase-3beta in mice. Although N-WASP is known to be an activator of the Arp2/3 complex to form branched actin filaments, the nebulin-N-WASP complex caused actin nucleation for unbranched actin filament formation from the Z bands without the Arp2/3 complex. Furthermore, N-WASP was required for IGF-1-induced muscle hypertrophy. These findings present the mechanisms of IGF-1-induced actin filament formation in myofibrillogenesis required for muscle maturation and hypertrophy and a mechanism of actin nucleation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takano, Kazunori -- Watanabe-Takano, Haruko -- Suetsugu, Shiro -- Kurita, Souichi -- Tsujita, Kazuya -- Kimura, Sumiko -- Karatsu, Takashi -- Takenawa, Tadaomi -- Endo, Takeshi -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1536-40. doi: 10.1126/science.1197767.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148390" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism ; Actins/*metabolism ; Animals ; COS Cells ; Cercopithecus aethiops ; Hypertrophy ; Insulin-Like Growth Factor I/*metabolism ; Mice ; Mice, Inbred ICR ; *Muscle Development ; Muscle Proteins/chemistry/*metabolism ; Muscle, Skeletal/metabolism/pathology ; Myofibrils/metabolism ; Phosphatidylinositol 3-Kinase/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins c-akt/metabolism ; RNA Interference ; Sarcomeres/*metabolism ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/chemistry/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2010-02-27
    Description: The beta1- and beta2-adrenergic receptors (betaARs) on the surface of cardiomyocytes mediate distinct effects on cardiac function and the development of heart failure by regulating production of the second messenger cyclic adenosine monophosphate (cAMP). The spatial localization in cardiomyocytes of these betaARs, which are coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins), and the functional implications of their localization have been unclear. We combined nanoscale live-cell scanning ion conductance and fluorescence resonance energy transfer microscopy techniques and found that, in cardiomyocytes from healthy adult rats and mice, spatially confined beta2AR-induced cAMP signals are localized exclusively to the deep transverse tubules, whereas functional beta1ARs are distributed across the entire cell surface. In cardiomyocytes derived from a rat model of chronic heart failure, beta2ARs were redistributed from the transverse tubules to the cell crest, which led to diffuse receptor-mediated cAMP signaling. Thus, the redistribution of beta(2)ARs in heart failure changes compartmentation of cAMP and might contribute to the failing myocardial phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nikolaev, Viacheslav O -- Moshkov, Alexey -- Lyon, Alexander R -- Miragoli, Michele -- Novak, Pavel -- Paur, Helen -- Lohse, Martin J -- Korchev, Yuri E -- Harding, Sian E -- Gorelik, Julia -- 084064/Wellcome Trust/United Kingdom -- BB/D020875/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500373/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1653-7. doi: 10.1126/science.1185988. Epub 2010 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Compartmentation ; Cell Membrane/*metabolism/ultrastructure ; Chronic Disease ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytosol/metabolism ; Fluorescence Resonance Energy Transfer ; Heart Failure/*metabolism/*pathology ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Microscopy/methods ; Myocytes, Cardiac/*metabolism/ultrastructure ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, beta-1/genetics/metabolism ; Receptors, Adrenergic, beta-2/genetics/*metabolism ; Sarcolemma/*metabolism/ultrastructure ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Chang C -- Arkin, Adam P -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1185-6. doi: 10.1126/science.1199495.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California, Berkeley, CA 94720, USA. ccliu@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109657" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Apoptosis ; Aptamers, Nucleotide/chemistry/genetics/*metabolism ; Artificial Gene Fusion ; Biotechnology ; Ganciclovir/pharmacology ; *Gene Expression Regulation ; *Genetic Engineering ; Humans ; Introns ; NF-kappa B/genetics/metabolism ; Nucleic Acid Conformation ; Protein Biosynthesis ; RNA/chemistry/genetics/*metabolism ; Signal Transduction ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2010-12-04
    Description: Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levine, Arnold J -- Puzio-Kuter, Anna M -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1340-4. doi: 10.1126/science.1193494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Advanced Study, Princeton, NJ 08540, USA. alevine@ias.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127244" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Cell Division ; Citric Acid Cycle ; Gene Expression Regulation, Neoplastic ; *Genes, Tumor Suppressor ; Glucose/metabolism ; Glutamine/metabolism ; Glycolysis ; Humans ; NADP/metabolism ; Neoplasms/drug therapy/*genetics/*metabolism/pathology ; *Oncogenes ; Pentose Phosphate Pathway ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...