ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-05
    Description: The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodelling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, HAND2, MEF2C and TBX5, can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodelling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Kunhua -- Nam, Young-Jae -- Luo, Xiang -- Qi, Xiaoxia -- Tan, Wei -- Huang, Guo N -- Acharya, Asha -- Smith, Christopher L -- Tallquist, Michelle D -- Neilson, Eric G -- Hill, Joseph A -- Bassel-Duby, Rhonda -- Olson, Eric N -- K99 HL114738/HL/NHLBI NIH HHS/ -- P50 HL061033/HL/NHLBI NIH HHS/ -- R01 AR040339/AR/NIAMS NIH HHS/ -- R01 HL053351/HL/NHLBI NIH HHS/ -- R01 HL061544/HL/NHLBI NIH HHS/ -- R01 HL077439/HL/NHLBI NIH HHS/ -- R01 HL083371/HL/NHLBI NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL111665/HL/NHLBI NIH HHS/ -- R37 HL053351/HL/NHLBI NIH HHS/ -- S10 RR019137/RR/NCRR NIH HHS/ -- England -- Nature. 2012 May 13;485(7400):599-604. doi: 10.1038/nature11139.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22660318" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Cell Lineage ; *Cell Transdifferentiation ; *Cellular Reprogramming ; Fibroblasts/*cytology/physiology ; Heart/*physiology/physiopathology ; Mice ; Myocardial Infarction/pathology/physiopathology/*therapy ; Myocardium/cytology/pathology ; Myocytes, Cardiac/*cytology/physiology ; Phenotype ; Regenerative Medicine/methods ; S100 Proteins/genetics/metabolism ; Tail/cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-26
    Description: T cell receptor (TCR) and costimulatory receptor (CD28) signals cooperate in activating T cells, although understanding of how these pathways are themselves regulated is incomplete. We found that Homer2 and Homer3, members of the Homer family of cytoplasmic scaffolding proteins, are negative regulators of T cell activation. This is achieved through binding of nuclear factor of activated T cells (NFAT) and by competing with calcineurin. Homer-NFAT binding was also antagonized by active serine-threonine kinase AKT, thereby enhancing TCR signaling via calcineurin-dependent dephosphorylation of NFAT. This corresponded with changes in cytokine expression and an increase in effector-memory T cell populations in Homer-deficient mice, which also developed autoimmune-like pathology. These results demonstrate a further means by which costimulatory signals are regulated to control self-reactivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Guo N -- Huso, David L -- Bouyain, Samuel -- Tu, Jianchen -- McCorkell, Kelly A -- May, Michael J -- Zhu, Yuwen -- Lutz, Michael -- Collins, Samuel -- Dehoff, Marlin -- Kang, Shin -- Whartenby, Katharine -- Powell, Jonathan -- Leahy, Daniel -- Worley, Paul F -- DA00266/DA/NIDA NIH HHS/ -- DA10309/DA/NIDA NIH HHS/ -- P30 CA006973/CA/NCI NIH HHS/ -- R01 CA098109/CA/NCI NIH HHS/ -- T32 CA009140/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):476-81. doi: 10.1126/science.1151227.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biochemistry, Cellular and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD28/immunology ; Antigens, CD3/immunology ; Calcineurin/metabolism ; Calcium/metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Crystallography, X-Ray ; Humans ; Jurkat Cells ; *Lymphocyte Activation ; Mice ; Mice, Knockout ; NFATC Transcription Factors/chemistry/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-akt/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-20
    Description: The epicardium encapsulates the heart and functions as a source of multipotent progenitor cells and paracrine factors essential for cardiac development and repair. Injury of the adult heart results in reactivation of a developmental gene program in the epicardium, but the transcriptional basis of epicardial gene expression has not been delineated. We established a mouse embryonic heart organ culture and gene expression system that facilitated the identification of epicardial enhancers activated during heart development and injury. Epicardial activation of these enhancers depends on a combinatorial transcriptional code centered on CCAAT/enhancer binding protein (C/EBP) transcription factors. Disruption of C/EBP signaling in the adult epicardium reduced injury-induced neutrophil infiltration and improved cardiac function. These findings reveal a transcriptional basis for epicardial activation and heart injury, providing a platform for enhancing cardiac regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Guo N -- Thatcher, Jeffrey E -- McAnally, John -- Kong, Yongli -- Qi, Xiaoxia -- Tan, Wei -- DiMaio, J Michael -- Amatruda, James F -- Gerard, Robert D -- Hill, Joseph A -- Bassel-Duby, Rhonda -- Olson, Eric N -- 1K99HL114738/HL/NHLBI NIH HHS/ -- HL100401-01/HL/NHLBI NIH HHS/ -- K99 HL114738/HL/NHLBI NIH HHS/ -- R01 HL077439/HL/NHLBI NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL111665/HL/NHLBI NIH HHS/ -- U01 HL100401/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1599-603. doi: 10.1126/science.1229765. Epub 2012 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23160954" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/genetics/metabolism ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Protein-beta/genetics/metabolism ; CCAAT-Enhancer-Binding Protein-delta/genetics/metabolism ; CCAAT-Enhancer-Binding Proteins/genetics/*metabolism ; Enhancer Elements, Genetic ; Female ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Heart/embryology/*physiopathology ; Male ; Mice ; Mice, Transgenic ; Models, Genetic ; Myocardial Contraction ; Myocardial Infarction/*genetics/metabolism ; Myocardial Reperfusion Injury/*genetics/metabolism ; Neutrophil Infiltration ; Oligonucleotide Array Sequence Analysis ; Organ Culture Techniques ; Pericardium/cytology/*embryology/*metabolism ; Signal Transduction ; Uroplakin III/genetics/metabolism ; Ventricular Remodeling ; WT1 Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Patients with neurofibromatosis type 1 (NF1) are predisposed to develop neurofibromas, but the underlying molecular mechanisms of neurofibromagenesis are not fully understood. We showed dual genetic deletion of 〈i〉Runx1〈/i〉 and 〈i〉Runx3〈/i〉 in Schwann cells (SCs) and SC precursors delayed neurofibromagenesis and prolonged mouse survival. We identified peripheral myelin protein 22 (〈i〉Pmp22/Gas3〈/i〉) related to neurofibroma initiation. Knockdown of 〈i〉Pmp22〈/i〉 with short hairpin RNAs increased 〈i〉Runx1〈sup〉fl/fl〈/sup〉;Runx3〈sup〉fl/fl〈/sup〉;Nf1〈sup〉fl/fl〈/sup〉;DhhCre〈/i〉 tumor-derived sphere numbers and enabled significantly more neurofibroma-like microlesions on transplantation. Conversely, overexpression of 〈i〉Pmp22〈/i〉 in mouse neurofibroma SCs decreased cell proliferation. Mechanistically, RUNX1/3 regulated alternative promoter usage and induced levels of protein expression of 〈i〉Pmp22〈/i〉 to control SC growth. Last, pharmacological inhibition of RUNX/core-binding factor β (CBFB) activity significantly reduced neurofibroma volume in vivo. Thus, we identified a signaling pathway involving RUNX1/3 suppression of 〈i〉Pmp22〈/i〉 in neurofibroma initiation and/or maintenance. Targeting disruption of RUNX/CBFB interaction might provide a novel therapy for patients with neurofibroma.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...