ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice, Inbred C57BL  (324)
  • Nature Publishing Group (NPG)  (324)
  • American Institute of Physics (AIP)
  • Wiley
  • 2010-2014  (324)
  • 1990-1994
Collection
Publisher
Years
Year
  • 101
    Publication Date: 2013-11-08
    Description: Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates. Here we show that physiologically enriched CD71(+) erythroid cells in neonatal mice and human cord blood have distinctive immunosuppressive properties. The production of innate immune protective cytokines by adult cells is diminished after transfer to neonatal mice or after co-culture with neonatal splenocytes. Neonatal CD71(+) cells express the enzyme arginase-2, and arginase activity is essential for the immunosuppressive properties of these cells because molecular inhibition of this enzyme or supplementation with L-arginine overrides immunosuppression. In addition, the ablation of CD71(+) cells in neonatal mice, or the decline in number of these cells as postnatal development progresses parallels the loss of suppression, and restored resistance to the perinatal pathogens Listeria monocytogenes and Escherichia coli. However, CD71(+) cell-mediated susceptibility to infection is counterbalanced by CD71(+) cell-mediated protection against aberrant immune cell activation in the intestine, where colonization with commensal microorganisms occurs swiftly after parturition. Conversely, circumventing such colonization by using antimicrobials or gnotobiotic germ-free mice overrides these protective benefits. Thus, CD71(+) cells quench the excessive inflammation induced by abrupt colonization with commensal microorganisms after parturition. This finding challenges the idea that the susceptibility of neonates to infection reflects immune-cell-intrinsic defects and instead highlights processes that are developmentally more essential and inadvertently mitigate innate immune protection. We anticipate that these results will spark renewed investigation into the need for immunosuppression in neonates, as well as improved strategies for augmenting host defence in this vulnerable population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elahi, Shokrollah -- Ertelt, James M -- Kinder, Jeremy M -- Jiang, Tony T -- Zhang, Xuzhe -- Xin, Lijun -- Chaturvedi, Vandana -- Strong, Beverly S -- Qualls, Joseph E -- Steinbrecher, Kris A -- Kalfa, Theodosia A -- Shaaban, Aimen F -- Way, Sing Sing -- P30 DK090971/DK/NIDDK NIH HHS/ -- R01 AI087830/AI/NIAID NIH HHS/ -- R01 AI100934/AI/NIAID NIH HHS/ -- R01 HL103745/HL/NHLBI NIH HHS/ -- R01 HL116352/HL/NHLBI NIH HHS/ -- R01AI087830/AI/NIAID NIH HHS/ -- R01AI100934/AI/NIAID NIH HHS/ -- R01HL103745/HL/NHLBI NIH HHS/ -- R21 AI107274/AI/NIAID NIH HHS/ -- T32 GM063483/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Dec 5;504(7478):158-62. doi: 10.1038/nature12675. Epub 2013 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24196717" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antigens, CD/*metabolism ; Arginase/genetics/metabolism ; Disease Susceptibility/immunology ; Enzyme Activation/drug effects ; Enzyme Inhibitors/pharmacology ; Erythroid Cells/enzymology/*immunology ; Escherichia coli/immunology ; Escherichia coli Infections/*immunology ; Female ; Fetal Blood/cytology ; Humans ; Immune Tolerance/drug effects/genetics/*immunology ; Listeria monocytogenes/immunology ; Listeriosis/*immunology ; Male ; Mice ; Mice, Inbred C57BL ; Receptors, Transferrin/*metabolism ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2013-05-24
    Description: Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-gammat-positive (RORgammat(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORgammat(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORgammat(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hepworth, Matthew R -- Monticelli, Laurel A -- Fung, Thomas C -- Ziegler, Carly G K -- Grunberg, Stephanie -- Sinha, Rohini -- Mantegazza, Adriana R -- Ma, Hak-Ling -- Crawford, Alison -- Angelosanto, Jill M -- Wherry, E John -- Koni, Pandelakis A -- Bushman, Frederic D -- Elson, Charles O -- Eberl, Gerard -- Artis, David -- Sonnenberg, Gregory F -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI095776/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- DK071176/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- P01 DK071176/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30DK50306/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32 AI007532/AI/NIAID NIH HHS/ -- T32 AI055428/AI/NIAID NIH HHS/ -- T32-AI055428/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 6;498(7452):113-7. doi: 10.1038/nature12240. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698371" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation/immunology ; Bacteria/*immunology ; CD4-Positive T-Lymphocytes/cytology/*immunology/pathology ; Cell Proliferation ; Histocompatibility Antigens Class II/immunology/metabolism ; Humans ; Immunity, Innate/*immunology ; Inflammation/pathology ; Interleukin-17/metabolism ; Interleukin-23/metabolism ; Interleukins/metabolism ; Intestines/*immunology/*microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2013-10-22
    Description: Many organs with a high cell turnover (for example, skin, intestine and blood) are composed of short-lived cells that require continuous replenishment by somatic stem cells. Ageing results in the inability of these tissues to maintain homeostasis and it is believed that somatic stem-cell ageing is one underlying cause of tissue attrition with age or age-related diseases. Ageing of haematopoietic stem cells (HSCs) is associated with impaired haematopoiesis in the elderly. Despite a large amount of data describing the decline of HSC function on ageing, the molecular mechanisms of this process remain largely unknown, which precludes rational approaches to attenuate stem-cell ageing. Here we report an unexpected shift from canonical to non-canonical Wnt signalling in mice due to elevated expression of Wnt5a in aged HSCs, which causes stem-cell ageing. Wnt5a treatment of young HSCs induces ageing-associated stem-cell apolarity, reduction of regenerative capacity and an ageing-like myeloid-lymphoid differentiation skewing via activation of the small Rho GTPase Cdc42. Conversely, Wnt5a haploinsufficiency attenuates HSC ageing, whereas stem-cell-intrinsic reduction of Wnt5a expression results in functionally rejuvenated aged HSCs. Our data demonstrate a critical role for stem-cell-intrinsic non-canonical Wnt5a signalling in HSC ageing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Florian, Maria Carolina -- Nattamai, Kalpana J -- Dorr, Karin -- Marka, Gina -- Uberle, Bettina -- Vas, Virag -- Eckl, Christina -- Andra, Immanuel -- Schiemann, Matthias -- Oostendorp, Robert A J -- Scharffetter-Kochanek, Karin -- Kestler, Hans Armin -- Zheng, Yi -- Geiger, Hartmut -- AG040118/AG/NIA NIH HHS/ -- DK077762/DK/NIDDK NIH HHS/ -- HL076604/HL/NHLBI NIH HHS/ -- R01 AG040118/AG/NIA NIH HHS/ -- England -- Nature. 2013 Nov 21;503(7476):392-6. doi: 10.1038/nature12631. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology and Allergic Diseases, University of Ulm, 89091 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Aging ; Cell Differentiation ; Cell Polarity ; Female ; Haploinsufficiency ; Hematopoietic Stem Cells/*cytology ; Male ; Mice ; Mice, Inbred C57BL ; Phenotype ; Rejuvenation ; Wnt Proteins/deficiency/genetics/metabolism ; *Wnt Signaling Pathway ; cdc42 GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2013-10-04
    Description: Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferrero, David M -- Moeller, Lisa M -- Osakada, Takuya -- Horio, Nao -- Li, Qian -- Roy, Dheeraj S -- Cichy, Annika -- Spehr, Marc -- Touhara, Kazushige -- Liberles, Stephen D -- P30 HD018655/HD/NICHD NIH HHS/ -- R01 DC010155/DC/NIDCD NIH HHS/ -- England -- Nature. 2013 Oct 17;502(7471):368-71. doi: 10.1038/nature12579. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089208" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Amygdala/cytology ; Animals ; Female ; Lacrimal Apparatus/secretion ; Male ; Mice ; Mice, Inbred C57BL ; Pheromones/*metabolism/pharmacology/secretion ; Sensory Receptor Cells/metabolism ; *Sexual Behavior, Animal/drug effects ; *Sexual Maturation ; TRPC Cation Channels/deficiency/genetics/metabolism ; Tears/secretion ; Vomeronasal Organ/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2013-05-03
    Description: Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IkappaB kinase-beta (IKK-beta), nuclear factor kappaB (NF-kappaB) and related microglia-neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-beta and NF-kappaB activation. Mechanistic studies further revealed that IKK-beta and NF-kappaB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing. In conclusion, the hypothalamus has a programmatic role in ageing development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Guo -- Li, Juxue -- Purkayastha, Sudarshana -- Tang, Yizhe -- Zhang, Hai -- Yin, Ye -- Li, Bo -- Liu, Gang -- Cai, Dongsheng -- P30 AG038072/AG/NIA NIH HHS/ -- P60 DK020541/DK/NIDDK NIH HHS/ -- R01 AG031774/AG/NIA NIH HHS/ -- R01 DK078750/DK/NIDDK NIH HHS/ -- R01AG031774/AG/NIA NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):211-6. doi: 10.1038/nature12143. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636330" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/drug effects/genetics/*physiology ; Animals ; Brain/drug effects/physiology ; Cognition/drug effects ; Female ; Gonadotropin-Releasing Hormone/antagonists & inhibitors/*metabolism/pharmacology ; Hypothalamus/cytology/drug effects/enzymology/*physiology ; I-kappa B Kinase/deficiency/genetics/*metabolism ; Longevity/drug effects/genetics/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microglia/enzymology/physiology ; NF-kappa B/*metabolism ; Neurogenesis ; Reproduction/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2013-06-04
    Description: Through their functional diversification, distinct lineages of CD4(+) T cells can act to either drive or constrain immune-mediated pathology. Transcription factors are critical in the generation of cellular diversity, and negative regulators antagonistic to alternate fates often act in conjunction with positive regulators to stabilize lineage commitment. Genetic polymorphisms within a single locus encoding the transcription factor BACH2 are associated with numerous autoimmune and allergic diseases including asthma, Crohn's disease, coeliac disease, vitiligo, multiple sclerosis and type 1 diabetes. Although these associations point to a shared mechanism underlying susceptibility to diverse immune-mediated diseases, a function for BACH2 in the maintenance of immune homeostasis has not been established. Here, by studying mice in which the Bach2 gene is disrupted, we define BACH2 as a broad regulator of immune activation that stabilizes immunoregulatory capacity while repressing the differentiation programs of multiple effector lineages in CD4(+) T cells. BACH2 was required for efficient formation of regulatory (Treg) cells and consequently for suppression of lethal inflammation in a manner that was Treg-cell-dependent. Assessment of the genome-wide function of BACH2, however, revealed that it represses genes associated with effector cell differentiation. Consequently, its absence during Treg polarization resulted in inappropriate diversion to effector lineages. In addition, BACH2 constrained full effector differentiation within TH1, TH2 and TH17 cell lineages. These findings identify BACH2 as a key regulator of CD4(+) T-cell differentiation that prevents inflammatory disease by controlling the balance between tolerance and immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roychoudhuri, Rahul -- Hirahara, Kiyoshi -- Mousavi, Kambiz -- Clever, David -- Klebanoff, Christopher A -- Bonelli, Michael -- Sciume, Giuseppe -- Zare, Hossein -- Vahedi, Golnaz -- Dema, Barbara -- Yu, Zhiya -- Liu, Hui -- Takahashi, Hayato -- Rao, Mahadev -- Muranski, Pawel -- Crompton, Joseph G -- Punkosdy, George -- Bedognetti, Davide -- Wang, Ena -- Hoffmann, Victoria -- Rivera, Juan -- Marincola, Francesco M -- Nakamura, Atsushi -- Sartorelli, Vittorio -- Kanno, Yuka -- Gattinoni, Luca -- Muto, Akihiko -- Igarashi, Kazuhiko -- O'Shea, John J -- Restifo, Nicholas P -- Z01 BC011037-01/Intramural NIH HHS/ -- Z99 CA999999/Intramural NIH HHS/ -- ZIA BC011037-02/Intramural NIH HHS/ -- England -- Nature. 2013 Jun 27;498(7455):506-10. doi: 10.1038/nature12199. Epub 2013 Jun 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. roychoudhuri@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23728300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoimmunity/immunology ; Basic-Leucine Zipper Transcription Factors/deficiency/genetics/*metabolism ; CD4-Positive T-Lymphocytes/cytology/immunology/metabolism ; Cell Differentiation/genetics/immunology ; Female ; Forkhead Transcription Factors/genetics/metabolism ; Homeostasis/genetics/*immunology ; Humans ; Immune Tolerance/genetics/immunology ; Inflammation/genetics/immunology/mortality/pathology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; T-Lymphocytes, Regulatory/cytology/drug effects/*immunology/metabolism ; Transforming Growth Factor beta/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2013-09-17
    Description: Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins mediate eosinophil development and survival, and tissue recruitment, respectively, the processes underlying the basal regulation of these signals remain unknown. Here we show that serum IL-5 levels are maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 cells secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, ILC2 cells co-express IL-5 and IL-13; this co-expression is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide also stimulates ILC2 cells through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 cells regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nussbaum, Jesse C -- Van Dyken, Steven J -- von Moltke, Jakob -- Cheng, Laurence E -- Mohapatra, Alexander -- Molofsky, Ari B -- Thornton, Emily E -- Krummel, Matthew F -- Chawla, Ajay -- Liang, Hong-Erh -- Locksley, Richard M -- AI007334/AI/NIAID NIH HHS/ -- AI007641/AI/NIAID NIH HHS/ -- AI026918/AI/NIAID NIH HHS/ -- AI030663/AI/NIAID NIH HHS/ -- AI078869/AI/NIAID NIH HHS/ -- DK063720/DK/NIDDK NIH HHS/ -- DP1 AR064158/AR/NIAMS NIH HHS/ -- HL107202/HL/NHLBI NIH HHS/ -- P01 HL024136/HL/NHLBI NIH HHS/ -- P01 HL107202/HL/NHLBI NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 AI030663/AI/NIAID NIH HHS/ -- R37 AI026918/AI/NIAID NIH HHS/ -- T32 AI007641/AI/NIAID NIH HHS/ -- T32 GM007618/GM/NIGMS NIH HHS/ -- T32 HD044331/HD/NICHD NIH HHS/ -- U19 AI077439/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Oct 10;502(7470):245-8. doi: 10.1038/nature12526. Epub 2013 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California San Francisco, San Francisco, California 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24037376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Circadian Rhythm ; Collagen/metabolism ; Eosinophils/immunology/*metabolism/parasitology ; Female ; Gene Expression Regulation ; *Homeostasis ; Interleukin-13/genetics/metabolism ; Interleukin-5/blood/genetics/metabolism ; Lung/immunology/metabolism/parasitology ; Lymphocytes/immunology/*metabolism/parasitology ; Male ; Mice ; Mice, Inbred C57BL ; Nippostrongylus/physiology ; Strongylida Infections/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2013-04-26
    Description: Skeletal muscle arises from the fusion of precursor myoblasts into multinucleated myofibres. Although conserved transcription factors and signalling proteins involved in myogenesis have been identified, upstream regulators are less well understood. Here we report an unexpected discovery that the membrane protein BAI1, previously linked to recognition of apoptotic cells by phagocytes, promotes myoblast fusion. Endogenous BAI1 expression increased during myoblast fusion, and BAI1 overexpression enhanced myoblast fusion by means of signalling through ELMO/Dock180/Rac1 proteins. During myoblast fusion, a fraction of myoblasts within the population underwent apoptosis and exposed phosphatidylserine, an established ligand for BAI1 (ref. 3). Blocking apoptosis potently impaired myoblast fusion, and adding back apoptotic myoblasts restored fusion. Furthermore, primary human myoblasts could be induced to form myotubes by adding apoptotic myoblasts, even under normal growth conditions. Mechanistically, apoptotic cells did not directly fuse with the healthy myoblasts, rather the apoptotic cells induced a contact-dependent signalling with neighbours to promote fusion among the healthy myoblasts. In vivo, myofibres from Bai1(-/-) mice are smaller than those from wild-type littermates. Muscle regeneration after injury was also impaired in Bai1(-/-)mice, highlighting a role for BAI1 in mammalian myogenesis. Collectively, these data identify apoptotic cells as a new type of cue that induces signalling via the phosphatidylserine receptor BAI1 to promote fusion of healthy myoblasts, with important implications for muscle development and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hochreiter-Hufford, Amelia E -- Lee, Chang Sup -- Kinchen, Jason M -- Sokolowski, Jennifer D -- Arandjelovic, Sanja -- Call, Jarrod A -- Klibanov, Alexander L -- Yan, Zhen -- Mandell, James W -- Ravichandran, Kodi S -- P30 CA044579/CA/NCI NIH HHS/ -- R01 GM064709/GM/NIGMS NIH HHS/ -- T32 AI007496/AI/NIAID NIH HHS/ -- T32 AR007612/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):263-7. doi: 10.1038/nature12135. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615608" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenic Proteins/deficiency/genetics/*metabolism ; Animals ; Apoptosis/drug effects/*physiology ; Cell Communication ; Cell Differentiation ; *Cell Fusion ; Cell Line ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Development ; Muscle Fibers, Skeletal/cytology/metabolism/pathology ; Muscle, Skeletal/*cytology/metabolism ; Myoblasts/*cytology/metabolism ; Phosphatidylserines/metabolism ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2013-06-28
    Description: Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer. As the worldwide obesity epidemic has shown no signs of abating, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP) has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs), which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer or depleted of senescent HSCs, indicating that the DCA-SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshimoto, Shin -- Loo, Tze Mun -- Atarashi, Koji -- Kanda, Hiroaki -- Sato, Seidai -- Oyadomari, Seiichi -- Iwakura, Yoichiro -- Oshima, Kenshiro -- Morita, Hidetoshi -- Hattori, Masahira -- Honda, Kenya -- Ishikawa, Yuichi -- Hara, Eiji -- Ohtani, Naoko -- England -- Nature. 2013 Jul 4;499(7456):97-101. doi: 10.1038/nature12347. Epub 2013 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cancer Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bacteria/metabolism ; Bile Acids and Salts/metabolism ; Carcinoma, Hepatocellular/complications/etiology/metabolism/prevention & control ; *Cell Aging/drug effects ; Cells, Cultured ; Cytokines/metabolism/secretion ; DNA Damage/drug effects ; Deoxycholic Acid/blood/*metabolism ; Dietary Fats/adverse effects/pharmacology ; Disease Models, Animal ; Fatty Liver/complications/pathology ; Gastrointestinal Tract/drug effects/*metabolism/*microbiology ; Hepatic Stellate Cells/cytology/drug effects/metabolism/*secretion ; Humans ; Interleukin-1beta/deficiency ; Liver Neoplasms/complications/etiology/*metabolism/prevention & control ; Male ; Mice ; Mice, Inbred C57BL ; Non-alcoholic Fatty Liver Disease ; Obesity/chemically induced/*metabolism ; Phenotype ; Risk Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2013-11-15
    Description: Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869884/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869884/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arpaia, Nicholas -- Campbell, Clarissa -- Fan, Xiying -- Dikiy, Stanislav -- van der Veeken, Joris -- deRoos, Paul -- Liu, Hui -- Cross, Justin R -- Pfeffer, Klaus -- Coffer, Paul J -- Rudensky, Alexander Y -- P30 CA008748/CA/NCI NIH HHS/ -- R37 AI034206/AI/NIAID NIH HHS/ -- R37AI034206/AI/NIAID NIH HHS/ -- T32 AI007621/AI/NIAID NIH HHS/ -- T32 CA009149/CA/NCI NIH HHS/ -- T32A1007621/PHS HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):451-5. doi: 10.1038/nature12726. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf 40225, Germany. ; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [3] Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226773" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Butyrates/*metabolism ; *Cell Differentiation ; Cytokines/metabolism ; Dendritic Cells/immunology/metabolism ; Enhancer Elements, Genetic/genetics ; Fermentation ; Forkhead Transcription Factors/genetics/metabolism ; Histone Deacetylases/metabolism ; Inflammation Mediators/metabolism ; Intestinal Mucosa/cytology/immunology/metabolism/microbiology ; Intestines/cytology/immunology/*metabolism/*microbiology ; Introns/genetics ; Lymphocyte Count ; Male ; Mice ; Mice, Inbred C57BL ; Starch/metabolism ; *Symbiosis ; T-Lymphocytes, Regulatory/*cytology/immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2013-09-06
    Description: Ubiquitin-mediated targeting of intracellular bacteria to the autophagy pathway is a key innate defence mechanism against invading microbes, including the important human pathogen Mycobacterium tuberculosis. However, the ubiquitin ligases responsible for catalysing ubiquitin chains that surround intracellular bacteria are poorly understood. The parkin protein is a ubiquitin ligase with a well-established role in mitophagy, and mutations in the parkin gene (PARK2) lead to increased susceptibility to Parkinson's disease. Surprisingly, genetic polymorphisms in the PARK2 regulatory region are also associated with increased susceptibility to intracellular bacterial pathogens in humans, including Mycobacterium leprae and Salmonella enterica serovar Typhi, but the function of parkin in immunity has remained unexplored. Here we show that parkin has a role in ubiquitin-mediated autophagy of M. tuberculosis. Both parkin-deficient mice and flies are sensitive to various intracellular bacterial infections, indicating parkin has a conserved role in metazoan innate defence. Moreover, our work reveals an unexpected functional link between mitophagy and infectious disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886920/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886920/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manzanillo, Paolo S -- Ayres, Janelle S -- Watson, Robert O -- Collins, Angela C -- Souza, Gianne -- Rae, Chris S -- Schneider, David S -- Nakamura, Ken -- Shiloh, Michael U -- Cox, Jeffery S -- P01 AI063302/AI/NIAID NIH HHS/ -- P30NS069496/NS/NINDS NIH HHS/ -- R01 AI081727/AI/NIAID NIH HHS/ -- R01 AI099439/AI/NIAID NIH HHS/ -- T32 AI060537/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):512-6. doi: 10.1038/nature12566. Epub 2013 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24005326" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/immunology ; Bone Marrow Cells/microbiology ; Drosophila melanogaster/genetics/*immunology/metabolism/*microbiology ; Female ; Immunity, Innate/*immunology ; Lysine/metabolism ; Macrophages/microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/metabolism/pathology ; Mitochondrial Degradation ; Models, Immunological ; Mycobacterium marinum/*immunology ; Mycobacterium tuberculosis/growth & development/*immunology/metabolism ; Polyubiquitin/chemistry/metabolism ; Salmonella typhimurium/*immunology ; Symbiosis/immunology ; Tuberculosis/enzymology/immunology/microbiology/pathology ; Ubiquitin/analysis/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/deficiency/*immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2013-10-29
    Description: Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbalpha (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbalpha is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbalpha is abundant. Deletion of Rev-erbalpha markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbalpha-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbalpha in BAT. Rev-erbalpha represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbalpha-null mice, even at thermoneutrality. Genetic loss of Rev-erbalpha also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbalpha acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839416/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839416/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerhart-Hines, Zachary -- Feng, Dan -- Emmett, Matthew J -- Everett, Logan J -- Loro, Emanuele -- Briggs, Erika R -- Bugge, Anne -- Hou, Catherine -- Ferrara, Christine -- Seale, Patrick -- Pryma, Daniel A -- Khurana, Tejvir S -- Lazar, Mitchell A -- F-32 DK095563/DK/NIDDK NIH HHS/ -- F32 DK095526/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R01 DK45586/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Nov 21;503(7476):410-3. doi: 10.1038/nature12642. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162845" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics/physiology ; Adipose Tissue, Brown/metabolism ; Animals ; Body Temperature Regulation/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; Cold Temperature ; Down-Regulation ; Ion Channels/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency/genetics/*metabolism ; Thermogenesis/genetics/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2013-03-08
    Description: There has been a marked increase in the incidence of autoimmune diseases in the past half-century. Although the underlying genetic basis of this class of diseases has recently been elucidated, implicating predominantly immune-response genes, changes in environmental factors must ultimately be driving this increase. The newly identified population of interleukin (IL)-17-producing CD4(+) helper T cells (TH17 cells) has a pivotal role in autoimmune diseases. Pathogenic IL-23-dependent TH17 cells have been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, and genetic risk factors associated with multiple sclerosis are related to the IL-23-TH17 pathway. However, little is known about the environmental factors that directly influence TH17 cells. Here we show that increased salt (sodium chloride, NaCl) concentrations found locally under physiological conditions in vivo markedly boost the induction of murine and human TH17 cells. High-salt conditions activate the p38/MAPK pathway involving nuclear factor of activated T cells 5 (NFAT5; also called TONEBP) and serum/glucocorticoid-regulated kinase 1 (SGK1) during cytokine-induced TH17 polarization. Gene silencing or chemical inhibition of p38/MAPK, NFAT5 or SGK1 abrogates the high-salt-induced TH17 cell development. The TH17 cells generated under high-salt conditions display a highly pathogenic and stable phenotype characterized by the upregulation of the pro-inflammatory cytokines GM-CSF, TNF-alpha and IL-2. Moreover, mice fed with a high-salt diet develop a more severe form of EAE, in line with augmented central nervous system infiltrating and peripherally induced antigen-specific TH17 cells. Thus, increased dietary salt intake might represent an environmental risk factor for the development of autoimmune diseases through the induction of pathogenic TH17 cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746493/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746493/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleinewietfeld, Markus -- Manzel, Arndt -- Titze, Jens -- Kvakan, Heda -- Yosef, Nir -- Linker, Ralf A -- Muller, Dominik N -- Hafler, David A -- NS2427/NS/NINDS NIH HHS/ -- P01 AI039671/AI/NIAID NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- R01 AI091568/AI/NIAID NIH HHS/ -- R01 NS024247/NS/NINDS NIH HHS/ -- U01 AI102011/AI/NIAID NIH HHS/ -- U19 AI046130/AI/NIAID NIH HHS/ -- U19 AI070352/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):518-22. doi: 10.1038/nature11868. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Neurology and Immunobiology, Yale School of Medicine, 15 York Street, New Haven, Connecticut 06520, USA. markus.kleinewietfeld@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467095" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Encephalomyelitis, Autoimmune, Experimental/*chemically ; induced/*immunology/pathology ; Gene Silencing ; Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis ; Humans ; Immediate-Early Proteins/metabolism ; Interleukin-2/biosynthesis ; MAP Kinase Signaling System/drug effects ; Mice ; Mice, Inbred C57BL ; Phenotype ; Protein-Serine-Threonine Kinases/metabolism ; Sodium Chloride, Dietary/*pharmacology ; Th17 Cells/*drug effects/*immunology/pathology ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/biosynthesis ; p38 Mitogen-Activated Protein Kinases/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2013-01-22
    Description: At mucosal surfaces, the immune system should not initiate inflammatory immune responses to the plethora of antigens constantly present in the environment, but should remain poised to unleash a potent assault on intestinal pathogens. The transcriptional programs and regulatory factors required for immune cells to switch from homeostatic (often tissue-protective) function to potent antimicrobial immunity are poorly defined. Mucosal retinoic-acid-receptor-related orphan receptor-gammat-positive (RORgammat(+)) innate lymphoid cells (ILCs) are emerging as an important innate lymphocyte population required for immunity to intestinal infections. Various subsets of RORgammat(+) ILCs have been described but the transcriptional programs controlling their specification and fate remain largely unknown. Here we provide evidence that the transcription factor T-bet determines the fate of a distinct lineage of CCR6(-)RORgammat(+) ILCs. Postnatally emerging CCR6(-)RORgammat(+) ILCs upregulated T-bet and this was controlled by cues from the commensal microbiota and interleukin-23 (IL-23). In contrast, CCR6(+)RORgammat(+) ILCs, which arise earlier during ontogeny, did not express T-bet. T-bet instructed the expression of T-bet target genes such as interferon-gamma (IFN-gamma) and of the natural cytotoxicity receptor NKp46. Mice genetically lacking T-bet showed normal development of CCR6(-)RORgammat(+) ILCs, but they could not differentiate into NKp46-expressing RORgammat(+) ILCs (that is, IL-22-producing natural killer (NK-22) cells) and failed to produce IFN-gamma. The production of IFN-gamma by T-bet-expressing CCR6(-)RORgammat(+) ILCs was essential for the release of mucus-forming glycoproteins required to protect the epithelial barrier during Salmonella enterica infection. Salmonella infection also causes severe enterocolitis that is at least partly driven by IFN-gamma. Mice deficient for T-bet or depleted of ILCs developed only mild enterocolitis. Thus, graded expression of T-bet in CCR6(-)RORgammat(+) ILCs facilitates the differentiation of IFN-gamma-producing CCR6(-)RORgammat(+) ILCs required to protect the epithelial barrier against Salmonella infections. Co-expression of T-bet and RORgammat, which is also found in subsets of IL-17-producing T-helper (T(H)17) cells, may be an evolutionarily conserved transcriptional program that originally developed as part of the innate defence against infections but that also confers an increased risk of immune-mediated pathology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klose, Christoph S N -- Kiss, Elina A -- Schwierzeck, Vera -- Ebert, Karolina -- Hoyler, Thomas -- d'Hargues, Yannick -- Goppert, Nathalie -- Croxford, Andrew L -- Waisman, Ari -- Tanriver, Yakup -- Diefenbach, Andreas -- England -- Nature. 2013 Feb 14;494(7436):261-5. doi: 10.1038/nature11813. Epub 2013 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Ly/genetics ; Cell Differentiation ; *Cell Lineage ; Cells, Cultured ; Enterocolitis/immunology/metabolism/pathology ; Epithelium/immunology/metabolism/microbiology ; Immunity, Innate/*immunology ; Interferon-gamma/biosynthesis/genetics/immunology ; Interleukin-23/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Lymphocytes/*cytology/*immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mucus/secretion ; Natural Cytotoxicity Triggering Receptor 1/genetics ; Nuclear Receptor Subfamily 1, Group F, Member 3/*metabolism ; Receptors, CCR6/*deficiency/metabolism ; Salmonella Infections/immunology/metabolism ; Salmonella typhimurium/immunology/pathogenicity ; T-Box Domain Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2013-07-24
    Description: The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856241/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856241/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konermann, Silvana -- Brigham, Mark D -- Trevino, Alexandro E -- Hsu, Patrick D -- Heidenreich, Matthias -- Cong, Le -- Platt, Randall J -- Scott, David A -- Church, George M -- Zhang, Feng -- DP1 MH100706/MH/NIMH NIH HHS/ -- DP1-MH100706/DP/NCCDPHP CDC HHS/ -- P50-HG005550/HG/NHGRI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01 NS073124/NS/NINDS NIH HHS/ -- R01-NS073124/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):472-6. doi: 10.1038/nature12466. Epub 2013 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23877069" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis Proteins/metabolism ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cells, Cultured ; Chromatin/genetics/radiation effects ; Cryptochromes/metabolism ; Epigenesis, Genetic/*genetics/*radiation effects ; Gene Expression Regulation/genetics/*radiation effects ; Genetic Vectors/genetics ; *Light ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/metabolism/radiation effects ; Optogenetics/*methods ; Time Factors ; Transcription, Genetic/genetics/*radiation effects ; Two-Hybrid System Techniques ; Wakefulness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2013-04-02
    Description: Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-kappaB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keestra, A Marijke -- Winter, Maria G -- Auburger, Josef J -- Frassle, Simon P -- Xavier, Mariana N -- Winter, Sebastian E -- Kim, Anita -- Poon, Victor -- Ravesloot, Marietta M -- Waldenmaier, Julian F T -- Tsolis, Renee M -- Eigenheer, Richard A -- Baumler, Andreas J -- AI044170/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- R01 AI044170/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Apr 11;496(7444):233-7. doi: 10.1038/nature12025. Epub 2013 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23542589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Cytosol/metabolism ; Female ; HEK293 Cells ; HSP90 Heat-Shock Proteins/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nod1 Signaling Adaptor Protein/*metabolism ; Nod2 Signaling Adaptor Protein/metabolism ; Peptidoglycan/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism ; Salmonella typhimurium/genetics/*metabolism/*pathogenicity ; Signal Transduction ; Virulence Factors/metabolism ; cdc42 GTP-Binding Protein/metabolism ; rac1 GTP-Binding Protein/metabolism ; rho GTP-Binding Proteins/*metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2013-10-11
    Description: Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deshmukh, Vishal A -- Tardif, Virginie -- Lyssiotis, Costas A -- Green, Chelsea C -- Kerman, Bilal -- Kim, Hyung Joon -- Padmanabhan, Krishnan -- Swoboda, Jonathan G -- Ahmad, Insha -- Kondo, Toru -- Gage, Fred H -- Theofilopoulos, Argyrios N -- Lawson, Brian R -- Schultz, Peter G -- Lairson, Luke L -- K99 MH101634/MH/NIMH NIH HHS/ -- R01 AR053228/AR/NIAMS NIH HHS/ -- R21 AR065384/AR/NIAMS NIH HHS/ -- R37 AR039555/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 Oct 17;502(7471):327-32. doi: 10.1038/nature12647. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiparkinson Agents/pharmacology/therapeutic use ; Benztropine/pharmacology/*therapeutic use ; Cell Differentiation/drug effects ; Coculture Techniques ; Cuprizone/pharmacology/therapeutic use ; Encephalomyelitis, Autoimmune, Experimental/chemically induced/*drug ; therapy/pathology ; Female ; Fingolimod Hydrochloride ; Immune System/drug effects/immunology ; Mice ; Mice, Inbred C57BL ; *Models, Biological ; Multiple Sclerosis/*drug therapy/pathology ; Myelin Proteolipid Protein/pharmacology ; Myelin Sheath/*drug effects/metabolism/pathology ; Oligodendroglia/cytology/*drug effects/metabolism/pathology ; Optic Nerve/cytology ; Propylene Glycols/pharmacology/therapeutic use ; Rats ; Receptor, Muscarinic M1/antagonists & inhibitors/metabolism ; Receptor, Muscarinic M3/antagonists & inhibitors/metabolism ; Recurrence ; Regeneration/*drug effects ; Sphingosine/analogs & derivatives/pharmacology/therapeutic use ; Stem Cells/cytology/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2013-02-26
    Description: Although haematopoietic stem cells (HSCs) are commonly assumed to reside within a specialized microenvironment, or niche, most published experimental manipulations of the HSC niche have affected the function of diverse restricted progenitors. This raises the fundamental question of whether HSCs and restricted progenitors reside within distinct, specialized niches or whether they share a common niche. Here we assess the physiological sources of the chemokine CXCL12 for HSC and restricted progenitor maintenance. Cxcl12(DsRed) knock-in mice (DsRed-Express2 recombined into the Cxcl12 locus) showed that Cxcl12 was primarily expressed by perivascular stromal cells and, at lower levels, by endothelial cells, osteoblasts and some haematopoietic cells. Conditional deletion of Cxcl12 from haematopoietic cells or nestin-cre-expressing cells had little or no effect on HSCs or restricted progenitors. Deletion of Cxcl12 from endothelial cells depleted HSCs but not myeloerythroid or lymphoid progenitors. Deletion of Cxcl12 from perivascular stromal cells depleted HSCs and certain restricted progenitors and mobilized these cells into circulation. Deletion of Cxcl12 from osteoblasts depleted certain early lymphoid progenitors but not HSCs or myeloerythroid progenitors, and did not mobilize these cells into circulation. Different stem and progenitor cells thus reside in distinct cellular niches in bone marrow: HSCs occupy a perivascular niche and early lymphoid progenitors occupy an endosteal niche.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600153/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600153/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Lei -- Morrison, Sean J -- 5R01-HL097760/HL/NHLBI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 HL097760/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 14;495(7440):231-5. doi: 10.1038/nature11885. Epub 2013 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23434755" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Marrow/metabolism ; Cell Movement ; *Cellular Microenvironment ; Chemokine CXCL12/deficiency/metabolism ; Endothelial Cells/metabolism ; Female ; Gene Knock-In Techniques ; Hematopoietic Stem Cells/*cytology/metabolism ; Intermediate Filament Proteins/genetics/metabolism ; Lymphoid Progenitor Cells/*cytology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/genetics/metabolism ; Nestin ; Osteoblasts/cytology/metabolism ; Stromal Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2013-09-13
    Description: Social behaviours in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviours, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin acts as a social reinforcement signal within the nucleus accumbens core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the nucleus accumbens receives oxytocin-receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-hydroxytryptamine; 5-HT) innervation to the nucleus accumbens, abolishes the reinforcing properties of social interaction. Furthermore, oxytocin-induced synaptic plasticity requires activation of nucleus accumbens 5-HT1B receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of oxytocin and 5-HT in the nucleus accumbens, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4091761/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dolen, Gul -- Darvishzadeh, Ayeh -- Huang, Kee Wui -- Malenka, Robert C -- NS069375/NS/NINDS NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30 NS069375/NS/NINDS NIH HHS/ -- R21 DA032955/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):179-84. doi: 10.1038/nature12518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025838" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/physiopathology ; Conditioning (Psychology) ; Female ; Gene Deletion ; Long-Term Synaptic Depression ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Neurons/metabolism ; Nucleus Accumbens/cytology/*metabolism ; Oxytocin/deficiency/genetics/*metabolism ; Presynaptic Terminals/metabolism ; Raphe Nuclei/metabolism ; Receptor, Serotonin, 5-HT1B/metabolism ; Receptors, Oxytocin/deficiency/genetics/metabolism ; *Reward ; Serotonin/*metabolism ; *Social Behavior ; Synaptic Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2013-02-12
    Description: During navigation, grid cells increase their spike rates in firing fields arranged on a markedly regular triangular lattice, whereas their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, whereas competing attractor network models predict slow depolarizing ramps. Here, using in vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also demonstrated intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, whereas theta oscillations control spike timing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4099005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Domnisoru, Cristina -- Kinkhabwala, Amina A -- Tank, David W -- 1R37NS081242-01/NS/NINDS NIH HHS/ -- 5R01MH083686-04/MH/NIMH NIH HHS/ -- 5RC1NS068148-02/NS/NINDS NIH HHS/ -- F32NS070514-01A1/NS/NINDS NIH HHS/ -- R37 NS081242/NS/NINDS NIH HHS/ -- RC1 NS068148/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Mar 14;495(7440):199-204. doi: 10.1038/nature11973. Epub 2013 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23395984" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Animals ; Entorhinal Cortex/*cytology ; Membrane Potentials/*physiology ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Patch-Clamp Techniques ; Space Perception ; Theta Rhythm
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2013-04-05
    Description: Haematopoietic stem cells (HSCs) and their subsequent progenitors produce blood cells, but the precise nature and kinetics of this production is a contentious issue. In one model, lymphoid and myeloid production branch after the lymphoid-primed multipotent progenitor (LMPP), with both branches subsequently producing dendritic cells. However, this model is based mainly on in vitro clonal assays and population-based tracking in vivo, which could miss in vivo single-cell complexity. Here we avoid these issues by using a new quantitative version of 'cellular barcoding' to trace the in vivo fate of hundreds of LMPPs and HSCs at the single-cell level. These data demonstrate that LMPPs are highly heterogeneous in the cell types that they produce, separating into combinations of lymphoid-, myeloid- and dendritic-cell-biased producers. Conversely, although we observe a known lineage bias of some HSCs, most cellular output is derived from a small number of HSCs that each generates all cell types. Crucially, in vivo analysis of the output of sibling cells derived from single LMPPs shows that they often share a similar fate, suggesting that the fate of these progenitors was imprinted. Furthermore, as this imprinting is also observed for dendritic-cell-biased LMPPs, dendritic cells may be considered a distinct lineage on the basis of separate ancestry. These data suggest a 'graded commitment' model of haematopoiesis, in which heritable and diverse lineage imprinting occurs earlier than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naik, Shalin H -- Perie, Leila -- Swart, Erwin -- Gerlach, Carmen -- van Rooij, Nienke -- de Boer, Rob J -- Schumacher, Ton N -- England -- Nature. 2013 Apr 11;496(7444):229-32. doi: 10.1038/nature12013. Epub 2013 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands. naik.s@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552896" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; *Cell Lineage ; DNA Barcoding, Taxonomic ; Dendritic Cells/cytology/metabolism ; *Genomic Imprinting ; Hematopoietic Stem Cells/*cytology/*metabolism ; Lymphocytes/cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Multipotent Stem Cells/cytology/metabolism ; Myeloid Cells/cytology/metabolism ; Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2013-04-12
    Description: Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors, leaving cytokines to ensure survival and proliferation of the progeny cells. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1(+) cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679883/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679883/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mossadegh-Keller, Noushine -- Sarrazin, Sandrine -- Kandalla, Prashanth K -- Espinosa, Leon -- Stanley, E Richard -- Nutt, Stephen L -- Moore, Jordan -- Sieweke, Michael H -- CA 32551/CA/NCI NIH HHS/ -- R01 CA032551/CA/NCI NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):239-43. doi: 10.1038/nature12026. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*drug effects ; Cell Lineage/*drug effects ; Cell Proliferation/drug effects ; Cell Survival/drug effects ; Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology ; Hematopoietic Stem Cells/*cytology/*drug effects ; Macrophage Colony-Stimulating Factor/*pharmacology ; Mice ; Mice, Inbred C57BL ; Myeloid Cells/*cytology/*drug effects ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/biosynthesis/genetics/metabolism ; Single-Cell Analysis ; Trans-Activators/biosynthesis/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2013-07-12
    Description: Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4(+)FOXP3(+) regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules--including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)--in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-beta-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atarashi, Koji -- Tanoue, Takeshi -- Oshima, Kenshiro -- Suda, Wataru -- Nagano, Yuji -- Nishikawa, Hiroyoshi -- Fukuda, Shinji -- Saito, Takuro -- Narushima, Seiko -- Hase, Koji -- Kim, Sangwan -- Fritz, Joelle V -- Wilmes, Paul -- Ueha, Satoshi -- Matsushima, Kouji -- Ohno, Hiroshi -- Olle, Bernat -- Sakaguchi, Shimon -- Taniguchi, Tadatsugu -- Morita, Hidetoshi -- Hattori, Masahira -- Honda, Kenya -- England -- Nature. 2013 Aug 8;500(7461):232-6. doi: 10.1038/nature12331. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842501" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Proliferation ; Clostridium/classification/genetics/*immunology ; Colitis/microbiology/pathology ; Colon/immunology/microbiology ; Disease Models, Animal ; Feces/microbiology ; Germ-Free Life ; Humans ; Inducible T-Cell Co-Stimulator Protein/metabolism ; Interleukin-10/metabolism ; Male ; Metagenome/genetics/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, SCID ; RNA, Ribosomal, 16S/genetics ; Rats ; Rats, Inbred F344 ; T-Lymphocytes, Regulatory/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2013-11-29
    Description: 'Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128640/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128640/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Qing -- Bohin, Natacha -- Wen, Tiffany -- Ng, Victor -- Magee, Jeffrey -- Chen, Shann-Ching -- Shannon, Kevin -- Morrison, Sean J -- K08 CA134649/CA/NCI NIH HHS/ -- K08-CA-134649/CA/NCI NIH HHS/ -- R37 CA072614/CA/NCI NIH HHS/ -- T32 CA128583/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 5;504(7478):143-7. doi: 10.1038/nature12830. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Transplantation ; Cell Proliferation ; Gene Expression Profiling ; Genes, ras/*genetics ; Hematopoietic Stem Cells/*cytology/*metabolism ; Mice ; Mice, Inbred C57BL ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2013-08-24
    Description: Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820420/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820420/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross, Jaime M -- Stewart, James B -- Hagstrom, Erik -- Brene, Stefan -- Mourier, Arnaud -- Coppotelli, Giuseppe -- Freyer, Christoph -- Lagouge, Marie -- Hoffer, Barry J -- Olson, Lars -- Larsson, Nils-Goran -- AG04418/AG/NIA NIH HHS/ -- NS070825/NS/NINDS NIH HHS/ -- P01 AG004418/AG/NIA NIH HHS/ -- R01 NS070825/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Sep 19;501(7467):412-5. doi: 10.1038/nature12474. Epub 2013 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Karolinska Institutet, Retzius vag 8, 171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23965628" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics/pathology ; Alleles ; Animals ; Brain/*abnormalities/growth & development/*metabolism ; Cell Nucleus/genetics ; DNA, Mitochondrial/*genetics ; Extrachromosomal Inheritance/*genetics ; Female ; Genome/genetics ; Heterozygote ; Litter Size ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/*genetics ; Mutagenesis/genetics ; Mutation/*genetics ; Phenotype ; Reproduction/genetics/physiology ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2013-08-13
    Description: The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanjuan-Pla, Alejandra -- Macaulay, Iain C -- Jensen, Christina T -- Woll, Petter S -- Luis, Tiago C -- Mead, Adam -- Moore, Susan -- Carella, Cintia -- Matsuoka, Sahoko -- Bouriez Jones, Tiphaine -- Chowdhury, Onima -- Stenson, Laura -- Lutteropp, Michael -- Green, Joanna C A -- Facchini, Raffaella -- Boukarabila, Hanane -- Grover, Amit -- Gambardella, Adriana -- Thongjuea, Supat -- Carrelha, Joana -- Tarrant, Paul -- Atkinson, Deborah -- Clark, Sally-Ann -- Nerlov, Claus -- Jacobsen, Sten Eirik W -- G0701761/Medical Research Council/United Kingdom -- G0900892/Medical Research Council/United Kingdom -- G84/6443/Medical Research Council/United Kingdom -- H4RPLK0/Medical Research Council/United Kingdom -- England -- Nature. 2013 Oct 10;502(7470):232-6. doi: 10.1038/nature12495. Epub 2013 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Stem Cell Research and MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 16UU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23934107" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Platelets/*cytology ; *Cell Differentiation ; Cell Lineage/genetics ; Female ; Gene Expression Regulation, Developmental ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/metabolism ; Lymphocytes/cytology ; Male ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2013-11-15
    Description: Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8alphabeta-expressing 'single-positive' thymocytes from CD4(+)CD8alphabeta(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Guo -- Casas, Javier -- Rigaud, Stephanie -- Rybakin, Vasily -- Lambolez, Florence -- Brzostek, Joanna -- Hoerter, John A H -- Paster, Wolfgang -- Acuto, Oreste -- Cheroutre, Hilde -- Sauer, Karsten -- Gascoigne, Nicholas R J -- AI070845/AI/NIAID NIH HHS/ -- AI073870/AI/NIAID NIH HHS/ -- DK094173/DK/NIDDK NIH HHS/ -- DP1OD006433/OD/NIH HHS/ -- GM065230/GM/NIGMS NIH HHS/ -- GM100785/GM/NIGMS NIH HHS/ -- GR076558MA/Wellcome Trust/United Kingdom -- R01 AI064584/AI/NIAID NIH HHS/ -- R01 AI073870/AI/NIAID NIH HHS/ -- R01 GM065230/GM/NIGMS NIH HHS/ -- R01 GM100785/GM/NIGMS NIH HHS/ -- R21 DK094173/DK/NIDDK NIH HHS/ -- T32AI07244/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Dec 19;504(7480):441-5. doi: 10.1038/nature12718. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]. ; Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545. ; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226767" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Autoantigens/immunology ; Calcium Signaling ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; Proteins/genetics/*metabolism ; Receptors, Antigen, T-Cell/*immunology/metabolism ; Signal Transduction/*immunology ; T-Lymphocytes/*cytology/immunology/*metabolism ; Thymocytes/*cytology/immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2013-03-08
    Description: Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4(+) T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yosef, Nir -- Shalek, Alex K -- Gaublomme, Jellert T -- Jin, Hulin -- Lee, Youjin -- Awasthi, Amit -- Wu, Chuan -- Karwacz, Katarzyna -- Xiao, Sheng -- Jorgolli, Marsela -- Gennert, David -- Satija, Rahul -- Shakya, Arvind -- Lu, Diana Y -- Trombetta, John J -- Pillai, Meenu R -- Ratcliffe, Peter J -- Coleman, Mathew L -- Bix, Mark -- Tantin, Dean -- Park, Hongkun -- Kuchroo, Vijay K -- Regev, Aviv -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- AI073748/AI/NIAID NIH HHS/ -- AI45757/AI/NIAID NIH HHS/ -- DP1 OD003893/OD/NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK090105/DK/NIDDK NIH HHS/ -- NS 30843/NS/NINDS NIH HHS/ -- NS045937/NS/NINDS NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- R01 AI100873/AI/NIAID NIH HHS/ -- R01 NS030843/NS/NINDS NIH HHS/ -- R01 NS045937/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 25;496(7446):461-8. doi: 10.1038/nature11981. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Cell Differentiation/*genetics ; Cells, Cultured ; DNA/genetics/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Interferon-gamma/biosynthesis ; Interleukin-2/genetics ; Mice ; Mice, Inbred C57BL ; Nanowires ; Neoplasm Proteins/metabolism ; Nuclear Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Silicon ; Th17 Cells/*cytology/immunology/*metabolism ; Time Factors ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2013-03-22
    Description: The co-morbidity of anxiety and dysfunctional reward processing in illnesses such as addiction and depression suggests that common neural circuitry contributes to these disparate neuropsychiatric symptoms. The extended amygdala, including the bed nucleus of the stria terminalis (BNST), modulates fear and anxiety, but also projects to the ventral tegmental area (VTA), a region implicated in reward and aversion, thus providing a candidate neural substrate for integrating diverse emotional states. However, the precise functional connectivity between distinct BNST projection neurons and their postsynaptic targets in the VTA, as well as the role of this circuit in controlling motivational states, have not been described. Here we record and manipulate the activity of genetically and neurochemically identified VTA-projecting BNST neurons in freely behaving mice. Collectively, aversive stimuli exposure produced heterogeneous firing patterns in VTA-projecting BNST neurons. By contrast, in vivo optically identified glutamatergic projection neurons displayed a net enhancement of activity to aversive stimuli, whereas the firing rate of identified GABAergic (gamma-aminobutyric acid-containing) projection neurons was suppressed. Channelrhodopsin-2-assisted circuit mapping revealed that both BNST glutamatergic and GABAergic projections preferentially innervate postsynaptic non-dopaminergic VTA neurons, thus providing a mechanistic framework for in vivo circuit perturbations. In vivo photostimulation of BNST glutamatergic projections resulted in aversive and anxiogenic behavioural phenotypes. Conversely, activation of BNST GABAergic projections produced rewarding and anxiolytic phenotypes, which were also recapitulated by direct inhibition of VTA GABAergic neurons. These data demonstrate that functionally opposing BNST to VTA circuits regulate rewarding and aversive motivational states, and may serve as a crucial circuit node for bidirectionally normalizing maladaptive behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778934/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778934/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, Joshua H -- Sparta, Dennis R -- Stamatakis, Alice M -- Ung, Randall L -- Pleil, Kristen E -- Kash, Thomas L -- Stuber, Garret D -- AA007573/AA/NIAAA NIH HHS/ -- AA011605/AA/NIAAA NIH HHS/ -- AA018610/AA/NIAAA NIH HHS/ -- AA021043/AA/NIAAA NIH HHS/ -- DA029325/DA/NIDA NIH HHS/ -- DA032750/DA/NIDA NIH HHS/ -- DA034472/DA/NIDA NIH HHS/ -- F31 DA034472/DA/NIDA NIH HHS/ -- NS007431/NS/NINDS NIH HHS/ -- P30 NS045892/NS/NINDS NIH HHS/ -- R01 DA032750/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Apr 11;496(7444):224-8. doi: 10.1038/nature12041. Epub 2013 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23515155" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/*physiology ; Animals ; Anxiety/physiopathology ; Avoidance Learning ; Behavior, Animal/physiology ; Cues ; Electroshock ; GABAergic Neurons/metabolism ; Glutamine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Motivation/*physiology ; Optogenetics ; Phenotype ; Reward ; Rhodopsin/metabolism ; Septal Nuclei/physiology ; Ventral Tegmental Area/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2013-07-23
    Description: Aberrant neovascularization contributes to diseases such as cancer, blindness and atherosclerosis, and is the consequence of inappropriate angiogenic signalling. Although many regulators of pathogenic angiogenesis have been identified, our understanding of this process is incomplete. Here we explore the transcriptome of retinal microvessels isolated from mouse models of retinal disease that exhibit vascular pathology, and uncover an upregulated gene, leucine-rich alpha-2-glycoprotein 1 (Lrg1), of previously unknown function. We show that in the presence of transforming growth factor-beta1 (TGF-beta1), LRG1 is mitogenic to endothelial cells and promotes angiogenesis. Mice lacking Lrg1 develop a mild retinal vascular phenotype but exhibit a significant reduction in pathological ocular angiogenesis. LRG1 binds directly to the TGF-beta accessory receptor endoglin, which, in the presence of TGF-beta1, results in promotion of the pro-angiogenic Smad1/5/8 signalling pathway. LRG1 antibody blockade inhibits this switch and attenuates angiogenesis. These studies reveal a new regulator of angiogenesis that mediates its effect by modulating TGF-beta signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836402/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836402/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaomeng -- Abraham, Sabu -- McKenzie, Jenny A G -- Jeffs, Natasha -- Swire, Matthew -- Tripathi, Vineeta B -- Luhmann, Ulrich F O -- Lange, Clemens A K -- Zhai, Zhenhua -- Arthur, Helen M -- Bainbridge, James W B -- Moss, Stephen E -- Greenwood, John -- 091886/Wellcome Trust/United Kingdom -- G0902206/Medical Research Council/United Kingdom -- G1000466/Medical Research Council/United Kingdom -- NIHR-RP-011-003/Department of Health/United Kingdom -- RG/12/2/29416/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jul 18;499(7458):306-11. doi: 10.1038/nature12345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868260" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Endothelium, Vascular/cytology/*metabolism ; Glycoproteins/genetics/metabolism/*physiology ; In Vitro Techniques ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Receptors, Transforming Growth Factor beta/metabolism ; Retinal Neovascularization/genetics/*metabolism ; Retinal Vessels/metabolism ; *Signal Transduction ; Transforming Growth Factor beta1/*metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2013-10-18
    Description: The dense glycan coat that surrounds every cell is essential for cellular development and physiological function, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-alpha1,3-glucuronic acid-beta1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix. Reductions in the amount of [-3-xylose-alpha1,3-glucuronic acid-beta1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891507/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891507/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goddeeris, Matthew M -- Wu, Biming -- Venzke, David -- Yoshida-Moriguchi, Takako -- Saito, Fumiaki -- Matsumura, Kiichiro -- Moore, Steven A -- Campbell, Kevin P -- 1RC2NS069521-01/NS/NINDS NIH HHS/ -- 1U54NS053672/NS/NINDS NIH HHS/ -- F32 AR057289-01/AR/NIAMS NIH HHS/ -- T32-DK07690-16/DK/NIDDK NIH HHS/ -- U54 NS053672/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):136-40. doi: 10.1038/nature12605. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132234" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basement Membrane/metabolism/pathology ; Cell Differentiation ; Cell Line ; Dystroglycans/*chemistry/*metabolism ; Extracellular Matrix/chemistry/*metabolism ; Female ; Humans ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Weight ; Muscle Development ; Muscles/metabolism/pathology ; Muscular Dystrophies/metabolism/pathology/*prevention & control ; Myoblasts ; N-Acetylglucosaminyltransferases/deficiency/genetics/*metabolism ; Neuromuscular Junction/metabolism/pathology ; Phenotype ; Polysaccharides/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2013-08-06
    Description: Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Angelo, Giovanni -- Uemura, Takefumi -- Chuang, Chia-Chen -- Polishchuk, Elena -- Santoro, Michele -- Ohvo-Rekila, Henna -- Sato, Takashi -- Di Tullio, Giuseppe -- Varriale, Antonio -- D'Auria, Sabato -- Daniele, Tiziana -- Capuani, Fabrizio -- Johannes, Ludger -- Mattjus, Peter -- Monti, Maria -- Pucci, Piero -- Williams, Roger L -- Burke, John E -- Platt, Frances M -- Harada, Akihiro -- De Matteis, Maria Antonietta -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- TGM11CB1/Telethon/Italy -- England -- Nature. 2013 Sep 5;501(7465):116-20. doi: 10.1038/nature12423. Epub 2013 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23913272" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Biological Transport ; Cell Line ; Globosides/biosynthesis/chemistry/metabolism ; Glucosylceramides/chemistry/*metabolism ; Glycosphingolipids/biosynthesis/chemistry/metabolism ; *Glycosylation ; Golgi Apparatus/*metabolism ; Humans ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol Phosphates/metabolism ; trans-Golgi Network/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2013-12-18
    Description: The evolutionary survival of Mycobacterium tuberculosis, the cause of human tuberculosis, depends on its ability to invade the host, replicate, and transmit infection. At its initial peripheral infection site in the distal lung airways, M. tuberculosis infects macrophages, which transport it to deeper tissues. How mycobacteria survive in these broadly microbicidal cells is an important question. Here we show in mice and zebrafish that M. tuberculosis, and its close pathogenic relative Mycobacterium marinum, preferentially recruit and infect permissive macrophages while evading microbicidal ones. This immune evasion is accomplished by using cell-surface-associated phthiocerol dimycoceroserate (PDIM) lipids to mask underlying pathogen-associated molecular patterns (PAMPs). In the absence of PDIM, these PAMPs signal a Toll-like receptor (TLR)-dependent recruitment of macrophages that produce microbicidal reactive nitrogen species. Concordantly, the related phenolic glycolipids (PGLs) promote the recruitment of permissive macrophages through a host chemokine receptor 2 (CCR2)-mediated pathway. Thus, we have identified coordinated roles for PDIM, known to be essential for mycobacterial virulence, and PGL, which (along with CCR2) is known to be associated with human tuberculosis. Our findings also suggest an explanation for the longstanding observation that M. tuberculosis initiates infection in the relatively sterile environment of the lower respiratory tract, rather than in the upper respiratory tract, where resident microflora and inhaled environmental microbes may continually recruit microbicidal macrophages through TLR-dependent signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cambier, C J -- Takaki, Kevin K -- Larson, Ryan P -- Hernandez, Rafael E -- Tobin, David M -- Urdahl, Kevin B -- Cosma, Christine L -- Ramakrishnan, Lalita -- DP1 MH099901/MH/NIMH NIH HHS/ -- DP1 OD006782/OD/NIH HHS/ -- R01 AI036396/AI/NIAID NIH HHS/ -- R01 AI054503/AI/NIAID NIH HHS/ -- R01 AI076327/AI/NIAID NIH HHS/ -- R37 AI054503/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Jan 9;505(7482):218-22. doi: 10.1038/nature12799. Epub 2013 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Washington, Seattle, Washington 98195, USA. ; Department of Microbiology, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Immunology, University of Washington, Seattle, Washington 98195, USA [2] Seattle Biomedical Research Institute, Seattle, Washington 98109, USA. ; Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Immunology, University of Washington, Seattle, Washington 98195, USA [2] Seattle Biomedical Research Institute, Seattle, Washington 98109, USA [3] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Immunology, University of Washington, Seattle, Washington 98195, USA [2] Department of Microbiology, University of Washington, Seattle, Washington 98195, USA [3] Department of Medicine, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Glycolipids/immunology/metabolism ; *Immune Evasion ; Lipids/biosynthesis/immunology ; Macrophages/cytology/immunology/metabolism/*microbiology ; Membrane Lipids/*metabolism ; Mice ; Mice, Inbred C57BL ; Mycobacterium/pathogenicity/*physiology ; Mycobacterium tuberculosis/pathogenicity/physiology ; Receptors, CCR2/metabolism ; Toll-Like Receptors/immunology/metabolism ; Virulence/immunology ; Zebrafish/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2012-07-06
    Description: During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe-/- mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dutta, Partha -- Courties, Gabriel -- Wei, Ying -- Leuschner, Florian -- Gorbatov, Rostic -- Robbins, Clinton S -- Iwamoto, Yoshiko -- Thompson, Brian -- Carlson, Alicia L -- Heidt, Timo -- Majmudar, Maulik D -- Lasitschka, Felix -- Etzrodt, Martin -- Waterman, Peter -- Waring, Michael T -- Chicoine, Adam T -- van der Laan, Anja M -- Niessen, Hans W M -- Piek, Jan J -- Rubin, Barry B -- Butany, Jagdish -- Stone, James R -- Katus, Hugo A -- Murphy, Sabina A -- Morrow, David A -- Sabatine, Marc S -- Vinegoni, Claudio -- Moskowitz, Michael A -- Pittet, Mikael J -- Libby, Peter -- Lin, Charles P -- Swirski, Filip K -- Weissleder, Ralph -- Nahrendorf, Matthias -- P50-CA086355/CA/NCI NIH HHS/ -- R01 AI084880/AI/NIAID NIH HHS/ -- R01 EB006432/EB/NIBIB NIH HHS/ -- R01 HL095612/HL/NHLBI NIH HHS/ -- R01 HL095629/HL/NHLBI NIH HHS/ -- R01 HL096576/HL/NHLBI NIH HHS/ -- R01-EB006432/EB/NIBIB NIH HHS/ -- R01-HL095629/HL/NHLBI NIH HHS/ -- R01-HL096576/HL/NHLBI NIH HHS/ -- T32 CA079443/CA/NCI NIH HHS/ -- T32-CA79443/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 19;487(7407):325-9. doi: 10.1038/nature11260.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*etiology/*pathology ; Hematopoietic Stem Cells/cytology ; Inflammation/complications ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology ; Myocardial Infarction/*complications/*pathology ; Spleen/cytology ; Stem Cells/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2012-03-27
    Description: The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Everitt, Aaron R -- Clare, Simon -- Pertel, Thomas -- John, Sinu P -- Wash, Rachael S -- Smith, Sarah E -- Chin, Christopher R -- Feeley, Eric M -- Sims, Jennifer S -- Adams, David J -- Wise, Helen M -- Kane, Leanne -- Goulding, David -- Digard, Paul -- Anttila, Verneri -- Baillie, J Kenneth -- Walsh, Tim S -- Hume, David A -- Palotie, Aarno -- Xue, Yali -- Colonna, Vincenza -- Tyler-Smith, Chris -- Dunning, Jake -- Gordon, Stephen B -- GenISIS Investigators -- MOSAIC Investigators -- Smyth, Rosalind L -- Openshaw, Peter J -- Dougan, Gordon -- Brass, Abraham L -- Kellam, Paul -- 090382/Wellcome Trust/United Kingdom -- 090382/Z/09/Z/Wellcome Trust/United Kingdom -- 090385/Z/09/Z/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 13031/Cancer Research UK/United Kingdom -- DHCS/04/G121/68/Department of Health/United Kingdom -- G0600371/Medical Research Council/United Kingdom -- G0600511/Medical Research Council/United Kingdom -- G0800767/Medical Research Council/United Kingdom -- G0800777/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- G0901697/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- MC_G1001212/Medical Research Council/United Kingdom -- MC_U122785833/Medical Research Council/United Kingdom -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI091786/AI/NIAID NIH HHS/ -- R01AI091786/AI/NIAID NIH HHS/ -- Chief Scientist Office/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Mar 25;484(7395):519-23. doi: 10.1038/nature10921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22446628" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Cytokines/immunology ; England/epidemiology ; Gene Deletion ; Humans ; Influenza A Virus, H1N1 Subtype/classification/growth & development/pathogenicity ; Influenza A Virus, H3N2 Subtype/classification/growth & development/pathogenicity ; Influenza A virus/classification/growth & development/*pathogenicity ; Influenza B virus/classification/growth & development/pathogenicity ; Influenza, Human/complications/epidemiology/mortality/virology ; Leukocytes/immunology ; Lung/pathology/virology ; Membrane Proteins/chemistry/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Orthomyxoviridae Infections/complications/*mortality/pathology ; Pneumonia, Viral/etiology/pathology/prevention & control ; Polymorphism, Single Nucleotide/genetics ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Scotland/epidemiology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2012-05-25
    Description: The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the alpha-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2alpha-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2alpha-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2alpha-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2alpha-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2alpha-P dephosphorylation, increased eIF2alpha-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378208/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378208/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreno, Julie A -- Radford, Helois -- Peretti, Diego -- Steinert, Joern R -- Verity, Nicholas -- Martin, Maria Guerra -- Halliday, Mark -- Morgan, Jason -- Dinsdale, David -- Ortori, Catherine A -- Barrett, David A -- Tsaytler, Pavel -- Bertolotti, Anne -- Willis, Anne E -- Bushell, Martin -- Mallucci, Giovanna R -- MC_U105185860/Medical Research Council/United Kingdom -- MC_U123160654/Medical Research Council/United Kingdom -- MC_U132692719/Medical Research Council/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- MC_UP_A600_1024/Medical Research Council/United Kingdom -- U.1051.02.011.00001.01 (85860)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 May 6;485(7399):507-11. doi: 10.1038/nature11058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death/drug effects ; Cinnamates/pharmacology ; Eukaryotic Initiation Factor-2/analysis/*chemistry/*metabolism ; Hippocampus/cytology/metabolism/pathology ; Kaplan-Meier Estimate ; Mice ; Mice, Inbred C57BL ; Neurodegenerative Diseases/etiology/*metabolism/pathology ; Neurons/drug effects/pathology ; Neuroprotective Agents ; Phosphoproteins/analysis/*metabolism ; Phosphorylation ; PrPSc Proteins/analysis/metabolism/toxicity ; Prion Diseases/pathology ; Prions/biosynthesis/genetics/*metabolism ; *Protein Biosynthesis/drug effects ; Protein Folding/drug effects ; Protein Phosphatase 1/genetics/metabolism ; Repressor Proteins/analysis/chemistry/*metabolism ; Synapses/drug effects/metabolism/pathology ; Synaptic Transmission/drug effects ; Thiourea/analogs & derivatives/pharmacology ; Unfolded Protein Response/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2012-06-16
    Description: Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Hyejung -- Lee, Hye-Ryeon -- Gee, Heon Yung -- Mah, Won -- Kim, Jae-Ick -- Lee, Jiseok -- Ha, Seungmin -- Chung, Changuk -- Jung, Eun Suk -- Cho, Yi Sul -- Park, Sae-Geun -- Lee, Jung-Soo -- Lee, Kyungmin -- Kim, Daesoo -- Bae, Yong Chul -- Kaang, Bong-Kiun -- Lee, Min Goo -- Kim, Eunjoon -- England -- Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699620" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Antimetabolites/pharmacology ; *Autistic Disorder/genetics/metabolism ; Behavior, Animal/*drug effects/physiology ; Benzamides/*pharmacology ; Cycloserine/*pharmacology ; Disease Models, Animal ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Pyrazoles/*pharmacology ; Receptors, N-Methyl-D-Aspartate/*agonists/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2012-10-02
    Description: The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle fibre, expresses Fgf2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose their self-renewing capacity. We show in mice that relatively dormant aged satellite cells robustly express sprouty 1 (Spry1), an inhibitor of fibroblast growth factor (FGF) signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing Spry1 results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of Fgfr1 signalling or overexpression of Spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605795/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605795/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chakkalakal, Joe V -- Jones, Kieran M -- Basson, M Albert -- Brack, Andrew S -- 091475/Wellcome Trust/United Kingdom -- BB/F017626/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- R01 AR060868/AR/NIAMS NIH HHS/ -- R01 AR061002/AR/NIAMS NIH HHS/ -- WT091475/Wellcome Trust/United Kingdom -- England -- Nature. 2012 Oct 18;490(7420):355-60. doi: 10.1038/nature11438. Epub 2012 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center of Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023126" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Aging/*physiology ; Animals ; Cell Aging ; Cell Count ; *Cell Cycle ; Cell Differentiation ; Cyclin-Dependent Kinase Inhibitor p27/metabolism ; Fibroblast Growth Factor 2/genetics/metabolism ; Flow Cytometry ; Homeostasis ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Muscle Cells/*cytology ; Muscle, Skeletal/cytology ; PAX7 Transcription Factor/metabolism ; Phosphoproteins/metabolism ; Satellite Cells, Skeletal Muscle/*cytology/metabolism/transplantation ; Signal Transduction ; Stem Cell Niche/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2012-10-12
    Description: Adoptive cell transfer therapies (ACTs) with cytotoxic T cells that target melanocytic antigens can achieve remissions in patients with metastatic melanomas, but tumours frequently relapse. Hypotheses explaining the acquired resistance to ACTs include the selection of antigen-deficient tumour cell variants and the induction of T-cell tolerance. However, the lack of appropriate experimental melanoma models has so far impeded clear insights into the underlying mechanisms. Here we establish an effective ACT protocol in a genetically engineered mouse melanoma model that recapitulates tumour regression, remission and relapse as seen in patients. We report the unexpected observation that melanomas acquire ACT resistance through an inflammation-induced reversible loss of melanocytic antigens. In serial transplantation experiments, melanoma cells switch between a differentiated and a dedifferentiated phenotype in response to T-cell-driven inflammatory stimuli. We identified the proinflammatory cytokine tumour necrosis factor (TNF)-alpha as a crucial factor that directly caused reversible dedifferentiation of mouse and human melanoma cells. Tumour cells exposed to TNF-alpha were poorly recognized by T cells specific for melanocytic antigens, whereas recognition by T cells specific for non-melanocytic antigens was unaffected or even increased. Our results demonstrate that the phenotypic plasticity of melanoma cells in an inflammatory microenvironment contributes to tumour relapse after initially successful T-cell immunotherapy. On the basis of our work, we propose that future ACT protocols should simultaneously target melanocytic and non-melanocytic antigens to ensure broad recognition of both differentiated and dedifferentiated melanoma cells, and include strategies to sustain T-cell effector functions by blocking immune-inhibitory mechanisms in the tumour microenvironment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landsberg, Jennifer -- Kohlmeyer, Judith -- Renn, Marcel -- Bald, Tobias -- Rogava, Meri -- Cron, Mira -- Fatho, Martina -- Lennerz, Volker -- Wolfel, Thomas -- Holzel, Michael -- Tuting, Thomas -- England -- Nature. 2012 Oct 18;490(7420):412-6. doi: 10.1038/nature11538. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, D-53105 Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051752" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; *Cell Dedifferentiation ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Disease Models, Animal ; Humans ; *Immunotherapy ; Inflammation/immunology/*pathology ; Melanoma/immunology/metabolism/*pathology/*therapy ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; T-Lymphocytes, Cytotoxic/*immunology/*transplantation ; Tumor Microenvironment/immunology ; Tumor Necrosis Factor-alpha/immunology/pharmacology ; gp100 Melanoma Antigen/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2012-11-13
    Description: Active dendrites provide neurons with powerful processing capabilities. However, little is known about the role of neuronal dendrites in behaviourally related circuit computations. Here we report that a novel global dendritic nonlinearity is involved in the integration of sensory and motor information within layer 5 pyramidal neurons during an active sensing behaviour. Layer 5 pyramidal neurons possess elaborate dendritic arborizations that receive functionally distinct inputs, each targeted to spatially separate regions. At the cellular level, coincident input from these segregated pathways initiates regenerative dendritic electrical events that produce bursts of action potential output and circuits featuring this powerful dendritic nonlinearity can implement computations based on input correlation. To examine this in vivo we recorded dendritic activity in layer 5 pyramidal neurons in the barrel cortex using two-photon calcium imaging in mice performing an object-localization task. Large-amplitude, global calcium signals were observed throughout the apical tuft dendrites when active touch occurred at particular object locations or whisker angles. Such global calcium signals are produced by dendritic plateau potentials that require both vibrissal sensory input and primary motor cortex activity. These data provide direct evidence of nonlinear dendritic processing of correlated sensory and motor information in the mammalian neocortex during active sensation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ning-long -- Harnett, Mark T -- Williams, Stephen R -- Huber, Daniel -- O'Connor, Daniel H -- Svoboda, Karel -- Magee, Jeffrey C -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):247-51. doi: 10.1038/nature11601. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Calcium/metabolism ; Dendrites/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Sensation/*physiology ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2012-10-30
    Description: The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential effect of one microbial symbiont on another is even less clear. Here we study the control of ERVs in the commonly used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic MLV in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immunodeficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, George R -- Eksmond, Urszula -- Salcedo, Rosalba -- Alexopoulou, Lena -- Stoye, Jonathan P -- Kassiotis, George -- MC_U117512710/Medical Research Council/United Kingdom -- MC_U117581330/Medical Research Council/United Kingdom -- U.1175.02.005.00005(60891)/Medical Research Council/United Kingdom -- U.1175.02.006.00007(81330)/Medical Research Council/United Kingdom -- U117512710/Medical Research Council/United Kingdom -- U117581330/Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 29;491(7426):774-8. doi: 10.1038/nature11599. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103862" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Husbandry ; Animals ; Antibodies, Viral/*biosynthesis/immunology ; Cell Transformation, Viral ; Endogenous Retroviruses/genetics/growth & development/immunology/*physiology ; Female ; Immunocompromised Host/*immunology ; Leukemia/virology ; Leukemia Virus, Murine/genetics/growth & development/immunology/physiology ; Lymphoma/virology ; Male ; Mice ; Mice, Inbred C57BL ; Receptors, Antigen, T-Cell/deficiency/genetics ; Recombination, Genetic ; Viremia/immunology/virology ; *Virus Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2012-06-23
    Description: Obesity and type-2 diabetes have increased markedly over the past few decades, in parallel. One of the major links between these two disorders is chronic, low-grade inflammation. Prolonged nutrient excess promotes the accumulation and activation of leukocytes in visceral adipose tissue (VAT) and ultimately other tissues, leading to metabolic abnormalities such as insulin resistance, type-2 diabetes and fatty-liver disease. Although invasion of VAT by pro-inflammatory macrophages is considered to be a key event driving adipose-tissue inflammation and insulin resistance, little is known about the roles of other immune system cell types in these processes. A unique population of VAT-resident regulatory T (Treg) cells was recently implicated in control of the inflammatory state of adipose tissue and, thereby, insulin sensitivity. Here we identify peroxisome proliferator-activated receptor (PPAR)-gamma, the 'master regulator' of adipocyte differentiation, as a crucial molecular orchestrator of VAT Treg cell accumulation, phenotype and function. Unexpectedly, PPAR-gamma expression by VAT Treg cells was necessary for complete restoration of insulin sensitivity in obese mice by the thiazolidinedione drug pioglitazone. These findings suggest a previously unknown cellular mechanism for this important class of thiazolidinedione drugs, and provide proof-of-principle that discrete populations of Treg cells with unique functions can be precisely targeted to therapeutic ends.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387339/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387339/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cipolletta, Daniela -- Feuerer, Markus -- Li, Amy -- Kamei, Nozomu -- Lee, Jongsoon -- Shoelson, Steven E -- Benoist, Christophe -- Mathis, Diane -- DK092541/DK/NIDDK NIH HHS/ -- DK51729/DK/NIDDK NIH HHS/ -- P30DK36836/DK/NIDDK NIH HHS/ -- R01 DK051729/DK/NIDDK NIH HHS/ -- R01 DK092541/DK/NIDDK NIH HHS/ -- R01 DK092541-02/DK/NIDDK NIH HHS/ -- R37 DK051729/DK/NIDDK NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Jun 28;486(7404):549-53. doi: 10.1038/nature11132.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722857" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*cytology/immunology/pathology ; Animals ; Cell Differentiation ; Diabetes Mellitus, Type 2/drug therapy/metabolism/pathology ; Epididymis/cytology/immunology ; Forkhead Transcription Factors/metabolism ; Gene Expression ; Hypoglycemic Agents/pharmacology ; Inflammation/immunology/metabolism/pathology ; Insulin Resistance/physiology ; Lymphocyte Count ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Obesity/metabolism/pathology ; PPAR gamma/*metabolism ; Phenotype ; RNA, Messenger/genetics/metabolism ; T-Lymphocytes, Regulatory/*cytology/drug effects/*metabolism ; Thiazolidinediones/pharmacology ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2012-07-06
    Description: Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders, but the underlying pathogenesis remains poorly understood. Recent studies have implicated the cerebellum in these disorders, with post-mortem studies in ASD patients showing cerebellar Purkinje cell (PC) loss, and isolated cerebellar injury has been associated with a higher incidence of ASDs. However, the extent of cerebellar contribution to the pathogenesis of ASDs remains unclear. Tuberous sclerosis complex (TSC) is a genetic disorder with high rates of comorbid ASDs that result from mutation of either TSC1 or TSC2, whose protein products dimerize and negatively regulate mammalian target of rapamycin (mTOR) signalling. TSC is an intriguing model to investigate the cerebellar contribution to the underlying pathogenesis of ASDs, as recent studies in TSC patients demonstrate cerebellar pathology and correlate cerebellar pathology with increased ASD symptomatology. Functional imaging also shows that TSC patients with ASDs display hypermetabolism in deep cerebellar structures, compared to TSC patients without ASDs. However, the roles of Tsc1 and the sequelae of Tsc1 dysfunction in the cerebellum have not been investigated so far. Here we show that both heterozygous and homozygous loss of Tsc1 in mouse cerebellar PCs results in autistic-like behaviours, including abnormal social interaction, repetitive behaviour and vocalizations, in addition to decreased PC excitability. Treatment of mutant mice with the mTOR inhibitor, rapamycin, prevented the pathological and behavioural deficits. These findings demonstrate new roles for Tsc1 in PC function and define a molecular basis for a cerebellar contribution to cognitive disorders such as autism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Peter T -- Hull, Court -- Chu, YunXiang -- Greene-Colozzi, Emily -- Sadowski, Abbey R -- Leech, Jarrett M -- Steinberg, Jason -- Crawley, Jacqueline N -- Regehr, Wade G -- Sahin, Mustafa -- K12 NS079414/NS/NINDS NIH HHS/ -- P30HD18655/HD/NICHD NIH HHS/ -- R01 NS032405/NS/NINDS NIH HHS/ -- R01NS032405/NS/NINDS NIH HHS/ -- R01NS58956/NS/NINDS NIH HHS/ -- T32 MH020017/MH/NIMH NIH HHS/ -- T32 NS007473/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):647-51. doi: 10.1038/nature11310.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. peter.tsai@childrens.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763451" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/complications/genetics/pathology/*physiopathology ; Behavior, Animal/drug effects ; Cell Count ; Cell Shape/drug effects ; Cerebellum/drug effects/pathology/*physiopathology ; Grooming/drug effects/physiology ; Heterozygote ; Maze Learning/drug effects/physiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mutation/genetics ; Purkinje Cells/drug effects/*metabolism ; Rotarod Performance Test ; Sirolimus/pharmacology ; Synapses/metabolism ; TOR Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Tuberous Sclerosis/complications/genetics ; Tumor Suppressor Proteins/deficiency/*genetics/*metabolism ; Vocalization, Animal/drug effects/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2012-09-18
    Description: Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Litvak, Vladimir -- Ratushny, Alexander V -- Lampano, Aaron E -- Schmitz, Frank -- Huang, Albert C -- Raman, Ayush -- Rust, Alistair G -- Bergthaler, Andreas -- Aitchison, John D -- Aderem, Alan -- HHSN272200700038C/AI/NIAID NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HHSN272200800058C/AI/NIAID NIH HHS/ -- HSN272200800058C/PHS HHS/ -- R01 AI025032/AI/NIAID NIH HHS/ -- R01 AI032972/AI/NIAID NIH HHS/ -- R01AI025032/AI/NIAID NIH HHS/ -- R01AI032972/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 GM103511/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- U54GM103511/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Oct 18;490(7420):421-5. doi: 10.1038/nature11428. Epub 2012 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Biomedical Research Institute, Seattle, Washington 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22982991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Forkhead Transcription Factors/deficiency/genetics/*metabolism ; Gene Deletion ; Gene Expression Regulation/*immunology ; Inflammation/genetics/*immunology/*pathology ; Interferon Regulatory Factor-7/deficiency/genetics/*metabolism ; Interferon Type I/immunology ; Lung/immunology/pathology/virology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Reproducibility of Results ; Vesiculovirus/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2012-11-09
    Description: Regulatory T (T(reg)) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling T(reg) cell homeostasis and function, whereas the early T(reg)-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the T(reg)-cell-commitment stage to control T(reg) cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of T(reg )cell function. T(reg) cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with T(reg)-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of T(reg) cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt-Foxo1 signalling module controls a novel genetic program indispensable for T(reg) cell function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ouyang, Weiming -- Liao, Will -- Luo, Chong T -- Yin, Na -- Huse, Morgan -- Kim, Myoungjoo V -- Peng, Min -- Chan, Pamela -- Ma, Qian -- Mo, Yifan -- Meijer, Dies -- Zhao, Keji -- Rudensky, Alexander Y -- Atwal, Gurinder -- Zhang, Michael Q -- Li, Ming O -- HG001696/HG/NHGRI NIH HHS/ -- R01 HG001696/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Nov 22;491(7425):554-9. doi: 10.1038/nature11581. Epub 2012 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23135404" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Nucleus/metabolism/pathology ; Female ; Forkhead Transcription Factors/*metabolism ; Gene Expression Regulation/genetics ; Genome/genetics ; Immune Tolerance/genetics/immunology ; Interferon-gamma/deficiency/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Proto-Oncogene Proteins c-akt/metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Signal Transduction ; T-Lymphocytes, Regulatory/*immunology/*metabolism/pathology ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2012-01-17
    Description: Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a beta-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at 〈10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing beta-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of beta- or gamma-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Duan-Sun -- Piazza, Valeria -- Perrin, Benjamin J -- Rzadzinska, Agnieszka K -- Poczatek, J Collin -- Wang, Mei -- Prosser, Haydn M -- Ervasti, James M -- Corey, David P -- Lechene, Claude P -- 2P41RR0112553-12/RR/NCRR NIH HHS/ -- F32DC009539/DC/NIDCD NIH HHS/ -- P41EB001974/EB/NIBIB NIH HHS/ -- P41RR14579/RR/NCRR NIH HHS/ -- R01 AR042423/AR/NIAMS NIH HHS/ -- R01 AR042423-08/AR/NIAMS NIH HHS/ -- R01 AR049899/AR/NIAMS NIH HHS/ -- R01 DC000033/DC/NIDCD NIH HHS/ -- R01 DC002281/DC/NIDCD NIH HHS/ -- R01AR049899/AR/NIAMS NIH HHS/ -- R01D K58762/PHS HHS/ -- R01DC00033/DC/NIDCD NIH HHS/ -- R01DC02281/DC/NIDCD NIH HHS/ -- R01DC03463/DC/NIDCD NIH HHS/ -- R01DC04179/DC/NIDCD NIH HHS/ -- R01EY12963/EY/NEI NIH HHS/ -- R01GM47214/GM/NIGMS NIH HHS/ -- R37DK39773/DK/NIDDK NIH HHS/ -- WT079643/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 15;481(7382):520-4. doi: 10.1038/nature10745.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246323" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Animals, Newborn ; Bleaching Agents ; Chickens ; Epithelium/drug effects/metabolism ; Fiducial Markers ; Hair Cells, Auditory, Inner/*cytology ; Homologous Recombination/drug effects ; Mass Spectrometry/*methods ; Mice ; Mice, Inbred C57BL ; Proteins/*metabolism ; Rana catesbeiana ; Stereocilia/*metabolism ; Tamoxifen/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2012-03-01
    Description: The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsieh, Andrew C -- Liu, Yi -- Edlind, Merritt P -- Ingolia, Nicholas T -- Janes, Matthew R -- Sher, Annie -- Shi, Evan Y -- Stumpf, Craig R -- Christensen, Carly -- Bonham, Michael J -- Wang, Shunyou -- Ren, Pingda -- Martin, Michael -- Jessen, Katti -- Feldman, Morris E -- Weissman, Jonathan S -- Shokat, Kevan M -- Rommel, Christian -- Ruggero, Davide -- R01 CA140456/CA/NCI NIH HHS/ -- R01 CA154916/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;485(7396):55-61. doi: 10.1038/nature10912.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367541" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Benzoxazoles/pharmacology ; Cell Line, Tumor ; Cell Movement/drug effects/genetics ; Eukaryotic Initiation Factor-4E/metabolism ; Eukaryotic Initiation Factors/metabolism ; Gene Expression Regulation, Neoplastic/drug effects/genetics ; Genome/genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Invasiveness/genetics ; *Neoplasm Metastasis/drug therapy/genetics ; Phosphoproteins/metabolism ; Prostatic Neoplasms/drug therapy/genetics/*pathology ; *Protein Biosynthesis ; Pyrimidines/pharmacology ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2012-12-14
    Description: The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand-target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653568/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653568/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Besnard, Jeremy -- Ruda, Gian Filippo -- Setola, Vincent -- Abecassis, Keren -- Rodriguiz, Ramona M -- Huang, Xi-Ping -- Norval, Suzanne -- Sassano, Maria F -- Shin, Antony I -- Webster, Lauren A -- Simeons, Frederick R C -- Stojanovski, Laste -- Prat, Annik -- Seidah, Nabil G -- Constam, Daniel B -- Bickerton, G Richard -- Read, Kevin D -- Wetsel, William C -- Gilbert, Ian H -- Roth, Bryan L -- Hopkins, Andrew L -- 083481/Wellcome Trust/United Kingdom -- BB/FOF/PF/15/09/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J010510/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MH082441/MH/NIMH NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- WT 083481/Wellcome Trust/United Kingdom -- England -- Nature. 2012 Dec 13;492(7428):215-20. doi: 10.1038/nature11691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Automation ; Drug Delivery Systems ; *Drug Design ; Female ; *Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Models, Theoretical ; Pharmacological Phenomena ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2012-07-18
    Description: The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1beta, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ben -- Nakamura, Takahisa -- Inouye, Karen -- Li, Jianhua -- Tang, Yiting -- Lundback, Peter -- Valdes-Ferrer, Sergio I -- Olofsson, Peder S -- Kalb, Thomas -- Roth, Jesse -- Zou, Yongrui -- Erlandsson-Harris, Helena -- Yang, Huan -- Ting, Jenny P-Y -- Wang, Haichao -- Andersson, Ulf -- Antoine, Daniel J -- Chavan, Sangeeta S -- Hotamisligil, Gokhan S -- Tracey, Kevin J -- DK052539/DK/NIDDK NIH HHS/ -- G0700654/Medical Research Council/United Kingdom -- R01 DK052539/DK/NIDDK NIH HHS/ -- R01 GM057226/GM/NIGMS NIH HHS/ -- R01 GM062508/GM/NIGMS NIH HHS/ -- R01 GM62508/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):670-4. doi: 10.1038/nature11290.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA. blu@nshs.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Antigens, Bacterial/pharmacology ; Apoptosis Regulatory Proteins/metabolism ; Bacterial Toxins/pharmacology ; CARD Signaling Adaptor Proteins/metabolism ; Calcium-Binding Proteins/metabolism ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Crystallins/metabolism ; Escherichia coli/immunology/physiology ; Escherichia coli Infections/immunology/metabolism ; Female ; HMGB1 Protein/blood/*secretion ; Humans ; Inflammasomes/agonists/*metabolism ; Interleukin-18/blood ; Interleukin-1beta/blood ; Interleukin-6/analysis/blood ; Macrophages, Peritoneal/drug effects/metabolism ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Peritonitis/metabolism ; Phosphorylation ; RNA, Double-Stranded/immunology/pharmacology ; Rotenone/pharmacology ; Salmonella Infections/immunology/metabolism ; Salmonella typhimurium/immunology/physiology ; Transfection ; Uric Acid/pharmacology ; eIF-2 Kinase/antagonists & inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2012-07-20
    Description: Cardiac hypertrophy is initiated as an adaptive response to sustained overload but progresses pathologically as heart failure ensues. Here we report that genetic loss of APJ, a G-protein-coupled receptor, confers resistance to chronic pressure overload by markedly reducing myocardial hypertrophy and heart failure. In contrast, mice lacking apelin (the endogenous APJ ligand) remain sensitive, suggesting an apelin-independent function of APJ. Freshly isolated APJ-null cardiomyocytes exhibit an attenuated response to stretch, indicating that APJ is a mechanosensor. Activation of APJ by stretch increases cardiomyocyte cell size and induces molecular markers of hypertrophy. Whereas apelin stimulates APJ to activate Galphai and elicits a protective response, stretch signals in an APJ-dependent, G-protein-independent fashion to induce hypertrophy. Stretch-mediated hypertrophy is prevented by knockdown of beta-arrestins or by pharmacological doses of apelin acting through Galphai. Taken together, our data indicate that APJ is a bifunctional receptor for both mechanical stretch and the endogenous peptide apelin. By sensing the balance between these stimuli, APJ occupies a pivotal point linking sustained overload to cardiomyocyte hypertrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scimia, Maria Cecilia -- Hurtado, Cecilia -- Ray, Saugata -- Metzler, Scott -- Wei, Ke -- Wang, Jianming -- Woods, Chris E -- Purcell, Nicole H -- Catalucci, Daniele -- Akasaka, Takeshi -- Bueno, Orlando F -- Vlasuk, George P -- Kaliman, Perla -- Bodmer, Rolf -- Smith, Layton H -- Ashley, Euan -- Mercola, Mark -- Brown, Joan Heller -- Ruiz-Lozano, Pilar -- NS05422/NS/NINDS NIH HHS/ -- P01 HL085577/HL/NHLBI NIH HHS/ -- R01 HL054732/HL/NHLBI NIH HHS/ -- R01 HL086879/HL/NHLBI NIH HHS/ -- R01HL054732/HL/NHLBI NIH HHS/ -- R01HL083463/HL/NHLBI NIH HHS/ -- R01HL086879/HL/NHLBI NIH HHS/ -- R01HL28143/HL/NHLBI NIH HHS/ -- R37 HL028143/HL/NHLBI NIH HHS/ -- R37HL059502/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):394-8. doi: 10.1038/nature11263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22810587" target="_blank"〉PubMed〈/a〉
    Keywords: Adipokines ; Animals ; Aorta/pathology ; Arrestins/deficiency/genetics/metabolism ; Blood Pressure ; Cardiomegaly/*metabolism/pathology/physiopathology/prevention & control ; Female ; GTP-Binding Protein alpha Subunits, Gi-Go/metabolism ; Intercellular Signaling Peptides and ; Proteins/deficiency/genetics/metabolism/pharmacology ; Male ; Mechanoreceptors/metabolism ; Mechanotransduction, Cellular/drug effects/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocytes, Cardiac/drug effects/pathology ; Receptors, G-Protein-Coupled/agonists/deficiency/genetics/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2012-07-18
    Description: The herpes virus entry mediator (HVEM), a member of the tumour-necrosis factor receptor family, has diverse functions, augmenting or inhibiting the immune response. HVEM was recently reported as a colitis risk locus in patients, and in a mouse model of colitis we demonstrated an anti-inflammatory role for HVEM, but its mechanism of action in the mucosal immune system was unknown. Here we report an important role for epithelial HVEM in innate mucosal defence against pathogenic bacteria. HVEM enhances immune responses by NF-kappaB-inducing kinase-dependent Stat3 activation, which promotes the epithelial expression of genes important for immunity. During intestinal Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli infection, Hvem-/- mice showed decreased Stat3 activation, impaired responses in the colon, higher bacterial burdens and increased mortality. We identified the immunoglobulin superfamily molecule CD160 (refs 7 and 8), expressed predominantly by innate-like intraepithelial lymphocytes, as the ligand engaging epithelial HVEM for host protection. Likewise, in pulmonary Streptococcus pneumoniae infection, HVEM is also required for host defence. Our results pinpoint HVEM as an important orchestrator of mucosal immunity, integrating signals from innate lymphocytes to induce optimal epithelial Stat3 activation, which indicates that targeting HVEM with agonists could improve host defence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shui, Jr-Wen -- Larange, Alexandre -- Kim, Gisen -- Vela, Jose Luis -- Zahner, Sonja -- Cheroutre, Hilde -- Kronenberg, Mitchell -- F32 AI083029/AI/NIAID NIH HHS/ -- F32 DK082249/DK/NIDDK NIH HHS/ -- F32-AI083029/AI/NIAID NIH HHS/ -- F32-DK082249/DK/NIDDK NIH HHS/ -- P01 DK046763/DK/NIDDK NIH HHS/ -- P01 DK46763/DK/NIDDK NIH HHS/ -- R01 AI050265/AI/NIAID NIH HHS/ -- R01 AI061516/AI/NIAID NIH HHS/ -- R01 AI064584/AI/NIAID NIH HHS/ -- R01-AI061516/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Aug 9;488(7410):222-5. doi: 10.1038/nature11242.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801499" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/immunology/metabolism ; Bacterial Load ; Cell Line ; Citrobacter rodentium/*immunology/*pathogenicity ; Disease Models, Animal ; Enterobacteriaceae Infections/immunology/microbiology ; Enteropathogenic Escherichia coli ; Epithelial Cells/immunology/metabolism ; Escherichia coli Infections ; GPI-Linked Proteins/immunology/metabolism ; Immunity, Mucosal/*immunology ; Intestines/immunology/microbiology ; Ligands ; Lung/immunology/microbiology ; Lymphocytes/immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Mucous Membrane/*immunology/metabolism/*microbiology ; Pneumococcal Infections/immunology/microbiology ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Immunologic/immunology/metabolism ; Receptors, Tumor Necrosis Factor, Member ; 14/deficiency/genetics/immunology/*metabolism ; STAT3 Transcription Factor/metabolism ; *Signal Transduction ; Streptococcus pneumoniae/immunology ; Survival Rate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2012-10-13
    Description: The morphological and functional development of the vertebrate nervous system is initially governed by genetic factors and subsequently refined by neuronal activity. However, fundamental features of the nervous system emerge before sensory experience is possible. Thus, activity-dependent development occurring before the onset of experience must be driven by spontaneous activity, but the origin and nature of activity in vivo remains largely untested. Here we use optical methods to show in live neonatal mice that waves of spontaneous retinal activity are present and propagate throughout the entire visual system before eye opening. This patterned activity encompassed the visual field, relied on cholinergic neurotransmission, preferentially initiated in the binocular retina and exhibited spatiotemporal correlations between the two hemispheres. Retinal waves were the primary source of activity in the midbrain and primary visual cortex, but only modulated ongoing activity in secondary visual areas. Thus, spontaneous retinal activity is transmitted through the entire visual system and carries patterned information capable of guiding the activity-dependent development of complex intra- and inter-hemispheric circuits before the onset of vision.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ackman, James B -- Burbridge, Timothy J -- Crair, Michael C -- P30 EY000785/EY/NEI NIH HHS/ -- R01 EY015788/EY/NEI NIH HHS/ -- R01 EY023105/EY/NEI NIH HHS/ -- T15LM070506/LM/NLM NIH HHS/ -- T32 EY017353/EY/NEI NIH HHS/ -- T32 EY022312/EY/NEI NIH HHS/ -- T32 NS007224/NS/NINDS NIH HHS/ -- T32NS007224/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Oct 11;490(7419):219-25. doi: 10.1038/nature11529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23060192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Bicyclo Compounds, Heterocyclic/pharmacology ; Calcium/metabolism ; Gene Expression Regulation, Developmental/drug effects ; Mice ; Mice, Inbred C57BL ; Nicotinic Agonists/pharmacology ; Pyridines/pharmacology ; Retina/drug effects/growth & development ; Retinal Neurons/cytology/drug effects ; Visual Cortex/cytology/drug effects/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2012-10-05
    Description: Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of beta-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grivennikov, Sergei I -- Wang, Kepeng -- Mucida, Daniel -- Stewart, C Andrew -- Schnabl, Bernd -- Jauch, Dominik -- Taniguchi, Koji -- Yu, Guann-Yi -- Osterreicher, Christoph H -- Hung, Kenneth E -- Datz, Christian -- Feng, Ying -- Fearon, Eric R -- Oukka, Mohamed -- Tessarollo, Lino -- Coppola, Vincenzo -- Yarovinsky, Felix -- Cheroutre, Hilde -- Eckmann, Lars -- Trinchieri, Giorgio -- Karin, Michael -- AI043477/AI/NIAID NIH HHS/ -- DK035108/DK/NIDDK NIH HHS/ -- DK080506/DK/NIDDK NIH HHS/ -- K08 DK081830/DK/NIDDK NIH HHS/ -- K99 DK088589/DK/NIDDK NIH HHS/ -- K99-DK088589/DK/NIDDK NIH HHS/ -- R01 AA020703/AA/NIAAA NIH HHS/ -- R01 AI043477/AI/NIAID NIH HHS/ -- R01 AI050265/AI/NIAID NIH HHS/ -- R01 CA082223/CA/NCI NIH HHS/ -- R01CA082223/CA/NCI NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):254-8. doi: 10.1038/nature11465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0723, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23034650" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/immunology/*microbiology/*pathology ; Animals ; Bacteria/metabolism/pathogenicity ; Cell Division ; Cell Transformation, Neoplastic/*pathology ; Colitis/complications ; Colorectal Neoplasms/genetics/immunology/*microbiology/*pathology ; Disease Models, Animal ; Disease-Free Survival ; Genes, APC ; Humans ; Inflammation/genetics/immunology/microbiology/pathology ; Interleukin-17/genetics/*immunology ; Interleukin-23/deficiency/genetics/*immunology ; Mice ; Mice, Inbred C57BL ; Myeloid Cells/immunology/metabolism ; Myeloid Differentiation Factor 88/immunology/metabolism ; Signal Transduction ; Toll-Like Receptors/immunology/metabolism ; Tumor Microenvironment ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2012-03-13
    Description: In many parts of the nervous system, neuronal somata display orderly spatial arrangements. In the retina, neurons of numerous individual subtypes form regular arrays called mosaics: they are less likely to be near neighbours of the same subtype than would occur by chance, resulting in 'exclusion zones' that separate them. Mosaic arrangements provide a mechanism to distribute each cell type evenly across the retina, ensuring that all parts of the visual field have access to a full set of processing elements. Remarkably, mosaics are independent of each other: although a neuron of one subtype is unlikely to be adjacent to another of the same subtype, there is no restriction on its spatial relationship to neighbouring neurons of other subtypes. This independence has led to the hypothesis that molecular cues expressed by specific subtypes pattern mosaics by mediating homotypic (within-subtype) short-range repulsive interactions. So far, however, no molecules have been identified that show such activity, so this hypothesis remains untested. Here we demonstrate in mouse that two related transmembrane proteins, MEGF10 and MEGF11, have critical roles in the formation of mosaics by two retinal interneuron subtypes, starburst amacrine cells and horizontal cells. MEGF10 and 11 and their invertebrate relatives Caenorhabditis elegans CED-1 and Drosophila Draper have hitherto been studied primarily as receptors necessary for engulfment of debris following apoptosis or axonal injury. Our results demonstrate that members of this gene family can also serve as subtype-specific ligands that pattern neuronal arrays.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Jeremy N -- Chu, Monica W -- Sanes, Joshua R -- EY022073/EY/NEI NIH HHS/ -- NS029169/NS/NINDS NIH HHS/ -- R01 EY022073/EY/NEI NIH HHS/ -- R01 NS029169/NS/NINDS NIH HHS/ -- R01 NS029169-20/NS/NINDS NIH HHS/ -- R01 NS029169-21/NS/NINDS NIH HHS/ -- R01 NS029169-22/NS/NINDS NIH HHS/ -- R37 NS029169/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Mar 11;483(7390):465-9. doi: 10.1038/nature10877.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22407321" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/*cytology/metabolism ; Animals ; Cell Adhesion ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Ligands ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mutation ; Photoreceptor Cells, Vertebrate/metabolism ; Retinal Horizontal Cells/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2012-07-06
    Description: During immune responses, naive CD4+ T cells differentiate into several T helper (TH) cell subsets under the control of lineage-specifying genes. These subsets (TH1, TH2 and TH17 cells and regulatory T cells) secrete distinct cytokines and are involved in protection against different types of infection. Epigenetic mechanisms are involved in the regulation of these developmental programs, and correlations have been drawn between the levels of particular epigenetic marks and the activity or silencing of specifying genes during differentiation. Nevertheless, the functional relevance of the epigenetic pathways involved in TH cell subset differentiation and commitment is still unclear. Here we explore the role of the SUV39H1-H3K9me3-HP1alpha silencing pathway in the control of TH2 lineage stability. This pathway involves the histone methylase SUV39H1, which participates in the trimethylation of histone H3 on lysine 9 (H3K9me3), a modification that provides binding sites for heterochromatin protein 1alpha (HP1alpha) and promotes transcriptional silencing. This pathway was initially associated with heterochromatin formation and maintenance but can also contribute to the regulation of euchromatic genes. We now propose that the SUV39H1-H3K9me3-HP1alpha pathway participates in maintaining the silencing of TH1 loci, ensuring TH2 lineage stability. In TH2 cells that are deficient in SUV39H1, the ratio between trimethylated and acetylated H3K9 is impaired, and the binding of HP1alpha at the promoters of silenced TH1 genes is reduced. Despite showing normal differentiation, both SUV39H1-deficient TH2 cells and HP1alpha-deficient TH2 cells, in contrast to wild-type cells, expressed TH1 genes when recultured under conditions that drive differentiation into TH1 cells. In a mouse model of TH2-driven allergic asthma, the chemical inhibition or loss of SUV39H1 skewed T-cell responses towards TH1 responses and decreased the lung pathology. These results establish a link between the SUV39H1-H3K9me3-HP1alpha pathway and the stability of TH2 cells, and they identify potential targets for therapeutic intervention in TH2-cell-mediated inflammatory diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allan, Rhys S -- Zueva, Elina -- Cammas, Florence -- Schreiber, Heidi A -- Masson, Vanessa -- Belz, Gabrielle T -- Roche, Daniele -- Maison, Christele -- Quivy, Jean-Pierre -- Almouzni, Genevieve -- Amigorena, Sebastian -- England -- Nature. 2012 Jul 12;487(7406):249-53. doi: 10.1038/nature11173.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie Research Center, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/enzymology/immunology/pathology ; Cell Differentiation/genetics/immunology ; Cell Lineage/genetics/immunology ; Chromosomal Proteins, Non-Histone/metabolism ; Disease Models, Animal ; *Epigenesis, Genetic ; Female ; Gene Expression Regulation ; Gene Silencing ; Histones/metabolism ; Male ; Methyltransferases/deficiency/metabolism ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic ; Repressor Proteins/deficiency/metabolism ; Th1 Cells/metabolism ; Th2 Cells/*cytology/enzymology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2012-12-25
    Description: The splenic marginal zone is a unique microenvironment where resident immune cells are exposed to the open blood circulation. Even though it has an important role in responses against blood-borne antigens, lymphocyte migration in the marginal zone has not been intravitally visualized due to challenges associated with achieving adequate imaging depth in this abdominal organ. Here we develop a two-photon microscopy procedure to study marginal zone and follicular B-cell movement in the live mouse spleen. We show that marginal zone B cells are highly motile and exhibit long membrane extensions. Marginal zone B cells shuttle between the marginal zone and follicles with at least one-fifth of the cells exchanging between compartments per hour, a behaviour that explains their ability to deliver antigens rapidly from the open blood circulation to the secluded follicles. Follicular B cells also transit from follicles to the marginal zone, but unlike marginal zone B cells, they fail to undergo integrin-mediated adhesion, become caught in fluid flow and are carried into the red pulp. Follicular B-cell egress via the marginal zone is sphingosine-1-phosphate receptor-1 (S1PR1)-dependent. This study shows that marginal zone B cells migrate continually between marginal zone and follicles and establishes the marginal zone as a site of S1PR1-dependent B-cell exit from follicles. The results also show how adhesive differences of similar cells critically influence their behaviour in the same microenvironment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561487/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561487/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnon, Tal I -- Horton, Robert M -- Grigorova, Irina L -- Cyster, Jason G -- AI74847/AI/NIAID NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 AI074847/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 31;493(7434):684-8. doi: 10.1038/nature11738. Epub 2012 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23263181" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/drug effects/immunology ; Cell Adhesion/immunology ; Cell Movement/drug effects/immunology ; Dendritic Cells, Follicular/cytology/immunology ; Fingolimod Hydrochloride ; Immunosuppressive Agents/pharmacology ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Propylene Glycols/pharmacology ; Sphingosine/analogs & derivatives/pharmacology ; Spleen/*cytology/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2012-12-18
    Description: Chronic neuroinflammation is a common feature of the ageing brain and some neurodegenerative disorders. However, the molecular and cellular mechanisms underlying the regulation of innate immunity in the central nervous system remain elusive. Here we show that the astrocytic dopamine D2 receptor (DRD2) modulates innate immunity through alphaB-crystallin (CRYAB), which is known to suppress neuroinflammation. We demonstrate that knockout mice lacking Drd2 showed remarkable inflammatory response in multiple central nervous system regions and increased the vulnerability of nigral dopaminergic neurons to neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. Astrocytes null for Drd2 became hyper-responsive to immune stimuli with a marked reduction in the level of CRYAB. Preferential ablation of Drd2 in astrocytes robustly activated astrocytes in the substantia nigra. Gain- or loss-of-function studies showed that CRYAB is critical for DRD2-mediated modulation of innate immune response in astrocytes. Furthermore, treatment of wild-type mice with the selective DRD2 agonist quinpirole increased resistance of the nigral dopaminergic neurons to MPTP through partial suppression of inflammation. Our study indicates that astrocytic DRD2 activation normally suppresses neuroinflammation in the central nervous system through a CRYAB-dependent mechanism, and provides a new strategy for targeting the astrocyte-mediated innate immune response in the central nervous system during ageing and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shao, Wei -- Zhang, Shu-zhen -- Tang, Mi -- Zhang, Xin-hua -- Zhou, Zheng -- Yin, Yan-qing -- Zhou, Qin-bo -- Huang, Yuan-yuan -- Liu, Ying-jun -- Wawrousek, Eric -- Chen, Teng -- Li, Sheng-bin -- Xu, Ming -- Zhou, Jiang-ning -- Hu, Gang -- Zhou, Jia-wei -- England -- Nature. 2013 Feb 7;494(7435):90-4. doi: 10.1038/nature11748. Epub 2012 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23242137" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology ; Animals ; Astrocytes/drug effects/*immunology/*metabolism ; Dopaminergic Neurons/drug effects ; Immunity, Innate/drug effects ; Inflammation/chemically induced/genetics/*immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Microglia/cytology/immunology ; Neuroprotective Agents/metabolism ; Quinpirole/pharmacology ; Receptors, Dopamine D2/agonists/deficiency/genetics/*metabolism ; Substantia Nigra/cytology/drug effects ; alpha-Crystallin B Chain/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2012-11-23
    Description: The activity of the cerebral cortex is thought to depend on the precise relationship between synaptic excitation and inhibition. In the visual cortex, in particular, intracellular measurements have related response selectivity to coordinated increases in excitation and inhibition. These measurements, however, have all been made during anaesthesia, which strongly influences cortical state and therefore sensory processing. The synaptic activity that is evoked by visual stimulation during wakefulness is unknown. Here we measured visually evoked responses--and the underlying synaptic conductances--in the visual cortex of anaesthetized and awake mice. Under anaesthesia, responses could be elicited from a large region of visual space and were prolonged. During wakefulness, responses were more spatially selective and much briefer. Whole-cell patch-clamp recordings of synaptic conductances showed a difference in synaptic inhibition between the two conditions. Under anaesthesia, inhibition tracked excitation in amplitude and spatial selectivity. By contrast, during wakefulness, inhibition was much stronger than excitation and had extremely broad spatial selectivity. We conclude that during wakefulness, cortical responses to visual stimulation are dominated by synaptic inhibition, restricting the spatial spread and temporal persistence of neural activity. These results provide a direct glimpse of synaptic mechanisms that control sensory responses in the awake cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537822/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537822/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haider, Bilal -- Hausser, Michael -- Carandini, Matteo -- 094077/Wellcome Trust/United Kingdom -- 095669/Wellcome Trust/United Kingdom -- G0800791/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jan 3;493(7430):97-100. doi: 10.1038/nature11665. Epub 2012 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK. b.haider@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23172139" target="_blank"〉PubMed〈/a〉
    Keywords: Anesthesia ; Animals ; Female ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neural Inhibition/*physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Synapses/metabolism ; Synaptic Transmission ; Time Factors ; Visual Cortex/*physiology ; Wakefulness/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2012-03-31
    Description: Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-alpha and REV-ERB-beta have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343186/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343186/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solt, Laura A -- Wang, Yongjun -- Banerjee, Subhashis -- Hughes, Travis -- Kojetin, Douglas J -- Lundasen, Thomas -- Shin, Youseung -- Liu, Jin -- Cameron, Michael D -- Noel, Romain -- Yoo, Seung-Hee -- Takahashi, Joseph S -- Butler, Andrew A -- Kamenecka, Theodore M -- Burris, Thomas P -- DK080201/DK/NIDDK NIH HHS/ -- DK088499/DK/NIDDK NIH HHS/ -- DK089984/DK/NIDDK NIH HHS/ -- MH092769/MH/NIMH NIH HHS/ -- R01 DK073189/DK/NIDDK NIH HHS/ -- R01 DK080201/DK/NIDDK NIH HHS/ -- R01 DK080201-05/DK/NIDDK NIH HHS/ -- R01 MH092769/MH/NIMH NIH HHS/ -- R01 MH092769-02/MH/NIMH NIH HHS/ -- R01 MH093429/MH/NIMH NIH HHS/ -- R01 MH093429-01A1/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 29;485(7396):62-8. doi: 10.1038/nature11030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460951" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/drug effects/metabolism ; Animals ; Biological Clocks/drug effects/genetics/physiology ; Circadian Rhythm/*drug effects/genetics/*physiology ; Disease Models, Animal ; Energy Metabolism/*drug effects ; HEK293 Cells ; Humans ; Hypothalamus/drug effects/metabolism ; Liver/drug effects/metabolism ; Metabolome/drug effects ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Muscle, Skeletal/drug effects/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/*antagonists & ; inhibitors/metabolism ; Obesity/chemically induced/drug therapy/metabolism ; Pyrrolidines/*pharmacology ; Receptors, Cytoplasmic and Nuclear/*antagonists & inhibitors/metabolism ; Repressor Proteins/*antagonists & inhibitors/metabolism ; Thiophenes/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2012-07-24
    Description: One defining characteristic of the mammalian brain is its neuronal diversity. For a given region, substructure, layer or even cell type, variability in neuronal morphology and connectivity persists. Although it is well known that such cellular properties vary considerably according to neuronal type, the substantial biophysical diversity of neurons of the same morphological class is typically averaged out and ignored. Here we show that the amplitude of hyperpolarization-evoked sag of membrane potential recorded in olfactory bulb mitral cells is an emergent, homotypic property of local networks and sensory information processing. Simultaneous whole-cell recordings from pairs of cells show that the amount of hyperpolarization-evoked sag potential and current (Ih) is stereotypic for mitral cells belonging to the same glomerular circuit. This is corroborated by a mosaic, glomerulus-based pattern of expression of the HCN2 (hyperpolarization-activated cyclic nucleotide-gated channel 2) subunit of the Ih channel. Furthermore, inter-glomerular differences in both membrane potential sag and HCN2 protein are diminished when sensory input to glomeruli is genetically and globally altered so that only one type of odorant receptor is universally expressed. Population diversity in this intrinsic property therefore reflects differential expression between local mitral cell networks processing distinct odour-related information.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Angelo, Kamilla -- Rancz, Ede A -- Pimentel, Diogo -- Hundahl, Christian -- Hannibal, Jens -- Fleischmann, Alexander -- Pichler, Bruno -- Margrie, Troy W -- 085509/Wellcome Trust/United Kingdom -- MC_U117597156/Medical Research Council/United Kingdom -- MC_U1175975156/Medical Research Council/United Kingdom -- U.9500(97156)/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Aug 16;488(7411):375-8. doi: 10.1038/nature11291.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gene Expression Profiling ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels ; Ion Channels/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Neurological ; Nerve Net/*physiology ; Olfactory Bulb/*cytology/*physiology ; Potassium Channels ; Receptors, Odorant/metabolism ; Smell/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2012-08-04
    Description: Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function effects. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat and are retained in the nucleus. The mutant RNA exerts a toxic gain-of-function effect, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target messenger RNAs. Here we show that nuclear-retained transcripts containing expanded CUG (CUG(exp)) repeats are unusually sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUG(exp) RNA in skeletal muscle, correcting the physiological, histopathologic and transcriptomic features of the disease. The effect was sustained for up to 1 year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat1, a long non-coding RNA (lncRNA) that is retained in the nucleus. These results provide a general strategy to correct RNA gain-of-function effects and to modulate the expression of expanded repeats, lncRNAs and other transcripts with prolonged nuclear residence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221572/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221572/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Thurman M -- Leger, Andrew J -- Pandey, Sanjay K -- MacLeod, A Robert -- Nakamori, Masayuki -- Cheng, Seng H -- Wentworth, Bruce M -- Bennett, C Frank -- Thornton, Charles A -- AR/NS48143/AR/NIAMS NIH HHS/ -- AR049077/AR/NIAMS NIH HHS/ -- K08 NS064293/NS/NINDS NIH HHS/ -- K08NS064293/NS/NINDS NIH HHS/ -- U01NS072323/NS/NINDS NIH HHS/ -- U54 NS048843/NS/NINDS NIH HHS/ -- U54NS48843/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):111-5. doi: 10.1038/nature11362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Rochester, 601 Elmwood Avenue, Rochester, New York 14642, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859208" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Cell Nucleus/drug effects/*genetics ; Disease Models, Animal ; Gene Knockdown Techniques ; *Gene Silencing ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Inbred mdx ; Mice, Transgenic ; Muscle, Skeletal/drug effects/metabolism ; Myotonic Dystrophy/*genetics/pathology/physiopathology/*therapy ; Myotonin-Protein Kinase ; Oligonucleotides, Antisense/genetics/pharmacology/therapeutic use ; Protein-Serine-Threonine Kinases/genetics ; RNA/*antagonists & inhibitors/*genetics/metabolism ; RNA, Long Noncoding ; RNA, Messenger/antagonists & inhibitors/genetics/metabolism ; RNA, Untranslated/genetics ; Ribonuclease H/metabolism ; Transcriptome/drug effects/genetics ; Trinucleotide Repeat Expansion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2012-11-06
    Description: People with pale skin, red hair, freckles and an inability to tan--the 'red hair/fair skin' phenotype--are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAF(V600E), into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r(e/e) background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1r(e/e) mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1r(e/e) mouse skin. These data suggest that the pheomelanin pigment pathway produces ultraviolet-radiation-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. Although protection from ultraviolet radiation remains important, additional strategies may be required for optimal melanoma prevention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521494/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521494/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitra, Devarati -- Luo, Xi -- Morgan, Ann -- Wang, Jin -- Hoang, Mai P -- Lo, Jennifer -- Guerrero, Candace R -- Lennerz, Jochen K -- Mihm, Martin C -- Wargo, Jennifer A -- Robinson, Kathleen C -- Devi, Suprabha P -- Vanover, Jillian C -- D'Orazio, John A -- McMahon, Martin -- Bosenberg, Marcus W -- Haigis, Kevin M -- Haber, Daniel A -- Wang, Yinsheng -- Fisher, David E -- 5R01 AR043369-16/AR/NIAMS NIH HHS/ -- F30 ES020663-01/ES/NIEHS NIH HHS/ -- R01 AR043369/AR/NIAMS NIH HHS/ -- R01 CA101864/CA/NCI NIH HHS/ -- R01 CA129933/CA/NCI NIH HHS/ -- R01 CA131075/CA/NCI NIH HHS/ -- R01 CA176839/CA/NCI NIH HHS/ -- R01-CA101864/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):449-53. doi: 10.1038/nature11624. Epub 2012 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23123854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Gene Expression Regulation/drug effects ; Hair Color/*genetics ; Indoles/pharmacology ; Melanins/metabolism ; Melanoma/*genetics ; Mice ; Mice, Inbred C57BL ; Monophenol Monooxygenase/genetics ; Peroxidases/metabolism ; Protein Kinase Inhibitors/pharmacology ; Proto-Oncogene Proteins B-raf/genetics ; Receptor, Melanocortin, Type 1/genetics ; Skin Pigmentation/*genetics ; Sulfonamides/pharmacology ; Survival Analysis ; Tumor Cells, Cultured ; *Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2012-06-23
    Description: Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Levy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Levy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harris, Tajie H -- Banigan, Edward J -- Christian, David A -- Konradt, Christoph -- Tait Wojno, Elia D -- Norose, Kazumi -- Wilson, Emma H -- John, Beena -- Weninger, Wolfgang -- Luster, Andrew D -- Liu, Andrea J -- Hunter, Christopher A -- AI-081478/AI/NIAID NIH HHS/ -- AI-090234/AI/NIAID NIH HHS/ -- AI-41158/AI/NIAID NIH HHS/ -- AI-42334/AI/NIAID NIH HHS/ -- CA-069212/CA/NCI NIH HHS/ -- EY-021314/EY/NEI NIH HHS/ -- F32 AI098374/AI/NIAID NIH HHS/ -- F32 AI098374-01/AI/NIAID NIH HHS/ -- R01 AI041158/AI/NIAID NIH HHS/ -- R01 AI041158-14/AI/NIAID NIH HHS/ -- R01 CA069212/CA/NCI NIH HHS/ -- R01 NS072298/NS/NINDS NIH HHS/ -- R21 EY021314/EY/NEI NIH HHS/ -- R21 EY021314-02/EY/NEI NIH HHS/ -- T32 AI007532/AI/NIAID NIH HHS/ -- T32 AI007532-15/AI/NIAID NIH HHS/ -- T32 AR007442/AR/NIAMS NIH HHS/ -- T32 AR007442-25/AR/NIAMS NIH HHS/ -- T32-AI-055400/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Jun 28;486(7404):545-8. doi: 10.1038/nature11098.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/immunology/microbiology ; CD8-Positive T-Lymphocytes/*cytology/*immunology ; *Cell Movement ; Chemokine CXCL10/antagonists & inhibitors/genetics/*immunology ; Female ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; Receptors, CXCR3/genetics/metabolism ; Time Factors ; Toxoplasma/growth & development/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2012-10-16
    Description: Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (gamma-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lammel, Stephan -- Lim, Byung Kook -- Ran, Chen -- Huang, Kee Wui -- Betley, Michael J -- Tye, Kay M -- Deisseroth, Karl -- Malenka, Robert C -- NS069375/NS/NINDS NIH HHS/ -- P50 MH086403/MH/NIMH NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):212-7. doi: 10.1038/nature11527. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning/drug effects/*physiology ; Axons/metabolism ; Dopamine/metabolism ; Dopamine Antagonists/pharmacology ; Dopaminergic Neurons/metabolism ; GABAergic Neurons/metabolism ; Habenula/cytology/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neural Pathways/*physiology ; Receptors, Dopamine/metabolism ; *Reward ; Synapses/metabolism ; Ventral Tegmental Area/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2012-03-16
    Description: Hypothalamic neurons that co-express agouti-related protein (AgRP), neuropeptide Y and gamma-aminobutyric acid (GABA) are known to promote feeding and weight gain by integration of various nutritional, hormonal, and neuronal signals. Ablation of these neurons in mice leads to cessation of feeding that is accompanied by activation of Fos in most regions where they project. Previous experiments have indicated that the ensuing starvation is due to aberrant activation of the parabrachial nucleus (PBN) and it could be prevented by facilitating GABA(A) receptor signalling in the PBN within a critical adaptation period. We speculated that loss of GABA signalling from AgRP-expressing neurons (AgRP neurons) within the PBN results in unopposed excitation of the PBN, which in turn inhibits feeding. However, the source of the excitatory inputs to the PBN was unknown. Here we show that glutamatergic neurons in the nucleus tractus solitarius (NTS) and caudal serotonergic neurons control the excitability of PBN neurons and inhibit feeding. Blockade of serotonin (5-HT(3)) receptor signalling in the NTS by either the chronic administration of ondansetron or the genetic inactivation of Tph2 in caudal serotonergic neurons that project to the NTS protects against starvation when AgRP neurons are ablated. Likewise, genetic inactivation of glutamatergic signalling by the NTS onto N-methyl D-aspartate-type glutamate receptors in the PBN prevents starvation. We also show that suppressing glutamatergic output of the PBN reinstates normal appetite after AgRP neuron ablation, whereas it promotes weight gain without AgRP neuron ablation. Thus we identify the PBN as a hub that integrates signals from several brain regions to bidirectionally modulate feeding and body weight.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000532/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000532/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Qi -- Clark, Michael S -- Palmiter, Richard D -- DA024908/DA/NIDA NIH HHS/ -- R01 DA024908/DA/NIDA NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 14;483(7391):594-7. doi: 10.1038/nature10899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22419158" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti-Related Protein/metabolism ; Animals ; Appetite/drug effects/*physiology ; Body Weight/drug effects ; Feeding Behavior/drug effects/physiology ; Female ; Glutamic Acid/metabolism ; Hypothalamus/*cytology/drug effects/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/*physiology ; Ondansetron/pharmacology ; Receptors, GABA-A/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Serotonergic Neurons/drug effects/metabolism ; Solitary Nucleus/cytology ; Starvation/drug therapy/physiopathology/prevention & control ; Weight Gain/drug effects/physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2012-07-06
    Description: Most leukocytes can roll along the walls of venules at low shear stress (1 dyn cm-2), but neutrophils have the ability to roll at tenfold higher shear stress in microvessels in vivo. The mechanisms involved in this shear-resistant rolling are known to involve cell flattening and pulling of long membrane tethers at the rear. Here we show that these long tethers do not retract as postulated, but instead persist and appear as 'slings' at the front of rolling cells. We demonstrate slings in a model of acute inflammation in vivo and on P-selectin in vitro, where P-selectin-glycoprotein-ligand-1 (PSGL-1) is found in discrete sticky patches whereas LFA-1 is expressed over the entire length on slings. As neutrophils roll forward, slings wrap around the rolling cells and undergo a step-wise peeling from the P-selectin substrate enabled by the failure of PSGL-1 patches under hydrodynamic forces. The 'step-wise peeling of slings' is distinct from the 'pulling of tethers' reported previously. Each sling effectively lays out a cell-autonomous adhesive substrate in front of neutrophils rolling at high shear stress during inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sundd, Prithu -- Gutierrez, Edgar -- Koltsova, Ekaterina K -- Kuwano, Yoshihiro -- Fukuda, Satoru -- Pospieszalska, Maria K -- Groisman, Alex -- Ley, Klaus -- EB02185/EB/NIBIB NIH HHS/ -- R01 EB002185/EB/NIBIB NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):399-403. doi: 10.1038/nature11248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763437" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Animals ; Antigens, CD/metabolism ; Cell Adhesion ; Cell Adhesion Molecules/metabolism ; E-Selectin/metabolism ; Inflammation/immunology/metabolism/pathology ; Intercellular Adhesion Molecule-1/metabolism ; *Leukocyte Rolling ; Lymphocyte Function-Associated Antigen-1/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microvessels/metabolism ; Neutrophils/*cytology/immunology/*metabolism ; P-Selectin/metabolism ; *Shear Strength ; Th1 Cells/cytology/immunology ; Venules/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2012-04-28
    Description: Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPMs). In self-resolving E. coli exudates (10(5) colony forming units, c.f.u.), the dominant SPMs identified were resolvin (Rv) D5 and protectin D1 (PD1), which at 12 h were at significantly greater levels than in exudates from higher titre E. coli (10(7) c.f.u.)-challenged mice. Germ-free mice had endogenous RvD1 and PD1 levels higher than in conventional mice. RvD1 and RvD5 (nanograms per mouse) each reduced bacterial titres in blood and exudates, E. coli-induced hypothermia and increased survival, demonstrating the first actions of RvD5. With human polymorphonuclear neutrophils and macrophages, RvD1, RvD5 and PD1 each directly enhanced phagocytosis of E. coli, and RvD5 counter-regulated a panel of pro-inflammatory genes, including NF-kappaB and TNF-alpha. RvD5 activated the RvD1 receptor, GPR32, to enhance phagocytosis. With self-limited E. coli infections, RvD1 and the antibiotic ciprofloxacin accelerated resolution, each shortening resolution intervals (R(i)). Host-directed RvD1 actions enhanced ciprofloxacin's therapeutic actions. In 10(7) c.f.u. E. coli infections, SPMs (RvD1, RvD5, PD1) together with ciprofloxacin also heightened host antimicrobial responses. In skin infections, SPMs enhanced vancomycin clearance of Staphylococcus aureus. These results demonstrate that specific SPMs are temporally and differentially regulated during infections and that they are anti-phlogistic, enhance containment and lower antibiotic requirements for bacterial clearance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiang, Nan -- Fredman, Gabrielle -- Backhed, Fredrik -- Oh, Sungwhan F -- Vickery, Thad -- Schmidt, Birgitta A -- Serhan, Charles N -- P01 GM095467/GM/NIGMS NIH HHS/ -- P01 GM095467-01/GM/NIGMS NIH HHS/ -- P01 GM095467-02/GM/NIGMS NIH HHS/ -- P01GM095467/GM/NIGMS NIH HHS/ -- R01 GM038765/GM/NIGMS NIH HHS/ -- R01 GM038765-24/GM/NIGMS NIH HHS/ -- R01 GM038765-25/GM/NIGMS NIH HHS/ -- R01 GM038765-26/GM/NIGMS NIH HHS/ -- R01GM38765/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 25;484(7395):524-8. doi: 10.1038/nature11042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22538616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Docosahexaenoic Acids/*metabolism ; Escherichia coli/*drug effects/immunology ; Escherichia coli Infections/drug therapy/*metabolism/microbiology ; Humans ; Hypothermia/prevention & control ; Macrophages/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Microbial Viability/drug effects ; Neutrophils/immunology ; Peritonitis/drug therapy/metabolism/microbiology ; Phagocytosis ; Skin Diseases/drug therapy/metabolism/microbiology ; Staphylococcal Infections/drug therapy/*metabolism/microbiology ; Staphylococcus aureus/drug effects/immunology ; Vancomycin/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2012-10-02
    Description: Pregnancy is an intricately orchestrated process where immune effector cells with fetal specificity are selectively silenced. This requires the sustained expansion of immune-suppressive maternal FOXP3(+) regulatory T cells (T(reg) cells), because even transient partial ablation triggers fetal-specific effector T-cell activation and pregnancy loss. In turn, many idiopathic pregnancy complications proposed to originate from disrupted fetal tolerance are associated with blunted maternal T(reg) expansion. Importantly, however, the antigen specificity and cellular origin of maternal T(reg) cells that accumulate during gestation remain incompletely defined. Here we show that pregnancy selectively stimulates the accumulation of maternal FOXP3(+) CD4 cells with fetal specificity using tetramer-based enrichment that allows the identification of rare endogenous T cells. Interestingly, after delivery, fetal-specific T(reg) cells persist at elevated levels, maintain tolerance to pre-existing fetal antigen, and rapidly re-accumulate during subsequent pregnancy. The accelerated expansion of T(reg) cells during secondary pregnancy was driven almost exclusively by proliferation of fetal-specific FOXP3(+) cells retained from prior pregnancy, whereas induced FOXP3 expression and proliferation of pre-existing FOXP3(+) cells each contribute to T(reg) expansion during primary pregnancy. Furthermore, fetal resorption in secondary compared with primary pregnancy becomes more resilient to partial maternal FOXP3(+) cell ablation. Thus, pregnancy imprints FOXP3(+) CD4 cells that sustain protective regulatory memory to fetal antigen. We anticipate that these findings will spark further investigation on maternal regulatory T-cell specificity that unlocks new strategies for improving pregnancy outcomes and novel approaches for therapeutically exploiting T(reg) cell memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465465/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465465/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowe, Jared H -- Ertelt, James M -- Xin, Lijun -- Way, Sing Sing -- F30 DK084674/DK/NIDDK NIH HHS/ -- F30DK084674/DK/NIDDK NIH HHS/ -- R01 AI087830/AI/NIAID NIH HHS/ -- R01 AI100934/AI/NIAID NIH HHS/ -- R01AI087830/AI/NIAID NIH HHS/ -- R01AI100934/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Oct 4;490(7418):102-6. doi: 10.1038/nature11462. Epub 2012 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Minnesota School of Medicine, Department of Pediatrics, Minneapolis, Minnesota 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023128" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Antigens/*immunology ; CD4-Positive T-Lymphocytes/cytology/immunology/metabolism/transplantation ; Clonal Anergy/*immunology ; Female ; Fetal Proteins/*immunology ; Fetus/immunology ; Forkhead Transcription Factors/metabolism ; Immunologic Memory/genetics/*immunology ; Interferon-gamma/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Postpartum Period/immunology ; Pregnancy ; T-Lymphocytes, Regulatory/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2012-10-16
    Description: B cells regulate immune responses by producing antigen-specific antibodies. However, specific B-cell subsets can also negatively regulate T-cell immune responses, and have been termed regulatory B cells. Human and mouse regulatory B cells (B10 cells) with the ability to express the inhibitory cytokine interleukin-10 (IL-10) have been identified. Although rare, B10 cells are potent negative regulators of antigen-specific inflammation and T-cell-dependent autoimmune diseases in mice. How B10-cell IL-10 production and regulation of antigen-specific immune responses are controlled in vivo without inducing systemic immunosuppression is unknown. Using a mouse model for multiple sclerosis, here we show that B10-cell maturation into functional IL-10-secreting effector cells that inhibit in vivo autoimmune disease requires IL-21 and CD40-dependent cognate interactions with T cells. Moreover, the ex vivo provision of CD40 and IL-21 receptor signals can drive B10-cell development and expansion by four-million-fold, and generate B10 effector cells producing IL-10 that markedly inhibit disease symptoms when transferred into mice with established autoimmune disease. The ex vivo expansion and reinfusion of autologous B10 cells may provide a novel and effective in vivo treatment for severe autoimmune diseases that are resistant to current therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshizaki, Ayumi -- Miyagaki, Tomomitsu -- DiLillo, David J -- Matsushita, Takashi -- Horikawa, Mayuka -- Kountikov, Evgueni I -- Spolski, Rosanne -- Poe, Jonathan C -- Leonard, Warren J -- Tedder, Thomas F -- AI057157/AI/NIAID NIH HHS/ -- AI56363/AI/NIAID NIH HHS/ -- U19 AI056363/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):264-8. doi: 10.1038/nature11501. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD19/genetics/metabolism ; Antigens, CD40/immunology/metabolism ; Antigens, CD5/metabolism ; Autoimmunity/*immunology ; B-Lymphocytes, Regulatory/cytology/*immunology/metabolism/secretion ; Cell Division ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental/immunology/pathology ; Female ; Histocompatibility Antigens Class II/immunology ; Humans ; Interleukin-10/biosynthesis/immunology/secretion ; Interleukins/*immunology ; Mice ; Mice, Inbred C57BL ; Multiple Sclerosis/immunology/pathology ; Receptors, Interleukin-21/immunology/metabolism ; T-Lymphocytes/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2012-08-24
    Description: Antibiotics administered in low doses have been widely used as growth promoters in the agricultural industry since the 1950s, yet the mechanisms for this effect are unclear. Because antimicrobial agents of different classes and varying activity are effective across several vertebrate species, we proposed that such subtherapeutic administration alters the population structure of the gut microbiome as well as its metabolic capabilities. We generated a model of adiposity by giving subtherapeutic antibiotic therapy to young mice and evaluated changes in the composition and capabilities of the gut microbiome. Administration of subtherapeutic antibiotic therapy increased adiposity in young mice and increased hormone levels related to metabolism. We observed substantial taxonomic changes in the microbiome, changes in copies of key genes involved in the metabolism of carbohydrates to short-chain fatty acids, increases in colonic short-chain fatty acid levels, and alterations in the regulation of hepatic metabolism of lipids and cholesterol. In this model, we demonstrate the alteration of early-life murine metabolic homeostasis through antibiotic manipulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Ilseung -- Yamanishi, Shingo -- Cox, Laura -- Methe, Barbara A -- Zavadil, Jiri -- Li, Kelvin -- Gao, Zhan -- Mahana, Douglas -- Raju, Kartik -- Teitler, Isabel -- Li, Huilin -- Alekseyenko, Alexander V -- Blaser, Martin J -- 1UL1-RR029893/RR/NCRR NIH HHS/ -- R01 DK090989/DK/NIDDK NIH HHS/ -- T-R01-DK090989/DK/NIDDK NIH HHS/ -- UL1 RR029893/RR/NCRR NIH HHS/ -- UL1 TR000038/TR/NCATS NIH HHS/ -- UL1-TR000038/TR/NCATS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):621-6. doi: 10.1038/nature11400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22914093" target="_blank"〉PubMed〈/a〉
    Keywords: Adiposity/*drug effects/physiology ; Age Factors ; Animals ; Anti-Bacterial Agents/*administration & dosage/*pharmacology ; Body Composition/drug effects ; Body Weight/drug effects ; Bone Density/drug effects ; Bone Development/drug effects ; Cecum/drug effects/metabolism ; Cholesterol/metabolism ; Colon/*drug effects/*microbiology ; Fatty Acids, Volatile/metabolism ; Feces/microbiology ; Female ; Gastric Inhibitory Polypeptide/blood/metabolism ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Male ; Metagenome/*drug effects ; Mice ; Mice, Inbred C57BL ; Polymerase Chain Reaction ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2012-01-20
    Description: Dopamine has a central role in motivation and reward. Dopaminergic neurons in the ventral tegmental area (VTA) signal the discrepancy between expected and actual rewards (that is, reward prediction error), but how they compute such signals is unknown. We recorded the activity of VTA neurons while mice associated different odour cues with appetitive and aversive outcomes. We found three types of neuron based on responses to odours and outcomes: approximately half of the neurons (type I, 52%) showed phasic excitation after reward-predicting odours and rewards in a manner consistent with reward prediction error coding; the other half of neurons showed persistent activity during the delay between odour and outcome that was modulated positively (type II, 31%) or negatively (type III, 18%) by the value of outcomes. Whereas the activity of type I neurons was sensitive to actual outcomes (that is, when the reward was delivered as expected compared to when it was unexpectedly omitted), the activity of type II and type III neurons was determined predominantly by reward-predicting odours. We 'tagged' dopaminergic and GABAergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to optical stimulation while recording. All identified dopaminergic neurons were of type I and all GABAergic neurons were of type II. These results show that VTA GABAergic neurons signal expected reward, a key variable for dopaminergic neurons to calculate reward prediction error.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jeremiah Y -- Haesler, Sebastian -- Vong, Linh -- Lowell, Bradford B -- Uchida, Naoshige -- F32 DK078478/DK/NIDDK NIH HHS/ -- F32 DK078478-01/DK/NIDDK NIH HHS/ -- P30 DK046200/DK/NIDDK NIH HHS/ -- P30 DK046200-08/DK/NIDDK NIH HHS/ -- P30 DK057521/DK/NIDDK NIH HHS/ -- P30 DK057521-01/DK/NIDDK NIH HHS/ -- R01 DK075632/DK/NIDDK NIH HHS/ -- R01 DK075632-01/DK/NIDDK NIH HHS/ -- R01 DK075632-02/DK/NIDDK NIH HHS/ -- R01 DK075632-03/DK/NIDDK NIH HHS/ -- R01 DK075632-04/DK/NIDDK NIH HHS/ -- R01 DK075632-05/DK/NIDDK NIH HHS/ -- R01 DK075632-06/DK/NIDDK NIH HHS/ -- R01 DK075632-07/DK/NIDDK NIH HHS/ -- R01 DK089044/DK/NIDDK NIH HHS/ -- R01 DK089044-01/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 18;482(7383):85-8. doi: 10.1038/nature10754.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22258508" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Dopamine/metabolism ; Dopaminergic Neurons/*metabolism ; GABAergic Neurons/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Odors/analysis ; Principal Component Analysis ; *Punishment ; *Reward ; Rhodopsin/metabolism ; Ventral Tegmental Area/*cytology/*physiology ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2012-06-23
    Description: Tumour suppressor genes encode a broad class of molecules whose mutational attenuation contributes to malignant progression. In the canonical situation, the tumour suppressor is completely inactivated through a two-hit process involving a point mutation in one allele and chromosomal deletion of the other. Here, to identify tumour suppressor genes in lymphoma, we screen a short hairpin RNA library targeting genes deleted in human lymphomas. We functionally identify those genes whose suppression promotes tumorigenesis in a mouse lymphoma model. Of the nine tumour suppressors we identified, eight correspond to genes occurring in three physically linked 'clusters', suggesting that the common occurrence of large chromosomal deletions in human tumours reflects selective pressure to attenuate multiple genes. Among the new tumour suppressors are adenosylmethionine decarboxylase 1 (AMD1) and eukaryotic translation initiation factor 5A (eIF5A), two genes associated with hypusine, a unique amino acid produced as a product of polyamine metabolism through a highly conserved pathway. Through a secondary screen surveying the impact of all polyamine enzymes on tumorigenesis, we establish the polyamine-hypusine axis as a new tumour suppressor network regulating apoptosis. Unexpectedly, heterozygous deletions encompassing AMD1 and eIF5A often occur together in human lymphomas and co-suppression of both genes promotes lymphomagenesis in mice. Thus, some tumour suppressor functions can be disabled through a two-step process targeting different genes acting in the same pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530829/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scuoppo, Claudio -- Miething, Cornelius -- Lindqvist, Lisa -- Reyes, Jose -- Ruse, Cristian -- Appelmann, Iris -- Yoon, Seungtai -- Krasnitz, Alexander -- Teruya-Feldstein, Julie -- Pappin, Darryl -- Pelletier, Jerry -- Lowe, Scott W -- CA087497/CA/NCI NIH HHS/ -- CA148532/CA/NCI NIH HHS/ -- MOP-106530/Canadian Institutes of Health Research/Canada -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA087497/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 12;487(7406):244-8. doi: 10.1038/nature11126.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Gene Deletion ; Gene Regulatory Networks ; Genetic Testing ; Humans ; Lymphoma, B-Cell/*genetics/physiopathology ; Lysine/*analogs & derivatives/chemistry ; Mice ; Mice, Inbred C57BL ; Polyamines/*chemistry ; RNA, Small Interfering/genetics/metabolism ; Reproducibility of Results ; Tumor Suppressor Proteins/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2012-08-21
    Description: Detection of microbial products by host inflammasomes is an important mechanism of innate immune surveillance. Inflammasomes activate the caspase-1 (CASP1) protease, which processes the cytokines interleukin (IL)-1beta and IL-18, and initiates a lytic host cell death called pyroptosis. To identify novel CASP1 functions in vivo, we devised a strategy for cytosolic delivery of bacterial flagellin, a specific ligand for the NAIP5 (NLR family, apoptosis inhibitory protein 5)/NLRC4 (NLR family, CARD-domain-containing 4) inflammasome. Here we show that systemic inflammasome activation by flagellin leads to a loss of vascular fluid into the intestine and peritoneal cavity, resulting in rapid (less than 30 min) death in mice. This unexpected response depends on the inflammasome components NAIP5, NLRC4 and CASP1, but is independent of the production of IL-1beta or IL-18. Instead, inflammasome activation results, within minutes, in an 'eicosanoid storm'--a pathological release of signalling lipids, including prostaglandins and leukotrienes, that rapidly initiate inflammation and vascular fluid loss. Mice deficient in cyclooxygenase-1, a critical enzyme in prostaglandin biosynthesis, are resistant to these rapid pathological effects of systemic inflammasome activation by either flagellin or anthrax lethal toxin. Inflammasome-dependent biosynthesis of eicosanoids is mediated by the activation of cytosolic phospholipase A(2) in resident peritoneal macrophages, which are specifically primed for the production of eicosanoids by high expression of eicosanoid biosynthetic enzymes. Our results therefore identify eicosanoids as a previously unrecognized cell-type-specific signalling output of the inflammasome with marked physiological consequences in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Moltke, Jakob -- Trinidad, Norver J -- Moayeri, Mahtab -- Kintzer, Alexander F -- Wang, Samantha B -- van Rooijen, Nico -- Brown, Charles R -- Krantz, Bryan A -- Leppla, Stephen H -- Gronert, Karsten -- Vance, Russell E -- AI063302/AI/NIAID NIH HHS/ -- AI075039/AI/NIAID NIH HHS/ -- AI080749/AI/NIAID NIH HHS/ -- EY016136/EY/NEI NIH HHS/ -- EY022208/EY/NEI NIH HHS/ -- R01 EY016136/EY/NEI NIH HHS/ -- R01 EY022208/EY/NEI NIH HHS/ -- England -- Nature. 2012 Oct 4;490(7418):107-11. doi: 10.1038/nature11351. Epub 2012 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California at Berkeley, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22902502" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/chemistry/genetics/metabolism ; Apoptosis Regulatory Proteins/deficiency/metabolism ; Bacterial Toxins/chemistry/genetics/metabolism ; Body Fluids/metabolism ; Body Temperature ; Calcium Signaling ; Calcium-Binding Proteins/deficiency/metabolism ; Capillary Permeability ; Caspase 1/deficiency/metabolism ; Cyclooxygenase 1/deficiency ; Cytosol/metabolism ; Death ; Eicosanoids/*biosynthesis/metabolism ; Female ; Flagellin/genetics/immunology/metabolism ; Fluid Shifts ; Hematocrit ; Immunity, Innate/immunology ; Inflammasomes/*metabolism ; Inflammation/immunology/metabolism/pathology ; Interleukin-18 ; Interleukin-1beta ; Intestines/metabolism ; Legionella pneumophila ; Macrophages, Peritoneal/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Neuronal Apoptosis-Inhibitory Protein/deficiency/metabolism ; Peritoneal Cavity ; Peritoneal Lavage ; Recombinant Fusion Proteins/genetics/metabolism ; Salmonella Infections/immunology ; Salmonella typhimurium/immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2012-10-02
    Description: The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved beta-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagberg, Carolina E -- Mehlem, Annika -- Falkevall, Annelie -- Muhl, Lars -- Fam, Barbara C -- Ortsater, Henrik -- Scotney, Pierre -- Nyqvist, Daniel -- Samen, Erik -- Lu, Li -- Stone-Elander, Sharon -- Proietto, Joseph -- Andrikopoulos, Sofianos -- Sjoholm, Ake -- Nash, Andrew -- Eriksson, Ulf -- England -- Nature. 2012 Oct 18;490(7420):426-30. doi: 10.1038/nature11464. Epub 2012 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tissue Biology Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023133" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diabetes Mellitus, Type 2/*drug therapy/*metabolism ; Diet, High-Fat ; Disease Models, Animal ; Dyslipidemias/drug therapy/metabolism ; Endothelium, Vascular/metabolism ; Female ; Glucose/metabolism ; Glucose Tolerance Test ; *Insulin Resistance ; Islets of Langerhans/anatomy & histology/cytology/pathology ; Lipid Metabolism ; Male ; Metabolic Syndrome X/drug therapy/metabolism ; Mice ; Mice, Inbred C57BL ; *Molecular Targeted Therapy ; Muscles/metabolism ; Obesity/metabolism/pathology ; Rats ; Rats, Wistar ; Signal Transduction/drug effects/immunology ; Vascular Endothelial Growth Factor B/*antagonists & ; inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2012-06-23
    Description: In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, Nicola J -- Bennett, Mariko L -- Foo, Lynette C -- Wang, Gordon X -- Chakraborty, Chandrani -- Smith, Stephen J -- Barres, Ben A -- R01 DA015043/DA/NIDA NIH HHS/ -- R01 DA015043-09/DA/NIDA NIH HHS/ -- R01 NS075252/NS/NINDS NIH HHS/ -- R01 NS075252-01/NS/NINDS NIH HHS/ -- R01 NS077601/NS/NINDS NIH HHS/ -- R01 NS077601-01/NS/NINDS NIH HHS/ -- R01DA015043/DA/NIDA NIH HHS/ -- R01NS0725252/NS/NINDS NIH HHS/ -- R01NS077601/NS/NINDS NIH HHS/ -- England -- Nature. 2012 May 27;486(7403):410-4. doi: 10.1038/nature11059.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford University School of Medicine, Department of Neurobiology, 299 Campus Drive, Fairchild Science Building D231, Stanford, California 94305-5125, USA. nallen@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology/*metabolism/secretion ; Cerebellum/cytology/metabolism ; Culture Media, Conditioned/metabolism/pharmacology ; Excitatory Postsynaptic Potentials/*physiology ; Female ; Glypicans/deficiency/*metabolism/pharmacology ; Hippocampus/cytology/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/*metabolism ; Retinal Ganglion Cells/cytology/drug effects/metabolism ; Synapses/drug effects/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2012-12-21
    Description: Alzheimer's disease is the world's most common dementing illness. Deposition of amyloid-beta peptide drives cerebral neuroinflammation by activating microglia. Indeed, amyloid-beta activation of the NLRP3 inflammasome in microglia is fundamental for interleukin-1beta maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to Alzheimer's disease in vivo. Here we demonstrate strongly enhanced active caspase-1 expression in human mild cognitive impairment and brains with Alzheimer's disease, suggesting a role for the inflammasome in this neurodegenerative disease. Nlrp3(-/-) or Casp1(-/-) mice carrying mutations associated with familial Alzheimer's disease were largely protected from loss of spatial memory and other sequelae associated with Alzheimer's disease, and demonstrated reduced brain caspase-1 and interleukin-1beta activation as well as enhanced amyloid-beta clearance. Furthermore, NLRP3 inflammasome deficiency skewed microglial cells to an M2 phenotype and resulted in the decreased deposition of amyloid-beta in the APP/PS1 model of Alzheimer's disease. These results show an important role for the NLRP3/caspase-1 axis in the pathogenesis of Alzheimer's disease, and suggest that NLRP3 inflammasome inhibition represents a new therapeutic intervention for the disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heneka, Michael T -- Kummer, Markus P -- Stutz, Andrea -- Delekate, Andrea -- Schwartz, Stephanie -- Vieira-Saecker, Ana -- Griep, Angelika -- Axt, Daisy -- Remus, Anita -- Tzeng, Te-Chen -- Gelpi, Ellen -- Halle, Annett -- Korte, Martin -- Latz, Eicke -- Golenbock, Douglas T -- R01 AI083713/AI/NIAID NIH HHS/ -- R01 GM054060/GM/NIGMS NIH HHS/ -- R01 HL093262/HL/NHLBI NIH HHS/ -- U19 AI084048/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jan 31;493(7434):674-8. doi: 10.1038/nature11729. Epub 2012 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany. michael.Heneka@ukb.uni-bonn.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23254930" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/enzymology/genetics/*pathology ; Amyloid beta-Peptides/metabolism ; Animals ; Behavior, Animal ; Brain/enzymology/*pathology ; Carrier Proteins/genetics/*metabolism ; Caspase 1/genetics/metabolism ; Gene Expression Regulation, Enzymologic ; Humans ; Inflammasomes/metabolism ; Interleukin-1beta/metabolism ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mild Cognitive Impairment/enzymology/physiopathology ; Nitric Oxide Synthase Type II/metabolism ; Phagocytosis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2012-07-31
    Description: Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter gamma-aminobutyric acid (GABA) by means of gamma2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of gamma2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438284/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Juan -- Zhong, Chun -- Bonaguidi, Michael A -- Sun, Gerald J -- Hsu, Derek -- Gu, Yan -- Meletis, Konstantinos -- Huang, Z Josh -- Ge, Shaoyu -- Enikolopov, Grigori -- Deisseroth, Karl -- Luscher, Bernhard -- Christian, Kimberly M -- Ming, Guo-li -- Song, Hongjun -- AG040209/AG/NIA NIH HHS/ -- HD069184/HD/NICHD NIH HHS/ -- MH089111/MH/NIMH NIH HHS/ -- NS048271/NS/NINDS NIH HHS/ -- R01 AG040209/AG/NIA NIH HHS/ -- R01 HD069184/HD/NICHD NIH HHS/ -- R01 NS047344/NS/NINDS NIH HHS/ -- R01 NS048271/NS/NINDS NIH HHS/ -- R01 NS065915/NS/NINDS NIH HHS/ -- R21 ES021957/ES/NIEHS NIH HHS/ -- R56 NS047344/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):150-4. doi: 10.1038/nature11306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22842902" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Lineage/drug effects ; Cell Proliferation/drug effects ; Dentate Gyrus/cytology/drug effects/metabolism ; Female ; GABA Modulators/pharmacology ; GABA-A Receptor Agonists/pharmacology ; GABA-A Receptor Antagonists/pharmacology ; Interneurons/cytology/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neural Stem Cells/*cytology/drug effects/metabolism ; *Neurogenesis/drug effects ; Neuroglia/cytology/drug effects/metabolism ; Parvalbumins/metabolism ; Receptors, GABA-A/metabolism ; Signal Transduction/drug effects ; Somatostatin/metabolism ; Stem Cell Niche/drug effects/physiology ; Vasoactive Intestinal Peptide/metabolism ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2012-10-09
    Description: Cortical inhibitory circuits are formed by gamma-aminobutyric acid (GABA)-secreting interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis, is that cortical interneurons are overproduced, and then after their migration into cortex the excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we characterize the developmental cell death of mouse cortical interneurons in vivo, in vitro and after transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax (Bcl-2-associated X)-dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by neurons of the central nervous system. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Taken together, our findings indicate that interneuron cell death is determined intrinsically, either cell-autonomously or through a population-autonomous competition for survival signals derived from other interneurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726009/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726009/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Southwell, Derek G -- Paredes, Mercedes F -- Galvao, Rui P -- Jones, Daniel L -- Froemke, Robert C -- Sebe, Joy Y -- Alfaro-Cervello, Clara -- Tang, Yunshuo -- Garcia-Verdugo, Jose M -- Rubenstein, John L -- Baraban, Scott C -- Alvarez-Buylla, Arturo -- F32NS061497/NS/NINDS NIH HHS/ -- R01 NS048528/NS/NINDS NIH HHS/ -- R01 NS071785/NS/NINDS NIH HHS/ -- T32 GM007618/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 1;491(7422):109-13. doi: 10.1038/nature11523. Epub 2012 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience Graduate Program, University of California, San Francisco, California 94143, USA. dereksouthwell@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23041929" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; *Apoptosis ; Caspase 3/metabolism ; Cell Aging/physiology ; Cell Count ; Cell Survival ; Female ; Inhibitory Postsynaptic Potentials ; Interneurons/*cytology/metabolism/transplantation ; Male ; Membrane Glycoproteins/deficiency/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; Neocortex/*cytology/growth & development ; Neural Stem Cells/cytology/metabolism/transplantation ; Protein-Tyrosine Kinases/deficiency/genetics/metabolism ; Pyramidal Cells/cytology/metabolism ; bcl-2-Associated X Protein/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2012-02-14
    Description: Pluripotency is established through genome-wide reprogramming during mammalian pre-implantation development, resulting in the formation of the naive epiblast. Reprogramming involves both the resetting of epigenetic marks and the activation of pluripotent-cell-specific genes such as Nanog and Oct4 (also known as Pou5f1). The tight regulation of these genes is crucial for reprogramming, but the mechanisms that regulate their expression in vivo have not been uncovered. Here we show that Nanog--but not Oct4--is monoallelically expressed in early pre-implantation embryos. Nanog then undergoes a progressive switch to biallelic expression during the transition towards ground-state pluripotency in the naive epiblast of the late blastocyst. Embryonic stem (ES) cells grown in leukaemia inhibitory factor (LIF) and serum express Nanog mainly monoallelically and show asynchronous replication of the Nanog locus, a feature of monoallelically expressed genes, but ES cells activate both alleles when cultured under 2i conditions, which mimic the pluripotent ground state in vitro. Live-cell imaging with reporter ES cells confirmed the allelic expression of Nanog and revealed allelic switching. The allelic expression of Nanog is regulated through the fibroblast growth factor-extracellular signal-regulated kinase signalling pathway, and it is accompanied by chromatin changes at the proximal promoter but occurs independently of DNA methylation. Nanog-heterozygous blastocysts have fewer inner-cell-mass derivatives and delayed primitive endoderm formation, indicating a role for the biallelic expression of Nanog in the timely maturation of the inner cell mass into a fully reprogrammed pluripotent epiblast. We suggest that the tight regulation of Nanog dose at the chromosome level is necessary for the acquisition of ground-state pluripotency during development. Our data highlight an unexpected role for allelic expression in controlling the dose of pluripotency factors in vivo, adding an extra level to the regulation of reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyanari, Yusuke -- Torres-Padilla, Maria-Elena -- England -- Nature. 2012 Feb 12;483(7390):470-3. doi: 10.1038/nature10807.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM U964, Universite de Strasbourg, F-67404 Illkirch, Cite Universitaire de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22327294" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Blastocyst/cytology/*metabolism ; Blastocyst Inner Cell Mass/cytology/metabolism ; Cell Cycle Proteins/metabolism ; Cellular Reprogramming/*genetics ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Replication ; Embryonic Stem Cells/drug effects/metabolism ; Female ; *Gene Expression Regulation, Developmental ; Genomic Imprinting ; Germ Layers/cytology/metabolism ; Homeodomain Proteins/*genetics/*metabolism ; In Situ Hybridization, Fluorescence ; Leukemia Inhibitory Factor/pharmacology ; Male ; Mediator Complex/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Octamer Transcription Factor-3 ; Pluripotent Stem Cells/cytology/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2012-02-24
    Description: Since its discovery in the early 1990s the deleted in colorectal cancer (DCC) gene, located on chromosome 18q21, has been proposed as a tumour suppressor gene as its loss is implicated in the majority of advanced colorectal and many other cancers. DCC belongs to the family of netrin 1 receptors, which function as dependence receptors as they control survival or apoptosis depending on ligand binding. However, the role of DCC as a tumour suppressor remains controversial because of the rarity of DCC-specific mutations and the presence of other tumour suppressor genes in the same chromosomal region. Here we show that in a mouse model of mammary carcinoma based on somatic inactivation of p53, additional loss of DCC promotes metastasis formation without affecting the primary tumour phenotype. Furthermore, we demonstrate that in cell cultures derived from p53-deficient mouse mammary tumours DCC expression controls netrin-1-dependent cell survival, providing a mechanistic basis for the enhanced metastatic capacity of tumour cells lacking DCC. Consistent with this idea, in vivo tumour-cell survival is enhanced by DCC loss. Together, our data support the function of DCC as a context-dependent tumour suppressor that limits survival of disseminated tumour cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krimpenfort, Paul -- Song, Ji-Ying -- Proost, Natalie -- Zevenhoven, John -- Jonkers, Jos -- Berns, Anton -- England -- Nature. 2012 Feb 22;482(7386):538-41. doi: 10.1038/nature10790.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22358843" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics ; Cell Line, Tumor ; Cell Survival/genetics ; Disease Models, Animal ; Female ; Genes, p53/*genetics ; Mammary Neoplasms, Experimental/*genetics/metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Neoplasm Metastasis/*genetics/*pathology ; Nerve Growth Factors/deficiency/genetics/metabolism ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2012-03-16
    Description: The posterior parietal cortex (PPC) has an important role in many cognitive behaviours; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioural choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (〈100 micrometres). During working memory decision tasks, the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvey, Christopher D -- Coen, Philip -- Tank, David W -- R01 MH083686/MH/NIMH NIH HHS/ -- R01 MH083686-05/MH/NIMH NIH HHS/ -- R01-MH083686/MH/NIMH NIH HHS/ -- RC1 NS068148/NS/NINDS NIH HHS/ -- RC1 NS068148-02/NS/NINDS NIH HHS/ -- RC1-NS068148/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Mar 14;484(7392):62-8. doi: 10.1038/nature10918.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA. christopher_harvey@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22419153" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology ; Animals ; Decision Making/*physiology ; Male ; Maze Learning/*physiology ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Parietal Lobe/cytology/*physiology ; Photic Stimulation ; *User-Computer Interface
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2012-01-17
    Description: Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267887/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267887/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinhauser, Matthew L -- Bailey, Andrew P -- Senyo, Samuel E -- Guillermier, Christelle -- Perlstein, Todd S -- Gould, Alex P -- Lee, Richard T -- Lechene, Claude P -- AG032977/AG/NIA NIH HHS/ -- AG034641/AG/NIA NIH HHS/ -- EB001974/EB/NIBIB NIH HHS/ -- K08 DK090147/DK/NIDDK NIH HHS/ -- MC_U117584237/Medical Research Council/United Kingdom -- R01 AG032977/AG/NIA NIH HHS/ -- R01 AG032977-04/AG/NIA NIH HHS/ -- R01 AG040019/AG/NIA NIH HHS/ -- R01 AG040019-02/AG/NIA NIH HHS/ -- U117584237/Medical Research Council/United Kingdom -- England -- Nature. 2012 Jan 15;481(7382):516-9. doi: 10.1038/nature10734.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246326" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; *Cell Division ; DNA/biosynthesis/genetics/metabolism ; Drosophila melanogaster/cytology ; Enterocytes/cytology ; Fibroblasts/cytology ; Humans ; Intestine, Small/cytology ; Isotope Labeling ; Isotopes ; Leukocytes/cytology ; Lipid Metabolism ; Lymphopoiesis ; Mass Spectrometry/*methods ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Stem Cells/*cytology/*metabolism/pathology ; Templates, Genetic ; Thymidine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2012-02-22
    Description: It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lai, Cora Sau Wan -- Franke, Thomas F -- Gan, Wen-Biao -- NS047325/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Feb 19;483(7387):87-91. doi: 10.1038/nature10792.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Program, Skirball Institute, Department of Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343895" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Conditioning, Classical/*physiology ; Cues ; Dendritic Spines/*physiology ; Electric Stimulation ; Extinction, Psychological/*physiology ; Extremities ; Fear/*physiology ; Frontal Lobe/cytology/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Neurological ; Neuronal Plasticity/*physiology ; Pyramidal Cells/cytology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2012-02-03
    Description: Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and the leading cause of chronic liver disease in the Western world. Twenty per cent of NAFLD individuals develop chronic hepatic inflammation (non-alcoholic steatohepatitis, NASH) associated with cirrhosis, portal hypertension and hepatocellular carcinoma, yet the causes of progression from NAFLD to NASH remain obscure. Here, we show that the NLRP6 and NLRP3 inflammasomes and the effector protein IL-18 negatively regulate NAFLD/NASH progression, as well as multiple aspects of metabolic syndrome via modulation of the gut microbiota. Different mouse models reveal that inflammasome-deficiency-associated changes in the configuration of the gut microbiota are associated with exacerbated hepatic steatosis and inflammation through influx of TLR4 and TLR9 agonists into the portal circulation, leading to enhanced hepatic tumour-necrosis factor (TNF)-alpha expression that drives NASH progression. Furthermore, co-housing of inflammasome-deficient mice with wild-type mice results in exacerbation of hepatic steatosis and obesity. Thus, altered interactions between the gut microbiota and the host, produced by defective NLRP3 and NLRP6 inflammasome sensing, may govern the rate of progression of multiple metabolic syndrome-associated abnormalities, highlighting the central role of the microbiota in the pathogenesis of heretofore seemingly unrelated systemic auto-inflammatory and metabolic disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276682/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276682/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henao-Mejia, Jorge -- Elinav, Eran -- Jin, Chengcheng -- Hao, Liming -- Mehal, Wajahat Z -- Strowig, Till -- Thaiss, Christoph A -- Kau, Andrew L -- Eisenbarth, Stephanie C -- Jurczak, Michael J -- Camporez, Joao-Paulo -- Shulman, Gerald I -- Gordon, Jeffrey I -- Hoffman, Hal M -- Flavell, Richard A -- K08A1085038/PHS HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-14/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01DK076674-01/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- T32HL007974/HL/NHLBI NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 1;482(7384):179-85. doi: 10.1038/nature10809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22297845" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins ; Carrier Proteins/metabolism ; Choline ; Colon/microbiology ; Cytoskeletal Proteins/deficiency ; Disease Models, Animal ; *Disease Progression ; Fatty Liver/genetics/*metabolism/*pathology ; Inflammasomes/*metabolism ; Inflammation/metabolism/pathology ; Interleukin-18/deficiency ; Male ; Metagenome ; Methionine/deficiency ; Mice ; Mice, Inbred C57BL ; Non-alcoholic Fatty Liver Disease ; Obesity/*metabolism/*pathology ; RNA, Ribosomal, 16S/genetics ; Receptors, Cell Surface/metabolism ; Toll-Like Receptor 4/deficiency/metabolism ; Toll-Like Receptor 9/deficiency/metabolism ; Tumor Necrosis Factor-alpha/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2012-02-24
    Description: Among the key properties that distinguish adult mammalian stem cells from their more differentiated progeny is the ability of stem cells to remain in a quiescent state for prolonged periods of time. However, the molecular pathways for the maintenance of stem-cell quiescence remain elusive. Here we use adult mouse muscle stem cells (satellite cells) as a model system and show that the microRNA (miRNA) pathway is essential for the maintenance of the quiescent state. Satellite cells that lack a functional miRNA pathway spontaneously exit quiescence and enter the cell cycle. We identified quiescence-specific miRNAs in the satellite-cell lineage by microarray analysis. Among these, miRNA-489 (miR-489) is highly expressed in quiescent satellite cells and is quickly downregulated during satellite-cell activation. Further analysis revealed that miR-489 functions as a regulator of satellite-cell quiescence, as it post-transcriptionally suppresses the oncogene Dek, the protein product of which localizes to the more differentiated daughter cell during asymmetric division of satellite cells and promotes the transient proliferative expansion of myogenic progenitors. Our results provide evidence of the miRNA pathway in general, and of a specific miRNA, miR-489, in actively maintaining the quiescent state of an adult stem-cell population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheung, Tom H -- Quach, Navaline L -- Charville, Gregory W -- Liu, Ling -- Park, Lidia -- Edalati, Abdolhossein -- Yoo, Bryan -- Hoang, Phuong -- Rando, Thomas A -- DP1 OD000392/OD/NIH HHS/ -- DP1 OD000392-05/OD/NIH HHS/ -- F30 AG035521/AG/NIA NIH HHS/ -- P01 AG036695/AG/NIA NIH HHS/ -- P01 AG036695-01A1/AG/NIA NIH HHS/ -- P01AG036695/AG/NIA NIH HHS/ -- R01 AG023806/AG/NIA NIH HHS/ -- R01 AG023806-05/AG/NIA NIH HHS/ -- R01 AR056849/AR/NIAMS NIH HHS/ -- R01 AR056849-03/AR/NIAMS NIH HHS/ -- R01 AR062185/AR/NIAMS NIH HHS/ -- R01 AR062185-01/AR/NIAMS NIH HHS/ -- R01AG23806/AG/NIA NIH HHS/ -- R37 AG023806/AG/NIA NIH HHS/ -- England -- Nature. 2012 Feb 23;482(7386):524-8. doi: 10.1038/nature10834.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22358842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/drug effects/*genetics ; Cell Differentiation/drug effects ; Cell Lineage/drug effects ; Cell Survival/drug effects/genetics ; DEAD-box RNA Helicases/genetics/metabolism ; DNA-Binding Proteins/genetics ; *Gene Expression Regulation/drug effects ; Gene Knockdown Techniques ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics ; Myoblasts/*cytology/drug effects/*metabolism ; Oligonucleotide Array Sequence Analysis ; Oncogene Proteins/genetics ; Ribonuclease III/genetics/metabolism ; Satellite Cells, Skeletal Muscle/cytology/drug effects/metabolism ; Tamoxifen/pharmacology ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2012-03-31
    Description: The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-alpha and REV-ERB-beta have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-alpha has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-alpha and REV-ERB-beta genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-alpha and REV-ERB-beta cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-alpha and Rev-erb-beta function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-alpha and REV-ERB-beta with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Han -- Zhao, Xuan -- Hatori, Megumi -- Yu, Ruth T -- Barish, Grant D -- Lam, Michael T -- Chong, Ling-Wa -- DiTacchio, Luciano -- Atkins, Annette R -- Glass, Christopher K -- Liddle, Christopher -- Auwerx, Johan -- Downes, Michael -- Panda, Satchidananda -- Evans, Ronald M -- DK057978/DK/NIDDK NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- DK091618/DK/NIDDK NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- R01 DK091618/DK/NIDDK NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R01 HL105278-21/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R24 DK090962-02/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- R37 DK057978-34/DK/NIDDK NIH HHS/ -- T32 HL007770/HL/NHLBI NIH HHS/ -- T32 HL007770-15/HL/NHLBI NIH HHS/ -- T32-HL007770/HL/NHLBI NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 29;485(7396):123-7. doi: 10.1038/nature11048.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/drug effects/genetics ; Circadian Rhythm/genetics/*physiology ; Cryptochromes/deficiency/genetics/metabolism ; *Energy Metabolism/genetics ; Feedback, Physiological ; Gene Expression Regulation ; Gene Regulatory Networks/genetics ; Homeostasis/genetics ; *Lipid Metabolism/genetics ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Motor Activity/genetics/physiology ; Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency/genetics/*metabolism ; Period Circadian Proteins/deficiency/genetics/metabolism ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*metabolism ; Repressor Proteins/deficiency/genetics/*metabolism ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2012-09-21
    Description: Interferon regulatory factor 4 (IRF4) is an IRF family transcription factor with critical roles in lymphoid development and in regulating the immune response. IRF4 binds DNA weakly owing to a carboxy-terminal auto-inhibitory domain, but cooperative binding with factors such as PU.1 or SPIB in B cells increases binding affinity, allowing IRF4 to regulate genes containing ETS-IRF composite elements (EICEs; 5'-GGAAnnGAAA-3'). Here we show that in mouse CD4(+) T cells, where PU.1/SPIB expression is low, and in B cells, where PU.1 is well expressed, IRF4 unexpectedly can cooperate with activator protein-1 (AP1) complexes to bind to AP1-IRF4 composite (5'-TGAnTCA/GAAA-3') motifs that we denote as AP1-IRF composite elements (AICEs). Moreover, BATF-JUN family protein complexes cooperate with IRF4 in binding to AICEs in pre-activated CD4(+) T cells stimulated with IL-21 and in T(H)17 differentiated cells. Importantly, BATF binding was diminished in Irf4(-/-) T cells and IRF4 binding was diminished in Batf(-/-) T cells, consistent with functional cooperation between these factors. Moreover, we show that AP1 and IRF complexes cooperatively promote transcription of the Il10 gene, which is expressed in T(H)17 cells and potently regulated by IL-21. These findings reveal that IRF4 can signal via complexes containing ETS or AP1 motifs depending on the cellular context, thus indicating new approaches for modulating IRF4-dependent transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537508/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Spolski, Rosanne -- Liao, Wei -- Wang, Lu -- Murphy, Theresa L -- Murphy, Kenneth M -- Leonard, Warren J -- ZIA HL005402-20/Intramural NIH HHS/ -- ZIA HL005402-21/Intramural NIH HHS/ -- ZIA HL005408-05/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):543-6. doi: 10.1038/nature11530. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA. lip3@nhlbi.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; B-Lymphocytes/metabolism ; Base Sequence ; Basic-Leucine Zipper Transcription Factors/deficiency/genetics/*metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/cytology/*metabolism ; Cell Differentiation ; Female ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Interleukin-10/genetics ; Interleukins/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Nucleotide Motifs ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Th17 Cells/cytology/immunology ; Trans-Activators/metabolism ; Transcription Factor AP-1/metabolism ; *Transcription, Genetic ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2012-06-09
    Description: A fundamental feature of the mammalian neocortex is its columnar organization. In the visual cortex, functional columns consisting of neurons with similar orientation preferences have been characterized extensively, but how these columns are constructed during development remains unclear. The radial unit hypothesis posits that the ontogenetic columns formed by clonally related neurons migrating along the same radial glial fibre during corticogenesis provide the basis for functional columns in adult neocortex. However, a direct correspondence between the ontogenetic and functional columns has not been demonstrated. Here we show that, despite the lack of a discernible orientation map in mouse visual cortex, sister neurons in the same radial clone exhibit similar orientation preferences. Using a retroviral vector encoding green fluorescent protein to label radial clones of excitatory neurons, and in vivo two-photon calcium imaging to measure neuronal response properties, we found that sister neurons preferred similar orientations whereas nearby non-sister neurons showed no such relationship. Interestingly, disruption of gap junction coupling by viral expression of a dominant-negative mutant of Cx26 (also known as Gjb2) or by daily administration of a gap junction blocker, carbenoxolone, during the first postnatal week greatly diminished the functional similarity between sister neurons, suggesting that the maturation of ontogenetic into functional columns requires intercellular communication through gap junctions. Together with the recent finding of preferential excitatory connections among sister neurons, our results support the radial unit hypothesis and unify the ontogenetic and functional columns in the visual cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375857/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3375857/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ye -- Lu, Hui -- Cheng, Pei-lin -- Ge, Shaoyu -- Xu, Huatai -- Shi, Song-Hai -- Dan, Yang -- R01 DA024681/DA/NIDA NIH HHS/ -- R01 EY018861/EY/NEI NIH HHS/ -- R01 NS065915/NS/NINDS NIH HHS/ -- R21NS072483/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 2;486(7401):118-21. doi: 10.1038/nature11110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurobiology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Carbenoxolone/pharmacology ; *Cell Communication ; Clone Cells/cytology ; Connexins/genetics/metabolism ; Female ; Gap Junctions/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neurons/*physiology ; Visual Cortex/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2012-09-21
    Description: Stressors motivate an array of adaptive responses ranging from 'fight or flight' to an internal urgency signal facilitating long-term goals. However, traumatic or chronic uncontrollable stress promotes the onset of major depressive disorder, in which acute stressors lose their motivational properties and are perceived as insurmountable impediments. Consequently, stress-induced depression is a debilitating human condition characterized by an affective shift from engagement of the environment to withdrawal. An emerging neurobiological substrate of depression and associated pathology is the nucleus accumbens, a region with the capacity to mediate a diverse range of stress responses by interfacing limbic, cognitive and motor circuitry. Here we report that corticotropin-releasing factor (CRF), a neuropeptide released in response to acute stressors and other arousing environmental stimuli, acts in the nucleus accumbens of naive mice to increase dopamine release through coactivation of the receptors CRFR1 and CRFR2. Remarkably, severe-stress exposure completely abolished this effect without recovery for at least 90 days. This loss of CRF's capacity to regulate dopamine release in the nucleus accumbens is accompanied by a switch in the reaction to CRF from appetitive to aversive, indicating a diametric change in the emotional response to acute stressors. Thus, the current findings offer a biological substrate for the switch in affect which is central to stress-induced depressive disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475726/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475726/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lemos, Julia C -- Wanat, Matthew J -- Smith, Jeffrey S -- Reyes, Beverly A S -- Hollon, Nick G -- Van Bockstaele, Elisabeth J -- Chavkin, Charles -- Phillips, Paul E M -- F31 MH086269/MH/NIMH NIH HHS/ -- F31-MH086269/MH/NIMH NIH HHS/ -- F32-DA026273/DA/NIDA NIH HHS/ -- K05 DA020570/DA/NIDA NIH HHS/ -- R01 DA009082/DA/NIDA NIH HHS/ -- R01 DA016782/DA/NIDA NIH HHS/ -- R01 DA030074/DA/NIDA NIH HHS/ -- R01 MH079292/MH/NIMH NIH HHS/ -- R01-DA009082/DA/NIDA NIH HHS/ -- R01-DA016782/DA/NIDA NIH HHS/ -- R01-DA030074/DA/NIDA NIH HHS/ -- R01-MH079292/MH/NIMH NIH HHS/ -- England -- Nature. 2012 Oct 18;490(7420):402-6. doi: 10.1038/nature11436. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetitive Behavior/drug effects/*physiology ; Avoidance Learning/drug effects/*physiology ; Corticotropin-Releasing Hormone/*metabolism/pharmacology ; Dopamine/metabolism/secretion ; Male ; Mice ; Mice, Inbred C57BL ; Nucleus Accumbens/*metabolism/physiopathology ; Receptors, Corticotropin-Releasing Hormone/agonists/antagonists & ; inhibitors/deficiency/metabolism ; Signal Transduction/drug effects ; Stress, Psychological/*metabolism/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2012-09-21
    Description: The AP1 transcription factor Batf3 is required for homeostatic development of CD8alpha(+) classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8alpha(+) dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-gamma. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482832/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482832/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tussiwand, Roxane -- Lee, Wan-Ling -- Murphy, Theresa L -- Mashayekhi, Mona -- KC, Wumesh -- Albring, Jorn C -- Satpathy, Ansuman T -- Rotondo, Jeffrey A -- Edelson, Brian T -- Kretzer, Nicole M -- Wu, Xiaodi -- Weiss, Leslie A -- Glasmacher, Elke -- Li, Peng -- Liao, Wei -- Behnke, Michael -- Lam, Samuel S K -- Aurthur, Cora T -- Leonard, Warren J -- Singh, Harinder -- Stallings, Christina L -- Sibley, L David -- Schreiber, Robert D -- Murphy, Kenneth M -- AI076427-02/AI/NIAID NIH HHS/ -- P30 CA91842/CA/NCI NIH HHS/ -- R01 AI036629/AI/NIAID NIH HHS/ -- R01 AI076427/AI/NIAID NIH HHS/ -- R01 CA043059/CA/NCI NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):502-7. doi: 10.1038/nature11531. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens, CD/metabolism ; Antigens, CD8/immunology/metabolism ; Basic-Leucine Zipper Transcription ; Factors/chemistry/deficiency/genetics/*metabolism ; CD4-Positive T-Lymphocytes/cytology/immunology ; CTLA-4 Antigen/metabolism ; Cell Differentiation ; Cell Line, Tumor ; Cell Lineage ; Dendritic Cells/*cytology/immunology/*metabolism ; Female ; Fibrosarcoma/immunology/metabolism/pathology ; Gene Expression Regulation ; Integrin alpha Chains/metabolism ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Interleukin-10/metabolism ; Interleukin-12/immunology/metabolism ; Leucine Zippers ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Oncogene Protein p65(gag-jun)/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/deficiency/genetics ; T-Lymphocytes, Helper-Inducer/cytology/immunology/metabolism ; Toxoplasma/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2012-06-16
    Description: Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3alphabeta(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmeisser, Michael J -- Ey, Elodie -- Wegener, Stephanie -- Bockmann, Juergen -- Stempel, A Vanessa -- Kuebler, Angelika -- Janssen, Anna-Lena -- Udvardi, Patrick T -- Shiban, Ehab -- Spilker, Christina -- Balschun, Detlef -- Skryabin, Boris V -- Dieck, Susanne tom -- Smalla, Karl-Heinz -- Montag, Dirk -- Leblond, Claire S -- Faure, Philippe -- Torquet, Nicolas -- Le Sourd, Anne-Marie -- Toro, Roberto -- Grabrucker, Andreas M -- Shoichet, Sarah A -- Schmitz, Dietmar -- Kreutz, Michael R -- Bourgeron, Thomas -- Gundelfinger, Eckart D -- Boeckers, Tobias M -- England -- Nature. 2012 Apr 29;486(7402):256-60. doi: 10.1038/nature11015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699619" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Autistic Disorder/*genetics/pathology ; Behavior, Animal/*physiology ; Dendritic Spines/genetics ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Psychomotor Agitation/*genetics/pathology ; Receptors, Ionotropic Glutamate/metabolism ; Synapses/metabolism ; Up-Regulation ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2012-08-28
    Description: Haematopoietic stem cells (HSCs) regenerate blood cells throughout the lifespan of an organism. With age, the functional quality of HSCs declines, partly owing to the accumulation of damaged DNA. However, the factors that damage DNA and the protective mechanisms that operate in these cells are poorly understood. We have recently shown that the Fanconi anaemia DNA-repair pathway counteracts the genotoxic effects of reactive aldehydes. Mice with combined inactivation of aldehyde catabolism (through Aldh2 knockout) and the Fanconi anaemia DNA-repair pathway (Fancd2 knockout) display developmental defects, a predisposition to leukaemia, and are susceptible to the toxic effects of ethanol-an exogenous source of acetaldehyde. Here we report that aged Aldh2(-/-) Fancd2(-/-) mutant mice that do not develop leukaemia spontaneously develop aplastic anaemia, with the concomitant accumulation of damaged DNA within the haematopoietic stem and progenitor cell (HSPC) pool. Unexpectedly, we find that only HSPCs, and not more mature blood precursors, require Aldh2 for protection against acetaldehyde toxicity. Additionally, the aldehyde-oxidizing activity of HSPCs, as measured by Aldefluor stain, is due to Aldh2 and correlates with this protection. Finally, there is more than a 600-fold reduction in the HSC pool of mice deficient in both Fanconi anaemia pathway-mediated DNA repair and acetaldehyde detoxification. Therefore, the emergence of bone marrow failure in Fanconi anaemia is probably due to aldehyde-mediated genotoxicity restricted to the HSPC pool. These findings identify a new link between endogenous reactive metabolites and DNA damage in HSCs, and define the protective mechanisms that counteract this threat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garaycoechea, Juan I -- Crossan, Gerry P -- Langevin, Frederic -- Daly, Maria -- Arends, Mark J -- Patel, Ketan J -- MC_U105178811/Medical Research Council/United Kingdom -- England -- Nature. 2012 Sep 27;489(7417):571-5. doi: 10.1038/nature11368. Epub 2012 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22922648" target="_blank"〉PubMed〈/a〉
    Keywords: Acetaldehyde/metabolism/toxicity ; Aging ; Aldehyde Dehydrogenase/deficiency/genetics/metabolism ; Aldehydes/metabolism/*toxicity ; Animals ; Bone Marrow/pathology ; DNA Damage/drug effects/genetics ; DNA Repair ; Ethanol/toxicity ; Fanconi Anemia/pathology ; Fanconi Anemia Complementation Group D2 Protein/deficiency/genetics ; Female ; Hematopoietic Stem Cells/*cytology/*drug effects/enzymology/metabolism ; Kaplan-Meier Estimate ; Leukemia/metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutagens/*toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2012-03-01
    Description: Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure) or pattern (for example, Brugada's syndrome) of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, kruppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jeyaraj, Darwin -- Haldar, Saptarsi M -- Wan, Xiaoping -- McCauley, Mark D -- Ripperger, Jurgen A -- Hu, Kun -- Lu, Yuan -- Eapen, Betty L -- Sharma, Nikunj -- Ficker, Eckhard -- Cutler, Michael J -- Gulick, James -- Sanbe, Atsushi -- Robbins, Jeffrey -- Demolombe, Sophie -- Kondratov, Roman V -- Shea, Steven A -- Albrecht, Urs -- Wehrens, Xander H T -- Rosenbaum, David S -- Jain, Mukesh K -- HL054807/HL/NHLBI NIH HHS/ -- HL066991/HL/NHLBI NIH HHS/ -- HL075427/HL/NHLBI NIH HHS/ -- HL076754/HL/NHLBI NIH HHS/ -- HL084154/HL/NHLBI NIH HHS/ -- HL086548/HL/NHLBI NIH HHS/ -- HL086614/HL/NHLBI NIH HHS/ -- HL089598/HL/NHLBI NIH HHS/ -- HL091947/HL/NHLBI NIH HHS/ -- HL094660/HL/NHLBI NIH HHS/ -- HL097595/HL/NHLBI NIH HHS/ -- HL102241/HL/NHLBI NIH HHS/ -- HL76446/HL/NHLBI NIH HHS/ -- K24 HL076446/HL/NHLBI NIH HHS/ -- K99 HL102241/HL/NHLBI NIH HHS/ -- M01-RR02635/RR/NCRR NIH HHS/ -- R00 HL102241/HL/NHLBI NIH HHS/ -- R01 HL084154/HL/NHLBI NIH HHS/ -- R01 HL084154-04/HL/NHLBI NIH HHS/ -- R01 HL086548/HL/NHLBI NIH HHS/ -- R01 HL086548-05/HL/NHLBI NIH HHS/ -- R01 HL097593/HL/NHLBI NIH HHS/ -- R01 HL097593-03/HL/NHLBI NIH HHS/ -- R01 HL110630/HL/NHLBI NIH HHS/ -- R01 HL110630-02/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Feb 22;483(7387):96-9. doi: 10.1038/nature10852.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA. darwinjeyaraj@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367544" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrhythmias, Cardiac/complications/genetics/*physiopathology ; Cells, Cultured ; Circadian Rhythm/genetics/*physiology ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Death, Sudden, Cardiac/etiology ; Electrocardiography ; Gene Expression Regulation ; Heart Conduction System/*physiology ; Heart Rate/physiology ; Heart Ventricles/cytology ; Kv Channel-Interacting Proteins/biosynthesis/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Cells/cytology ; Promoter Regions, Genetic/genetics ; Rats ; Time Factors ; Transcription Factors/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2012-03-06
    Description: Protective T-cell memory has long been thought to reside in blood and lymph nodes, but recently the concept of immune memory in peripheral tissues mediated by resident memory T (T(RM)) cells has been proposed. Here we show in mice that localized vaccinia virus (VACV) skin infection generates long-lived non-recirculating CD8(+) skin T(RM) cells that reside within the entire skin. These skin T(RM) cells are potent effector cells, and are superior to circulating central memory T (T(CM)) cells at providing rapid long-term protection against cutaneous re-infection. We find that CD8(+) T cells are rapidly recruited to skin after acute VACV infection. CD8(+) T-cell recruitment to skin is independent of CD4(+) T cells and interferon-gamma, but requires the expression of E- and P-selectin ligands by CD8(+) T cells. Using parabiotic mice, we further show that circulating CD8(+) T(CM) and CD8(+) skin T(RM) cells are both generated after skin infection; however, CD8(+) T(CM) cells recirculate between blood and lymph nodes whereas T(RM) cells remain in the skin. Cutaneous CD8(+) T(RM) cells produce effector cytokines and persist for at least 6 months after infection. Mice with CD8(+) skin T(RM) cells rapidly cleared a subsequent re-infection with VACV whereas mice with circulating T(CM) but no skin T(RM) cells showed greatly impaired viral clearance, indicating that T(RM) cells provide superior protection. Finally, we show that T(RM) cells generated as a result of localized VACV skin infection reside not only in the site of infection, but also populate the entire skin surface and remain present for many months. Repeated re-infections lead to progressive accumulation of highly protective T(RM) cells in non-involved skin. These findings have important implications for our understanding of protective immune memory at epithelial interfaces with the environment, and suggest novel strategies for vaccines that protect against tissue tropic organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Xiaodong -- Clark, Rachael A -- Liu, Luzheng -- Wagers, Amy J -- Fuhlbrigge, Robert C -- Kupper, Thomas S -- R01 AI025082/AI/NIAID NIH HHS/ -- R01 AI041707/AI/NIAID NIH HHS/ -- R01 AI097128/AI/NIAID NIH HHS/ -- R01 AR056720/AR/NIAMS NIH HHS/ -- R01 AR065807/AR/NIAMS NIH HHS/ -- R01AI041707/AI/NIAID NIH HHS/ -- R37AI025082/AI/NIAID NIH HHS/ -- TR01AI097128/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 29;483(7388):227-31. doi: 10.1038/nature10851.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22388819" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes ; CD8-Positive T-Lymphocytes/*cytology/*immunology ; Cell Movement ; E-Selectin/metabolism ; Female ; Immunologic Memory/*immunology ; Interferon-gamma ; Mice ; Mice, Inbred C57BL ; Models, Immunological ; P-Selectin/metabolism ; Skin/*immunology/metabolism/*virology ; Vaccinia/immunology/virology ; Vaccinia virus/immunology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2012-03-27
    Description: The immunostimulatory cytokine interleukin-2 (IL-2) is a growth factor for a wide range of leukocytes, including T cells and natural killer (NK) cells. Considerable effort has been invested in using IL-2 as a therapeutic agent for a variety of immune disorders ranging from AIDS to cancer. However, adverse effects have limited its use in the clinic. On activated T cells, IL-2 signals through a quaternary 'high affinity' receptor complex consisting of IL-2, IL-2Ralpha (termed CD25), IL-2Rbeta and IL-2Rgamma. Naive T cells express only a low density of IL-2Rbeta and IL-2Rgamma, and are therefore relatively insensitive to IL-2, but acquire sensitivity after CD25 expression, which captures the cytokine and presents it to IL-2Rbeta and IL-2Rgamma. Here, using in vitro evolution, we eliminated the functional requirement of IL-2 for CD25 expression by engineering an IL-2 'superkine' (also called super-2) with increased binding affinity for IL-2Rbeta. Crystal structures of the IL-2 superkine in free and receptor-bound forms showed that the evolved mutations are principally in the core of the cytokine, and molecular dynamics simulations indicated that the evolved mutations stabilized IL-2, reducing the flexibility of a helix in the IL-2Rbeta binding site, into an optimized receptor-binding conformation resembling that when bound to CD25. The evolved mutations in the IL-2 superkine recapitulated the functional role of CD25 by eliciting potent phosphorylation of STAT5 and vigorous proliferation of T cells irrespective of CD25 expression. Compared to IL-2, the IL-2 superkine induced superior expansion of cytotoxic T cells, leading to improved antitumour responses in vivo, and elicited proportionally less expansion of T regulatory cells and reduced pulmonary oedema. Collectively, we show that in vitro evolution has mimicked the functional role of CD25 in enhancing IL-2 potency and regulating target cell specificity, which has implications for immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levin, Aron M -- Bates, Darren L -- Ring, Aaron M -- Krieg, Carsten -- Lin, Jack T -- Su, Leon -- Moraga, Ignacio -- Raeber, Miro E -- Bowman, Gregory R -- Novick, Paul -- Pande, Vijay S -- Fathman, C Garrison -- Boyman, Onur -- Garcia, K Christopher -- AR050942/AR/NIAMS NIH HHS/ -- GM07365/GM/NIGMS NIH HHS/ -- R01 AI051321/AI/NIAID NIH HHS/ -- R01 AI051321-05/AI/NIAID NIH HHS/ -- R01 CA065237/CA/NCI NIH HHS/ -- R01-GM062868/GM/NIGMS NIH HHS/ -- R01AI51321/AI/NIAID NIH HHS/ -- R37 AI051321/AI/NIAID NIH HHS/ -- T32 AI007290/AI/NIAID NIH HHS/ -- U01 DK078123/DK/NIDDK NIH HHS/ -- U19 AI 082719/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 25;484(7395):529-33. doi: 10.1038/nature10975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22446627" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Cell Proliferation ; Crystallography, X-Ray ; *Directed Molecular Evolution ; Humans ; Immunotherapy ; Interleukin-2/*chemistry/genetics/*immunology/pharmacology ; Interleukin-2 Receptor alpha Subunit/chemistry/deficiency/immunology/metabolism ; Interleukin-2 Receptor beta Subunit/chemistry/metabolism ; Killer Cells, Natural/immunology ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Molecular Dynamics Simulation ; Mutant Proteins/*chemistry/genetics/*immunology/pharmacology ; Mutation ; Neoplasm Transplantation ; Neoplasms/drug therapy/immunology ; Phosphorylation ; Protein Conformation ; *Protein Engineering ; STAT5 Transcription Factor/metabolism ; Surface Plasmon Resonance ; T-Lymphocytes/cytology/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2012-06-16
    Description: Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Mancera, Pedro A -- Rust, Alistair G -- van der Weyden, Louise -- Kristiansen, Glen -- Li, Allen -- Sarver, Aaron L -- Silverstein, Kevin A T -- Grutzmann, Robert -- Aust, Daniela -- Rummele, Petra -- Knosel, Thomas -- Herd, Colin -- Stemple, Derek L -- Kettleborough, Ross -- Brosnan, Jacqueline A -- Li, Ang -- Morgan, Richard -- Knight, Spencer -- Yu, Jun -- Stegeman, Shane -- Collier, Lara S -- ten Hoeve, Jelle J -- de Ridder, Jeroen -- Klein, Alison P -- Goggins, Michael -- Hruban, Ralph H -- Chang, David K -- Biankin, Andrew V -- Grimmond, Sean M -- Australian Pancreatic Cancer Genome Initiative -- Wessels, Lodewyk F A -- Wood, Stephen A -- Iacobuzio-Donahue, Christine A -- Pilarsky, Christian -- Largaespada, David A -- Adams, David J -- Tuveson, David A -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA122183/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- K01 CA122183/CA/NCI NIH HHS/ -- K01 CA122183-05/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50CA62924/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Apr 29;486(7402):266-70. doi: 10.1038/nature11114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoikis/genetics ; Carcinoma, Pancreatic Ductal/*enzymology/genetics/pathology ; Cell Line, Tumor ; Disease Models, Animal ; Endopeptidases ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Humans ; Mice ; Mice, Inbred C57BL ; Pancreatic Neoplasms/*enzymology/genetics/pathology ; U937 Cells ; Ubiquitin Thiolesterase/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2012-10-12
    Description: Myocardial cell death is initiated by excessive mitochondrial Ca(2+) entry causing Ca(2+) overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (DeltaPsim). However, the signalling pathways that control mitochondrial Ca(2+) entry through the inner membrane mitochondrial Ca(2+) uniporter (MCU) are not known. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (I(MCU)). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, DeltaPsim deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced I(MCU) and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing I(MCU). Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca(2+) entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- R01 HL062494/HL/NHLBI NIH HHS/ -- R01 HL070250/HL/NHLBI NIH HHS/ -- R01 HL079031/HL/NHLBI NIH HHS/ -- R01 HL083422/HL/NHLBI NIH HHS/ -- R01 HL084583/HL/NHLBI NIH HHS/ -- R01 HL090905/HL/NHLBI NIH HHS/ -- R01 HL113001/HL/NHLBI NIH HHS/ -- R01 HL62494/HL/NHLBI NIH HHS/ -- R01 HL70250/HL/NHLBI NIH HHS/ -- R56 NS056244/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):269-73. doi: 10.1038/nature11444. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. mei-ling-joiner@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Calcium/*metabolism/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/chemistry/*metabolism ; Cyclosporine/pharmacology ; Female ; Heart/drug effects/physiopathology ; Heart Failure/drug therapy/prevention & control ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria, Heart/enzymology/*metabolism/*pathology ; Mitochondrial Membrane Transport Proteins/metabolism ; Myocardial Infarction/drug therapy/prevention & control ; Myocardium/*enzymology/metabolism/*pathology ; Reperfusion Injury/enzymology/metabolism/pathology/prevention & control ; Serine/metabolism ; *Stress, Physiological/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2012-10-19
    Description: Most successful existing vaccines rely on neutralizing antibodies, which may not require specific anatomical localization of B cells. However, efficacious vaccines that rely on T cells for protection have been difficult to develop, as robust systemic memory T-cell responses do not necessarily correlate with host protection. In peripheral sites, tissue-resident memory T cells provide superior protection compared to circulating memory T cells. Here we describe a simple and non-inflammatory vaccine strategy that enables the establishment of a protective memory T-cell pool within peripheral tissue. The female genital tract, which is a portal of entry for sexually transmitted infections, is an immunologically restrictive tissue that prevents entry of activated T cells in the absence of inflammation or infection. To overcome this obstacle, we developed a vaccine strategy that we term 'prime and pull' to establish local tissue-resident memory T cells at a site of potential viral exposure. This approach relies on two steps: conventional parenteral vaccination to elicit systemic T-cell responses (prime), followed by recruitment of activated T cells by means of topical chemokine application to the restrictive genital tract (pull), where such T cells establish a long-term niche and mediate protective immunity. In mice, prime and pull protocol reduces the spread of infectious herpes simplex virus 2 into the sensory neurons and prevents development of clinical disease. These results reveal a promising vaccination strategy against herpes simplex virus 2, and potentially against other sexually transmitted infections such as human immunodeficiency virus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Haina -- Iwasaki, Akiko -- AI054359/AI/NIAID NIH HHS/ -- AI062428/AI/NIAID NIH HHS/ -- F32 AI091024/AI/NIAID NIH HHS/ -- F32AI091024/AI/NIAID NIH HHS/ -- R01 AI054359/AI/NIAID NIH HHS/ -- R01 AI062428/AI/NIAID NIH HHS/ -- R56 AI062428/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):463-7. doi: 10.1038/nature11522. Epub 2012 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23075848" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Topical ; Animals ; Antibodies, Viral/analysis ; Cell Count ; Chemokine CXCL10/administration & dosage ; Chemokine CXCL9/administration & dosage ; Female ; Herpes Genitalis/*immunology/*prevention & control ; Immunologic Memory/*immunology ; Mice ; Mice, Inbred C57BL ; Survival Analysis ; T-Lymphocytes/cytology/immunology ; *Vaccination ; Vagina/immunology ; Viral Load ; Viral Vaccines/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2012-08-28
    Description: Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide 'contextual' information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1--〉vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petreanu, Leopoldo -- Gutnisky, Diego A -- Huber, Daniel -- Xu, Ning-long -- O'Connor, Dan H -- Tian, Lin -- Looger, Loren -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22922646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Calcium Signaling ; Feedback, Physiological ; Male ; Mice ; Mice, Inbred C57BL ; Motor Cortex/cytology/*physiology ; Motor Neurons/metabolism ; Movement/physiology ; *Neural Pathways ; Physical Stimulation ; Somatosensory Cortex/cytology/*physiology ; Touch/*physiology ; Vibrissae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2012-04-24
    Description: Although feast and famine cycles illustrate that remodelling of adipose tissue in response to fluctuations in nutrient availability is essential for maintaining metabolic homeostasis, the underlying mechanisms remain poorly understood. Here we identify fibroblast growth factor 1 (FGF1) as a critical transducer in this process in mice, and link its regulation to the nuclear receptor PPARgamma (peroxisome proliferator activated receptor gamma), which is the adipocyte master regulator and the target of the thiazolidinedione class of insulin sensitizing drugs. FGF1 is the prototype of the 22-member FGF family of proteins and has been implicated in a range of physiological processes, including development, wound healing and cardiovascular changes. Surprisingly, FGF1 knockout mice display no significant phenotype under standard laboratory conditions. We show that FGF1 is highly induced in adipose tissue in response to a high-fat diet and that mice lacking FGF1 develop an aggressive diabetic phenotype coupled to aberrant adipose expansion when challenged with a high-fat diet. Further analysis of adipose depots in FGF1-deficient mice revealed multiple histopathologies in the vasculature network, an accentuated inflammatory response, aberrant adipocyte size distribution and ectopic expression of pancreatic lipases. On withdrawal of the high-fat diet, this inflamed adipose tissue fails to properly resolve, resulting in extensive fat necrosis. In terms of mechanisms, we show that adipose induction of FGF1 in the fed state is regulated by PPARgamma acting through an evolutionarily conserved promoter proximal PPAR response element within the FGF1 gene. The discovery of a phenotype for the FGF1 knockout mouse establishes the PPARgamma-FGF1 axis as critical for maintaining metabolic homeostasis and insulin sensitization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonker, Johan W -- Suh, Jae Myoung -- Atkins, Annette R -- Ahmadian, Maryam -- Li, Pingping -- Whyte, Jamie -- He, Mingxiao -- Juguilon, Henry -- Yin, Yun-Qiang -- Phillips, Colin T -- Yu, Ruth T -- Olefsky, Jerrold M -- Henry, Robert R -- Downes, Michael -- Evans, Ronald M -- DK057978/DK/NIDDK NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R01 DK033651/DK/NIDDK NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R01 HL105278-21/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R24 DK090962-02/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- R37 DK057978-34/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 17;485(7398):391-4. doi: 10.1038/nature10998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522926" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism/pathology ; Animals ; Base Sequence ; Cell Size/drug effects ; Diabetes Mellitus, Experimental/chemically induced/genetics/pathology ; Diet, High-Fat/adverse effects ; Fibroblast Growth Factor 1/deficiency/*genetics/*metabolism ; *Homeostasis/drug effects ; Humans ; Inflammation/genetics ; Insulin/metabolism ; Insulin Resistance ; Intra-Abdominal Fat/drug effects/*metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Necrosis/enzymology ; PPAR gamma/*metabolism ; Promoter Regions, Genetic/genetics ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...