ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-18
    Description: T helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORgammat, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORgammat partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORgammat and coactivate its targets depends on intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in patients with cartilage-hair hypoplasia. A targeted Rmrp gene mutation in mice, corresponding to a gene mutation in cartilage-hair hypoplasia patients, altered lncRNA chromatin occupancy, and reduced the DDX5-RORgammat interaction and RORgammat target gene transcription. Elucidation of the link between Rmrp and the DDX5-RORgammat complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation, and provides new opportunities for therapeutic intervention in TH17-dependent diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Wendy -- Thomas, Benjamin -- Flynn, Ryan A -- Gavzy, Samuel J -- Wu, Lin -- Kim, Sangwon V -- Hall, Jason A -- Miraldi, Emily R -- Ng, Charles P -- Rigo, Frank W -- Meadows, Sarah -- Montoya, Nina R -- Herrera, Natalia G -- Domingos, Ana I -- Rastinejad, Fraydoon -- Myers, Richard M -- Fuller-Pace, Frances V -- Bonneau, Richard -- Chang, Howard Y -- Acuto, Oreste -- Littman, Dan R -- 1F30CA189514-01/CA/NCI NIH HHS/ -- F30 CA189514/CA/NCI NIH HHS/ -- P50 HG007735/HG/NHGRI NIH HHS/ -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 AI080885/AI/NIAID NIH HHS/ -- R01 AI121436/AI/NIAID NIH HHS/ -- R01 DK103358/DK/NIDDK NIH HHS/ -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- R01DK103358/DK/NIDDK NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- T32 AI100853/AI/NIAID NIH HHS/ -- T32 CA009161/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 24;528(7583):517-22. doi: 10.1038/nature16193. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA. ; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK. ; Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA. ; Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA. ; Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10012, USA. ; Simons Center for Data Analysis, Simons Foundation, New York, New York 10010, USA. ; Isis Pharmaceuticals, Carlsbad, California 92010, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA. ; Instituto Gulbenkian de Ciencia, Oeiras 2780-156, Portugal. ; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA. ; Division of Cancer Research, University of Dundee, Dundee DD1 9SY, UK. ; Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/genetics/metabolism ; DEAD-box RNA Helicases/genetics/*metabolism ; Female ; Gene Expression Regulation/genetics ; Hair/abnormalities ; Hirschsprung Disease/genetics ; Humans ; Immunologic Deficiency Syndromes/genetics ; Inflammation/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mutation/genetics ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Organ Specificity ; Osteochondrodysplasias/congenital/genetics ; Protein Binding ; RNA, Long Noncoding/genetics/*metabolism ; Th17 Cells/*immunology/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-15
    Description: Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8alphabeta-expressing 'single-positive' thymocytes from CD4(+)CD8alphabeta(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Guo -- Casas, Javier -- Rigaud, Stephanie -- Rybakin, Vasily -- Lambolez, Florence -- Brzostek, Joanna -- Hoerter, John A H -- Paster, Wolfgang -- Acuto, Oreste -- Cheroutre, Hilde -- Sauer, Karsten -- Gascoigne, Nicholas R J -- AI070845/AI/NIAID NIH HHS/ -- AI073870/AI/NIAID NIH HHS/ -- DK094173/DK/NIDDK NIH HHS/ -- DP1OD006433/OD/NIH HHS/ -- GM065230/GM/NIGMS NIH HHS/ -- GM100785/GM/NIGMS NIH HHS/ -- GR076558MA/Wellcome Trust/United Kingdom -- R01 AI064584/AI/NIAID NIH HHS/ -- R01 AI073870/AI/NIAID NIH HHS/ -- R01 GM065230/GM/NIGMS NIH HHS/ -- R01 GM100785/GM/NIGMS NIH HHS/ -- R21 DK094173/DK/NIDDK NIH HHS/ -- T32AI07244/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Dec 19;504(7480):441-5. doi: 10.1038/nature12718. Epub 2013 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545 [3]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]. ; Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Microbiology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, 5 Science Drive 2, Singapore 117545. ; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24226767" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Autoantigens/immunology ; Calcium Signaling ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism ; Proteins/genetics/*metabolism ; Receptors, Antigen, T-Cell/*immunology/metabolism ; Signal Transduction/*immunology ; T-Lymphocytes/*cytology/immunology/*metabolism ; Thymocytes/*cytology/immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Wendy -- Thomas, Benjamin -- Flynn, Ryan A -- Gavzy, Samuel J -- Wu, Lin -- Kim, Sangwon V -- Hall, Jason A -- Miraldi, Emily R -- Ng, Charles P -- Rigo, Frank -- Meadows, Sarah -- Montoya, Nina R -- Herrera, Natalia G -- Domingos, Ana I -- Rastinejad, Fraydoon -- Myers, Richard M -- Fuller-Pace, Frances V -- Bonneau, Richard -- Chang, Howard Y -- Acuto, Oreste -- Littman, Dan R -- England -- Nature. 2016 May 5;533(7601):130. doi: 10.1038/nature16968. Epub 2016 Jan 20.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26789242" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-10-19
    Description: A complementary DNA probe corresponding to the beta-chain gene of Ti, the human T lymphocyte receptor, has been molecularly cloned. The chromosomal origin of the Ti beta gene was determined with the complementary DNA by screening a series of 12 cell hybrid (mouse X human) DNA's containing overlapping subsets of human chromosomes. DNA hybridization (Southern) experiments showed that the human Ti beta gene resides on chromosome 7 and is thus not linked to the immunoglobulin loci or to the major histocompatibility locus in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barker, P E -- Ruddle, F H -- Royer, H D -- Acuto, O -- Reinherz, E L -- AI 21226/AI/NIAID NIH HHS/ -- GM-09966/GM/NIGMS NIH HHS/ -- R0 1 AI 19807/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1984 Oct 19;226(4672):348-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6435246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; *Chromosomes, Human, 6-12 and X ; Cloning, Molecular ; Dna ; *Genes ; Genetic Linkage ; Humans ; Hybrid Cells ; Immunoglobulin kappa-Chains/genetics ; Major Histocompatibility Complex ; Mice ; Nucleic Acid Hybridization ; Receptors, Antigen, T-Cell/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 756 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0005-2736
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Archives of Biochemistry and Biophysics 189 (1978), S. 132-136 
    ISSN: 0003-9861
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 2 (1984), S. 23-50 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Recently, clonable murine T-cell lines with cytolytic activity have been derived from normal CTL populations cultured in medium supplemented with TCGF-containing supernatant from concanavalin A (Con A)-stimulated spleen cells (CS)89. Such CTL lines remain strictly dependent on CS medium for growth, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...