ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-23
    Description: Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate antitumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram-positive bacteria into secondary lymphoid organs. There, these bacteria stimulate the generation of a specific subset of "pathogenic" T helper 17 (pT(H)17) cells and memory T(H)1 immune responses. Tumor-bearing mice that were germ-free or that had been treated with antibiotics to kill Gram-positive bacteria showed a reduction in pT(H)17 responses, and their tumors were resistant to cyclophosphamide. Adoptive transfer of pT(H)17 cells partially restored the antitumor efficacy of cyclophosphamide. These results suggest that the gut microbiota help shape the anticancer immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048947/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048947/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viaud, Sophie -- Saccheri, Fabiana -- Mignot, Gregoire -- Yamazaki, Takahiro -- Daillere, Romain -- Hannani, Dalil -- Enot, David P -- Pfirschke, Christina -- Engblom, Camilla -- Pittet, Mikael J -- Schlitzer, Andreas -- Ginhoux, Florent -- Apetoh, Lionel -- Chachaty, Elisabeth -- Woerther, Paul-Louis -- Eberl, Gerard -- Berard, Marion -- Ecobichon, Chantal -- Clermont, Dominique -- Bizet, Chantal -- Gaboriau-Routhiau, Valerie -- Cerf-Bensussan, Nadine -- Opolon, Paule -- Yessaad, Nadia -- Vivier, Eric -- Ryffel, Bernhard -- Elson, Charles O -- Dore, Joel -- Kroemer, Guido -- Lepage, Patricia -- Boneca, Ivo Gomperts -- Ghiringhelli, Francois -- Zitvogel, Laurence -- P01 DK071176/DK/NIDDK NIH HHS/ -- P01DK071176/DK/NIDDK NIH HHS/ -- P50 CA086355/CA/NCI NIH HHS/ -- R01 AI084880/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):971-6. doi: 10.1126/science.1240537.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Sante et de la Recherche Medicale, U1015, Equipe labellisee Ligue Nationale Contre le Cancer, Institut Gustave Roussy, Villejuif, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264990" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Anti-Bacterial Agents/administration & dosage ; Antineoplastic Agents/*therapeutic use ; Bacterial Translocation/*drug effects ; Cyclophosphamide/*therapeutic use ; Germ-Free Life ; Gram-Positive Bacteria/drug effects/physiology ; Immunologic Memory ; Immunosuppressive Agents/*therapeutic use ; Intestine, Small/*microbiology ; Lymphoid Tissue/immunology/microbiology ; Mice ; Microbiota/drug effects/*physiology ; Neoplasms/*drug therapy/*immunology ; Th17 Cells/immunology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-14
    Description: The emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates the mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defence. These same attributes can put the host at risk of immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how the system integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks to treat and prevent disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492337/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492337/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maynard, Craig L -- Elson, Charles O -- Hatton, Robin D -- Weaver, Casey T -- P01 DK071176/DK/NIDDK NIH HHS/ -- R01 AI057956/AI/NIAID NIH HHS/ -- R01 DK093015/DK/NIDDK NIH HHS/ -- R24 DK064400/DK/NIDDK NIH HHS/ -- T32 AI007051/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Sep 13;489(7415):231-41. doi: 10.1038/nature11551.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22972296" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Group Antigens/immunology ; Cesarean Section ; Epithelium/immunology ; Female ; Homeostasis/immunology ; Humans ; Infant ; Infant, Newborn ; Intestines/*immunology/*microbiology ; Metagenome/*immunology ; Pregnancy ; T-Lymphocytes/immunology ; Vagina/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-24
    Description: Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-gammat-positive (RORgammat(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORgammat(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORgammat(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hepworth, Matthew R -- Monticelli, Laurel A -- Fung, Thomas C -- Ziegler, Carly G K -- Grunberg, Stephanie -- Sinha, Rohini -- Mantegazza, Adriana R -- Ma, Hak-Ling -- Crawford, Alison -- Angelosanto, Jill M -- Wherry, E John -- Koni, Pandelakis A -- Bushman, Frederic D -- Elson, Charles O -- Eberl, Gerard -- Artis, David -- Sonnenberg, Gregory F -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI087990/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI095776/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- DK071176/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- P01 DK071176/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30DK50306/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- R21 AI083480/AI/NIAID NIH HHS/ -- R21 AI087990/AI/NIAID NIH HHS/ -- T32 AI007532/AI/NIAID NIH HHS/ -- T32 AI055428/AI/NIAID NIH HHS/ -- T32-AI055428/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 6;498(7452):113-7. doi: 10.1038/nature12240. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698371" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation/immunology ; Bacteria/*immunology ; CD4-Positive T-Lymphocytes/cytology/*immunology/pathology ; Cell Proliferation ; Histocompatibility Antigens Class II/immunology/metabolism ; Humans ; Immunity, Innate/*immunology ; Inflammation/pathology ; Interleukin-17/metabolism ; Interleukin-23/metabolism ; Interleukins/metabolism ; Intestines/*immunology/*microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-28
    Description: The mammalian gastrointestinal tract contains a large and diverse population of commensal bacteria and is also one of the primary sites of exposure to pathogens. How the immune system perceives commensals in the context of mucosal infection is unclear. Here, we show that during a gastrointestinal infection, tolerance to commensals is lost, and microbiota-specific T cells are activated and differentiate to inflammatory effector cells. Furthermore, these T cells go on to form memory cells that are phenotypically and functionally consistent with pathogen-specific T cells. Our results suggest that during a gastrointestinal infection, the immune response to commensals parallels the immune response against pathogenic microbes and that adaptive responses against commensals are an integral component of mucosal immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784339/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784339/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hand, Timothy W -- Dos Santos, Liliane M -- Bouladoux, Nicolas -- Molloy, Michael J -- Pagan, Antonio J -- Pepper, Marion -- Maynard, Craig L -- Elson, Charles O 3rd -- Belkaid, Yasmine -- DK071176/DK/NIDDK NIH HHS/ -- DK64400/DK/NIDDK NIH HHS/ -- R24 DK064400/DK/NIDDK NIH HHS/ -- T32 AI007051/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1553-6. Epub 2012 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923434" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Animals ; Bacteria/*immunology ; Bacterial Translocation ; CD4-Positive T-Lymphocytes/*immunology ; Flagellin/immunology ; Gastrointestinal Tract/*immunology/microbiology/parasitology ; *Immunity, Mucosal ; Immunologic Memory ; Intestinal Diseases, Parasitic/*immunology/parasitology ; Intestinal Mucosa/microbiology/parasitology ; Lymphocyte Activation ; Metagenome/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Th1 Cells/immunology ; Time Factors ; Toxoplasma/immunology/physiology ; Toxoplasmosis, Animal/*immunology/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-25
    Description: Inflammatory CD4(+) T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. Although selection of self-specific T cells in the thymus limits responses to mammalian tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here, we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells and that MHCII(+) ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4(+) T cells in the intestine and suggest that this process is dysregulated in human IBD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449822/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449822/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hepworth, Matthew R -- Fung, Thomas C -- Masur, Samuel H -- Kelsen, Judith R -- McConnell, Fiona M -- Dubrot, Juan -- Withers, David R -- Hugues, Stephanie -- Farrar, Michael A -- Reith, Walter -- Eberl, Gerard -- Baldassano, Robert N -- Laufer, Terri M -- Elson, Charles O -- Sonnenberg, Gregory F -- DK071176/DK/NIDDK NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- UL1-RR024134/RR/NCRR NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 May 29;348(6238):1031-5. doi: 10.1126/science.aaa4812. Epub 2015 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA. ; Medical Research Council, Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. ; Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland. ; Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA. ; Institut Pasteur, Microenvironment and Immunity Unit, Paris, France. ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. ; Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA. gfsonnenberg@med.cornell.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908663" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/immunology ; Autoimmunity ; Bacteria/*immunology ; CD4-Positive T-Lymphocytes/*immunology ; Colon/*microbiology ; Female ; Flagellin/genetics/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; *Immunity, Innate ; Inflammatory Bowel Diseases/immunology/*microbiology ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred C57BL ; Symbiosis ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 460 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 409 (1983), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-11-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-04
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...