ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-05
    Description: Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adhikari, Avishek -- Lerner, Talia N -- Finkelstein, Joel -- Pak, Sally -- Jennings, Joshua H -- Davidson, Thomas J -- Ferenczi, Emily -- Gunaydin, Lisa A -- Mirzabekov, Julie J -- Ye, Li -- Kim, Sung-Yon -- Lei, Anna -- Deisseroth, Karl -- 1F32MH105053-01/MH/NIMH NIH HHS/ -- K99 MH106649/MH/NIMH NIH HHS/ -- K99MH106649/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):179-85. doi: 10.1038/nature15698. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; CNC Program, Stanford University, Stanford, California 94304, USA. ; Neurosciences Program, Stanford University, Stanford, California 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536109" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/*physiology ; Animals ; Anxiety/*physiopathology/psychology ; Extinction, Psychological/physiology ; Fear/*physiology/psychology ; Female ; Freezing Reaction, Cataleptic/physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/*physiology ; Prefrontal Cortex/cytology/physiology ; Stress, Psychological/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-28
    Description: The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131546/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131546/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, Joshua H -- Rizzi, Giorgio -- Stamatakis, Alice M -- Ung, Randall L -- Stuber, Garret D -- AA011605/AA/NIAAA NIH HHS/ -- AA022234/AA/NIAAA NIH HHS/ -- DA032750/DA/NIDA NIH HHS/ -- DA034472/DA/NIDA NIH HHS/ -- F31 DA034472/DA/NIDA NIH HHS/ -- NS007431/NS/NINDS NIH HHS/ -- P30 NS045892/NS/NINDS NIH HHS/ -- P50 AA011605/AA/NIAAA NIH HHS/ -- R01 DA032750/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 27;341(6153):1517-21. doi: 10.1126/science.1241812.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072922" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amygdala/physiology ; Animals ; Bacterial Proteins/genetics/metabolism ; Eating/*physiology ; Feeding Behavior/*physiology ; GABAergic Neurons/*physiology ; Hypothalamus/*physiology ; Luminescent Proteins/genetics/metabolism ; Male ; Mice ; Mice, Mutant Strains ; Obesity/physiopathology ; Rhodopsin/genetics/metabolism ; Septal Nuclei/physiology ; Synapses/physiology ; gamma-Aminobutyric Acid/metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-22
    Description: The co-morbidity of anxiety and dysfunctional reward processing in illnesses such as addiction and depression suggests that common neural circuitry contributes to these disparate neuropsychiatric symptoms. The extended amygdala, including the bed nucleus of the stria terminalis (BNST), modulates fear and anxiety, but also projects to the ventral tegmental area (VTA), a region implicated in reward and aversion, thus providing a candidate neural substrate for integrating diverse emotional states. However, the precise functional connectivity between distinct BNST projection neurons and their postsynaptic targets in the VTA, as well as the role of this circuit in controlling motivational states, have not been described. Here we record and manipulate the activity of genetically and neurochemically identified VTA-projecting BNST neurons in freely behaving mice. Collectively, aversive stimuli exposure produced heterogeneous firing patterns in VTA-projecting BNST neurons. By contrast, in vivo optically identified glutamatergic projection neurons displayed a net enhancement of activity to aversive stimuli, whereas the firing rate of identified GABAergic (gamma-aminobutyric acid-containing) projection neurons was suppressed. Channelrhodopsin-2-assisted circuit mapping revealed that both BNST glutamatergic and GABAergic projections preferentially innervate postsynaptic non-dopaminergic VTA neurons, thus providing a mechanistic framework for in vivo circuit perturbations. In vivo photostimulation of BNST glutamatergic projections resulted in aversive and anxiogenic behavioural phenotypes. Conversely, activation of BNST GABAergic projections produced rewarding and anxiolytic phenotypes, which were also recapitulated by direct inhibition of VTA GABAergic neurons. These data demonstrate that functionally opposing BNST to VTA circuits regulate rewarding and aversive motivational states, and may serve as a crucial circuit node for bidirectionally normalizing maladaptive behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778934/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778934/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jennings, Joshua H -- Sparta, Dennis R -- Stamatakis, Alice M -- Ung, Randall L -- Pleil, Kristen E -- Kash, Thomas L -- Stuber, Garret D -- AA007573/AA/NIAAA NIH HHS/ -- AA011605/AA/NIAAA NIH HHS/ -- AA018610/AA/NIAAA NIH HHS/ -- AA021043/AA/NIAAA NIH HHS/ -- DA029325/DA/NIDA NIH HHS/ -- DA032750/DA/NIDA NIH HHS/ -- DA034472/DA/NIDA NIH HHS/ -- F31 DA034472/DA/NIDA NIH HHS/ -- NS007431/NS/NINDS NIH HHS/ -- P30 NS045892/NS/NINDS NIH HHS/ -- R01 DA032750/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Apr 11;496(7444):224-8. doi: 10.1038/nature12041. Epub 2013 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23515155" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/*physiology ; Animals ; Anxiety/physiopathology ; Avoidance Learning ; Behavior, Animal/physiology ; Cues ; Electroshock ; GABAergic Neurons/metabolism ; Glutamine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Motivation/*physiology ; Optogenetics ; Phenotype ; Reward ; Rhodopsin/metabolism ; Septal Nuclei/physiology ; Ventral Tegmental Area/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1878-05-01
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...