ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-03-26
    Description: The distal human intestine represents an anaerobic bioreactor programmed with an enormous population of bacteria, dominated by relatively few divisions that are highly diverse at the strain/subspecies level. This microbiota and its collective genomes (microbiome) provide us with genetic and metabolic attributes we have not been required to evolve on our own, including the ability to harvest otherwise inaccessible nutrients. New studies are revealing how the gut microbiota has coevolved with us and how it manipulates and complements our biology in ways that are mutually beneficial. We are also starting to understand how certain keystone members of the microbiota operate to maintain the stability and functional adaptability of this microbial organ.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Backhed, Fredrik -- Ley, Ruth E -- Sonnenburg, Justin L -- Peterson, Daniel A -- Gordon, Jeffrey I -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1915-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790844" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacteria/classification ; *Bacterial Physiological Phenomena ; Bacteroides/genetics/physiology ; Biodiversity ; Biological Evolution ; Ecosystem ; Energy Intake ; Energy Metabolism ; Gastrointestinal Tract/*microbiology/physiology ; Genome, Bacterial ; Humans ; Intestines/*microbiology/physiology ; Obesity/etiology ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-14
    Description: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tremaroli, Valentina -- Backhed, Fredrik -- England -- Nature. 2012 Sep 13;489(7415):242-9. doi: 10.1038/nature11552.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wallenberg Laboratory for Cardiovascular and Metabolic Research, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22972297" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diet ; *Energy Metabolism ; Fermentation ; Humans ; Immunity, Innate ; Inflammation/metabolism/microbiology ; Intestines/immunology/*metabolism/*microbiology ; Metabolic Syndrome X/metabolism/microbiology ; Metagenome/immunology/*physiology ; Obesity/metabolism/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-28
    Description: Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPMs). In self-resolving E. coli exudates (10(5) colony forming units, c.f.u.), the dominant SPMs identified were resolvin (Rv) D5 and protectin D1 (PD1), which at 12 h were at significantly greater levels than in exudates from higher titre E. coli (10(7) c.f.u.)-challenged mice. Germ-free mice had endogenous RvD1 and PD1 levels higher than in conventional mice. RvD1 and RvD5 (nanograms per mouse) each reduced bacterial titres in blood and exudates, E. coli-induced hypothermia and increased survival, demonstrating the first actions of RvD5. With human polymorphonuclear neutrophils and macrophages, RvD1, RvD5 and PD1 each directly enhanced phagocytosis of E. coli, and RvD5 counter-regulated a panel of pro-inflammatory genes, including NF-kappaB and TNF-alpha. RvD5 activated the RvD1 receptor, GPR32, to enhance phagocytosis. With self-limited E. coli infections, RvD1 and the antibiotic ciprofloxacin accelerated resolution, each shortening resolution intervals (R(i)). Host-directed RvD1 actions enhanced ciprofloxacin's therapeutic actions. In 10(7) c.f.u. E. coli infections, SPMs (RvD1, RvD5, PD1) together with ciprofloxacin also heightened host antimicrobial responses. In skin infections, SPMs enhanced vancomycin clearance of Staphylococcus aureus. These results demonstrate that specific SPMs are temporally and differentially regulated during infections and that they are anti-phlogistic, enhance containment and lower antibiotic requirements for bacterial clearance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiang, Nan -- Fredman, Gabrielle -- Backhed, Fredrik -- Oh, Sungwhan F -- Vickery, Thad -- Schmidt, Birgitta A -- Serhan, Charles N -- P01 GM095467/GM/NIGMS NIH HHS/ -- P01 GM095467-01/GM/NIGMS NIH HHS/ -- P01 GM095467-02/GM/NIGMS NIH HHS/ -- P01GM095467/GM/NIGMS NIH HHS/ -- R01 GM038765/GM/NIGMS NIH HHS/ -- R01 GM038765-24/GM/NIGMS NIH HHS/ -- R01 GM038765-25/GM/NIGMS NIH HHS/ -- R01 GM038765-26/GM/NIGMS NIH HHS/ -- R01GM38765/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 25;484(7395):524-8. doi: 10.1038/nature11042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22538616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Docosahexaenoic Acids/*metabolism ; Escherichia coli/*drug effects/immunology ; Escherichia coli Infections/drug therapy/*metabolism/microbiology ; Humans ; Hypothermia/prevention & control ; Macrophages/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Microbial Viability/drug effects ; Neutrophils/immunology ; Peritonitis/drug therapy/metabolism/microbiology ; Phagocytosis ; Skin Diseases/drug therapy/metabolism/microbiology ; Staphylococcal Infections/drug therapy/*metabolism/microbiology ; Staphylococcus aureus/drug effects/immunology ; Vancomycin/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-29
    Description: Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering the potential to reveal new targets for therapeutic intervention. Substantial changes in circulating total bile acids are known to occur after VSG. Moreover, bile acids are known to regulate metabolism by binding to the nuclear receptor FXR (farsenoid-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Karen K -- Tremaroli, Valentina -- Clemmensen, Christoffer -- Kovatcheva-Datchary, Petia -- Myronovych, Andriy -- Karns, Rebekah -- Wilson-Perez, Hilary E -- Sandoval, Darleen A -- Kohli, Rohit -- Backhed, Fredrik -- Seeley, Randy J -- DK078392/DK/NIDDK NIH HHS/ -- DK082173/DK/NIDDK NIH HHS/ -- DK093848/DK/NIDDK NIH HHS/ -- HL111319/HL/NHLBI NIH HHS/ -- K08 DK084310/DK/NIDDK NIH HHS/ -- K99 HL111319/HL/NHLBI NIH HHS/ -- P30 DK078392/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 May 8;509(7499):183-8. doi: 10.1038/nature13135. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, Ohio 45237, USA. ; Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, S-413 45 Gothenburg, Sweden. ; 1] Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, Ohio 45237, USA [2] Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. ; Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; Divison of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA. ; 1] Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, S-413 45 Gothenburg, Sweden [2] Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bariatric Surgery ; Bile Acids and Salts/blood ; Body Composition ; Cecum/microbiology ; Feeding Behavior ; *Gastrectomy ; Glucose Intolerance/surgery ; Glucose Tolerance Test ; Male ; Mice ; Mice, Inbred C57BL ; Obesity/etiology/surgery ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*metabolism ; Signal Transduction ; Stomach/metabolism/surgery ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-13
    Description: The gut microbiota is a complex ecosystem that has coevolved with host physiology. Colonization of germ-free (GF) mice with a microbiota promotes increased vessel density in the small intestine, but little is known about the mechanisms involved. Tissue factor (TF) is the membrane receptor that initiates the extrinsic coagulation pathway, and it promotes developmental and tumour angiogenesis. Here we show that the gut microbiota promotes TF glycosylation associated with localization of TF on the cell surface, the activation of coagulation proteases, and phosphorylation of the TF cytoplasmic domain in the small intestine. Anti-TF treatment of colonized GF mice decreased microbiota-induced vascular remodelling and expression of the proangiogenic factor angiopoietin-1 (Ang-1) in the small intestine. Mice with a genetic deletion of the TF cytoplasmic domain or with hypomorphic TF (F3) alleles had a decreased intestinal vessel density. Coagulation proteases downstream of TF activate protease-activated receptor (PAR) signalling implicated in angiogenesis. Vessel density and phosphorylation of the cytoplasmic domain of TF were decreased in small intestine from PAR1-deficient (F2r(-/-)) but not PAR2-deficient (F2rl1(-/-)) mice, and inhibition of thrombin showed that thrombin-PAR1 signalling was upstream of TF phosphorylation. Thus, the microbiota-induced extravascular TF-PAR1 signalling loop is a novel pathway that may be modulated to influence vascular remodelling in the small intestine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885420/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885420/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhardt, Christoph -- Bergentall, Mattias -- Greiner, Thomas U -- Schaffner, Florence -- Ostergren-Lunden, Gunnel -- Petersen, Lars C -- Ruf, Wolfram -- Backhed, Fredrik -- HL-60742/HL/NHLBI NIH HHS/ -- HL-77753/HL/NHLBI NIH HHS/ -- R01 HL060742/HL/NHLBI NIH HHS/ -- R01 HL077753/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Mar 11;483(7391):627-31. doi: 10.1038/nature10893.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, University of Gothenburg, 413 45 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22407318" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Angiopoietin-1/metabolism ; Animals ; Enterocytes/metabolism/microbiology ; Female ; Glycosylation ; Intestine, Small/*blood supply/cytology/*microbiology ; Mice ; *Neovascularization, Physiologic ; Phosphorylation ; Protein Structure, Tertiary/genetics ; Receptor, PAR-1/deficiency/genetics/*metabolism ; Receptor, PAR-2/deficiency/genetics/metabolism ; Signal Transduction ; Thrombin/metabolism ; Thromboplastin/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-31
    Description: Type 2 diabetes (T2D) is a result of complex gene-environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity, diabetes and cardiovascular disease. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlsson, Fredrik H -- Tremaroli, Valentina -- Nookaew, Intawat -- Bergstrom, Goran -- Behre, Carl Johan -- Fagerberg, Bjorn -- Nielsen, Jens -- Backhed, Fredrik -- England -- Nature. 2013 Jun 6;498(7452):99-103. doi: 10.1038/nature12198. Epub 2013 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23719380" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aged ; Asian Continental Ancestry Group ; Bacteria/genetics/isolation & purification ; Biomarkers ; Blood Glucose/*metabolism ; Cluster Analysis ; Cohort Studies ; Confounding Factors (Epidemiology) ; Demography ; Diabetes Mellitus, Type 2/blood/drug therapy/genetics/*microbiology ; Environment ; European Continental Ancestry Group ; Feces/microbiology ; Female ; Gastrointestinal Tract/*microbiology ; Glucose Intolerance/blood/metabolism/*microbiology ; *Health ; Humans ; *Metagenome/genetics ; Middle Aged ; Models, Biological ; Prognosis ; Species Specificity ; Sweden
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2005-07-20
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-10-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...