ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-11
    Description: Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konermann, Silvana -- Brigham, Mark D -- Trevino, Alexandro E -- Joung, Julia -- Abudayyeh, Omar O -- Barcena, Clea -- Hsu, Patrick D -- Habib, Naomi -- Gootenberg, Jonathan S -- Nishimasu, Hiroshi -- Nureki, Osamu -- Zhang, Feng -- DP1 MH100706/MH/NIMH NIH HHS/ -- DP1-MH100706/DP/NCCDPHP CDC HHS/ -- R01 NS062849/NS/NINDS NIH HHS/ -- R01 NS073124/NS/NINDS NIH HHS/ -- R01-NS07312401/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):583-8. doi: 10.1038/nature14136. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA [2] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [5] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan [2] JST, PRESTO 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan. ; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25494202" target="_blank"〉PubMed〈/a〉
    Keywords: CRISPR-Associated Proteins/genetics/metabolism ; CRISPR-Cas Systems/*genetics ; Cell Line, Tumor ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; DNA, Complementary/biosynthesis/genetics ; Drug Resistance, Neoplasm/drug effects/genetics ; Gene Expression Regulation, Neoplastic/genetics ; Gene Library ; Genetic Engineering/*methods ; Genetic Loci/genetics ; Genetic Testing ; Genome, Human/*genetics ; Humans ; Indoles/pharmacology ; Melanoma/drug therapy/*genetics ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors ; RNA, Untranslated/biosynthesis/genetics/metabolism ; Reproducibility of Results ; Sulfonamides/pharmacology ; Transcriptional Activation/*genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-24
    Description: The dynamic nature of gene expression enables cellular programming, homeostasis and environmental adaptation in living systems. Dissection of causal gene functions in cellular and organismal processes therefore necessitates approaches that enable spatially and temporally precise modulation of gene expression. Recently, a variety of microbial and plant-derived light-sensitive proteins have been engineered as optogenetic actuators, enabling high-precision spatiotemporal control of many cellular functions. However, versatile and robust technologies that enable optical modulation of transcription in the mammalian endogenous genome remain elusive. Here we describe the development of light-inducible transcriptional effectors (LITEs), an optogenetic two-hybrid system integrating the customizable TALE DNA-binding domain with the light-sensitive cryptochrome 2 protein and its interacting partner CIB1 from Arabidopsis thaliana. LITEs do not require additional exogenous chemical cofactors, are easily customized to target many endogenous genomic loci, and can be activated within minutes with reversibility. LITEs can be packaged into viral vectors and genetically targeted to probe specific cell populations. We have applied this system in primary mouse neurons, as well as in the brain of freely behaving mice in vivo to mediate reversible modulation of mammalian endogenous gene expression as well as targeted epigenetic chromatin modifications. The LITE system establishes a novel mode of optogenetic control of endogenous cellular processes and enables direct testing of the causal roles of genetic and epigenetic regulation in normal biological processes and disease states.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856241/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3856241/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konermann, Silvana -- Brigham, Mark D -- Trevino, Alexandro E -- Hsu, Patrick D -- Heidenreich, Matthias -- Cong, Le -- Platt, Randall J -- Scott, David A -- Church, George M -- Zhang, Feng -- DP1 MH100706/MH/NIMH NIH HHS/ -- DP1-MH100706/DP/NCCDPHP CDC HHS/ -- P50-HG005550/HG/NHGRI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01 NS073124/NS/NINDS NIH HHS/ -- R01-NS073124/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):472-6. doi: 10.1038/nature12466. Epub 2013 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23877069" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis Proteins/metabolism ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Cells, Cultured ; Chromatin/genetics/radiation effects ; Cryptochromes/metabolism ; Epigenesis, Genetic/*genetics/*radiation effects ; Gene Expression Regulation/genetics/*radiation effects ; Genetic Vectors/genetics ; *Light ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/metabolism/radiation effects ; Optogenetics/*methods ; Time Factors ; Transcription, Genetic/genetics/*radiation effects ; Two-Hybrid System Techniques ; Wakefulness
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...