ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-12
    Description: Myocardial cell death is initiated by excessive mitochondrial Ca(2+) entry causing Ca(2+) overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (DeltaPsim). However, the signalling pathways that control mitochondrial Ca(2+) entry through the inner membrane mitochondrial Ca(2+) uniporter (MCU) are not known. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (I(MCU)). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, DeltaPsim deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced I(MCU) and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing I(MCU). Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca(2+) entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- R01 HL062494/HL/NHLBI NIH HHS/ -- R01 HL070250/HL/NHLBI NIH HHS/ -- R01 HL079031/HL/NHLBI NIH HHS/ -- R01 HL083422/HL/NHLBI NIH HHS/ -- R01 HL084583/HL/NHLBI NIH HHS/ -- R01 HL090905/HL/NHLBI NIH HHS/ -- R01 HL113001/HL/NHLBI NIH HHS/ -- R01 HL62494/HL/NHLBI NIH HHS/ -- R01 HL70250/HL/NHLBI NIH HHS/ -- R56 NS056244/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):269-73. doi: 10.1038/nature11444. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. mei-ling-joiner@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Calcium/*metabolism/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/chemistry/*metabolism ; Cyclosporine/pharmacology ; Female ; Heart/drug effects/physiopathology ; Heart Failure/drug therapy/prevention & control ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria, Heart/enzymology/*metabolism/*pathology ; Mitochondrial Membrane Transport Proteins/metabolism ; Myocardial Infarction/drug therapy/prevention & control ; Myocardium/*enzymology/metabolism/*pathology ; Reperfusion Injury/enzymology/metabolism/pathology/prevention & control ; Serine/metabolism ; *Stress, Physiological/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- England -- Nature. 2014 Sep 25;513(7519):E3. doi: 10.1038/nature13627.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology &Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA (M.A.J.); The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA (J.L., P.J.M.); Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA (B.J.H.); Johns Hopkins University School of Medicine, 1830 East Monument Street, 9th Floor, Suite 9026, Baltimore, Maryland 21287, USA (E.D.L., M.E.A.). ; Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; University of Iowa Central Microscopy Research Facility, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Iowa City Veterans Affairs Medical, Iowa City, Iowa 52246, USA. ; 1] Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. ; 1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Iowa City Veterans Affairs Medical, Iowa City, Iowa 52246, USA. ; 1] Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA [3] Department of Molecular Physiology &Biophysics, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA (M.A.J.); The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA (J.L., P.J.M.); Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA (B.J.H.); Johns Hopkins University School of Medicine, 1830 East Monument Street, 9th Floor, Suite 9026, Baltimore, Maryland 21287, USA (E.D.L., M.E.A.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25254481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Female ; Mitochondria, Heart/*metabolism/*pathology ; Myocardium/*enzymology/*pathology ; *Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-07-22
    Description: Myocardial mitochondrial Ca2+ entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca2+ are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca2+ uniporter...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...