ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (1,206)
  • Nature Publishing Group (NPG)  (1,206)
  • American Institute of Physics (AIP)
  • 2010-2014  (1,206)
  • 1985-1989
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-08-15
    Description: The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1-8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation. Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Lei -- Wang, Su -- Lu, Tinglin -- Weng, Changjiang -- Song, Xiaoqing -- Park, Joseph K -- Sun, Jin -- Yang, Zhi-Hao -- Yu, Junjing -- Tang, Hong -- McKearin, Dennis M -- Chamovitz, Daniel A -- Ni, Jianquan -- Xie, Ting -- GM64428/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):233-6. doi: 10.1038/nature13562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China [3]. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA [3]. ; 1] Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [2]. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA. ; 1] Department of Molecular Biology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA [2] Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA. ; Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, 15 Da Tun Road, Beijing 100101, China. ; Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel. ; 1] Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA [2] Department of Cell Biology and Anatomy, University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Binding, Competitive ; *Cell Differentiation ; Cell Proliferation ; DNA Helicases/metabolism ; Drosophila Proteins/metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Female ; Intracellular Signaling Peptides and Proteins/metabolism ; Male ; Multiprotein Complexes/*chemistry/*metabolism ; Ovary/cytology ; Peptide Hydrolases/*chemistry/*metabolism ; Protein Binding ; Stem Cells/*cytology/*metabolism ; Ubiquitins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-30
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469351/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469351/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geisbert, Thomas W -- UC7 AI070083/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):41-3. doi: 10.1038/nature13746. Epub 2014 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas Medical Branch at Galveston, Galveston National Laboratory, Galveston, Texas 77550-0610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25171470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*therapeutic use ; Antibodies, Viral/*therapeutic use ; Female ; Hemorrhagic Fever, Ebola/*drug therapy ; *Immunization, Passive ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-09
    Description: The neutralizing antibody response to influenza virus is dominated by antibodies that bind to the globular head of haemagglutinin, which undergoes a continuous antigenic drift, necessitating the re-formulation of influenza vaccines on an annual basis. Recently, several laboratories have described a new class of rare influenza-neutralizing antibodies that target a conserved site in the haemagglutinin stem. Most of these antibodies use the heavy-chain variable region VH1-69 gene, and structural data demonstrate that they bind to the haemagglutinin stem through conserved heavy-chain complementarity determining region (HCDR) residues. However, the VH1-69 antibodies are highly mutated and are produced by some but not all individuals, suggesting that several somatic mutations may be required for their development. To address this, here we characterize 197 anti-stem antibodies from a single donor, reconstruct the developmental pathways of several VH1-69 clones and identify two key elements that are required for the initial development of most VH1-69 antibodies: a polymorphic germline-encoded phenylalanine at position 54 and a conserved tyrosine at position 98 in HCDR3. Strikingly, in most cases a single proline to alanine mutation at position 52a in HCDR2 is sufficient to confer high affinity binding to the selecting H1 antigen, consistent with rapid affinity maturation. Surprisingly, additional favourable mutations continue to accumulate, increasing the breadth of reactivity and making both the initial mutations and phenylalanine at position 54 functionally redundant. These results define VH1-69 allele polymorphism, rearrangement of the VDJ gene segments and single somatic mutations as the three requirements for generating broadly neutralizing VH1-69 antibodies and reveal an unexpected redundancy in the affinity maturation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappas, Leontios -- Foglierini, Mathilde -- Piccoli, Luca -- Kallewaard, Nicole L -- Turrini, Filippo -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca -- Agatic, Gloria -- Giacchetto-Sasselli, Isabella -- Pellicciotta, Gabriele -- Sallusto, Federica -- Zhu, Qing -- Vicenzi, Elisa -- Corti, Davide -- Lanzavecchia, Antonio -- U19 AI-057266/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764. Epub 2014 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; Department of Infectious Diseases and Vaccines MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, USA. ; Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. ; Unit of Preventive Medicine, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland [3]. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Insitute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296253" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Neutralizing/*genetics ; Cells, Cultured ; Complementarity Determining Regions/chemistry/*genetics ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunoglobulin Heavy Chains/genetics ; Influenza, Human/*immunology/virology ; Male ; Middle Aged ; Models, Molecular ; Mutation/*genetics ; Orthomyxoviridae/*immunology/metabolism ; Polymorphism, Genetic ; Protein Binding/genetics ; Protein Structure, Tertiary ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Oct 9;514(7521):140. doi: 10.1038/514140a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25297398" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Animals ; Arctic Regions ; Female ; *Global Warming ; Male ; Pacific Ocean ; Walruses/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-04
    Description: The TRIM37 (also known as MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to approximately 40% of breast cancers. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF2 (also known as RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, including multiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A. However, unlike RNF2, which is a subunit of polycomb repressive complex 1 (PRC1), we find that TRIM37 associates with polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes, resulting in their transcriptional silencing. RNA-interference-mediated knockdown of TRIM37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatnagar, Sanchita -- Gazin, Claude -- Chamberlain, Lynn -- Ou, Jianhong -- Zhu, Xiaochun -- Tushir, Jogender S -- Virbasius, Ching-Man -- Lin, Ling -- Zhu, Lihua J -- Wajapeyee, Narendra -- Green, Michael R -- R01 GM033977/GM/NIGMS NIH HHS/ -- R01GM033977/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):116-20. doi: 10.1038/nature13955. Epub 2014 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; CEA/DSV/iRCM/LEFG, Genopole G2, and Universite Paris Diderot, 91057 Evry, France. ; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA. ; 1] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470042" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*enzymology/*genetics ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Gene Silencing ; Heterografts ; Histones/metabolism ; Humans ; MCF-7 Cells ; Mice ; NIH 3T3 Cells ; Nuclear Proteins/*genetics/*metabolism ; Oncogene Proteins/*genetics/metabolism ; Polycomb Repressive Complex 1/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-28
    Description: Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related signals influence auditory cortical activity remain poorly understood. Using in vivo intracellular recordings in behaving mice, we find that excitatory neurons in the auditory cortex are suppressed before and during movement, owing in part to increased activity of local parvalbumin-positive interneurons. Electrophysiology and optogenetic gain- and loss-of-function experiments reveal that motor-related changes in auditory cortical dynamics are driven by a subset of neurons in the secondary motor cortex that innervate the auditory cortex and are active during movement. These findings provide a synaptic and circuit basis for the motor-related corollary discharge hypothesized to facilitate hearing and auditory-guided behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, David M -- Nelson, Anders -- Mooney, Richard -- NS079929/NS/NINDS NIH HHS/ -- R01 DC013826/DC/NIDCD NIH HHS/ -- R21 NS079929/NS/NINDS NIH HHS/ -- T32 GM008441/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):189-94. doi: 10.1038/nature13724. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA [2]. ; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Auditory Cortex/*physiology ; Electrical Synapses/*physiology ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Optogenetics ; Sensory Receptor Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-18
    Description: Fertilization occurs when sperm and egg recognize each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell-surface protein, but its receptor on the egg has not been described. Here we identify folate receptor 4 (Folr4) as the receptor for Izumo1 on the mouse egg, and propose to rename it Juno. We show that the Izumo1-Juno interaction is conserved within several mammalian species, including humans. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilization suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bianchi, Enrica -- Doe, Brendan -- Goulding, David -- Wright, Gavin J -- 098051/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Apr 24;508(7497):483-7. doi: 10.1038/nature13203. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. ; Mouse Production Team, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. ; Electron and Advanced Light Microscopy Suite, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739963" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conserved Sequence ; Evolution, Molecular ; Female ; Fertility/genetics ; Fertilization/genetics/*physiology ; Genes, Essential ; Glycosylphosphatidylinositols/metabolism ; Humans ; Immunoglobulins/*metabolism ; Infertility, Female/genetics ; Male ; Mammals ; Membrane Proteins/*metabolism ; Mice ; Oocytes/cytology/metabolism ; Ovum/cytology/*metabolism ; Parthenogenesis ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; Sperm Injections, Intracytoplasmic ; Spermatozoa/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biller-Andorno, Nikola -- England -- Nature. 2014 Jul 10;511(7508):155. doi: 10.1038/511155a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008510" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*diagnosis/prevention & control ; Early Detection of Cancer/*ethics ; Female ; Humans ; Randomized Controlled Trials as Topic/*ethics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-04
    Description: T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORgammat, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORgammat in response to TGF-beta signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rutz, Sascha -- Kayagaki, Nobuhiko -- Phung, Qui T -- Eidenschenk, Celine -- Noubade, Rajkumar -- Wang, Xiaoting -- Lesch, Justin -- Lu, Rongze -- Newton, Kim -- Huang, Oscar W -- Cochran, Andrea G -- Vasser, Mark -- Fauber, Benjamin P -- DeVoss, Jason -- Webster, Joshua -- Diehl, Lauri -- Modrusan, Zora -- Kirkpatrick, Donald S -- Lill, Jennie R -- Ouyang, Wenjun -- Dixit, Vishva M -- England -- Nature. 2015 Feb 19;518(7539):417-21. doi: 10.1038/nature13979. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Enzyme Stability ; Female ; Inflammation/genetics/pathology ; Interleukin-17/*biosynthesis ; Intestine, Small/metabolism/pathology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Protein Biosynthesis ; Signal Transduction ; Substrate Specificity ; Th17 Cells/*metabolism ; Transforming Growth Factor beta/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitin-Specific Proteases/biosynthesis/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-10-23
    Description: The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7alpha-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buffie, Charlie G -- Bucci, Vanni -- Stein, Richard R -- McKenney, Peter T -- Ling, Lilan -- Gobourne, Asia -- No, Daniel -- Liu, Hui -- Kinnebrew, Melissa -- Viale, Agnes -- Littmann, Eric -- van den Brink, Marcel R M -- Jenq, Robert R -- Taur, Ying -- Sander, Chris -- Cross, Justin R -- Toussaint, Nora C -- Xavier, Joao B -- Pamer, Eric G -- AI95706/AI/NIAID NIH HHS/ -- DP2 OD008440/OD/NIH HHS/ -- DP2OD008440/OD/NIH HHS/ -- K23 AI095398/AI/NIAID NIH HHS/ -- P01 CA023766/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI042135/AI/NIAID NIH HHS/ -- R01 AI095706/AI/NIAID NIH HHS/ -- R01 AI42135/AI/NIAID NIH HHS/ -- T32 CA009149/CA/NCI NIH HHS/ -- T32 GM007739/GM/NIGMS NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- U54 CA148967/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):205-8. doi: 10.1038/nature13828. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA [2] Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. ; Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA. ; Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [3] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bile Acids and Salts/*metabolism ; Biological Evolution ; Clostridium/metabolism ; Clostridium difficile/drug effects/*physiology ; Colitis/metabolism/microbiology/prevention & control/therapy ; Disease Susceptibility/*microbiology ; Feces/microbiology ; Female ; Humans ; Intestines/drug effects/*metabolism/*microbiology ; Metagenome/genetics ; Mice ; Mice, Inbred C57BL ; Microbiota/drug effects/genetics/*physiology ; Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-10-14
    Description: Intracellular ISG15 is an interferon (IFN)-alpha/beta-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-alpha/beta-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-gamma-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-alpha/beta immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutieres syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-alpha/beta signalling, resulting in the enhancement and amplification of IFN-alpha/beta responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-alpha/beta immunity. In humans, intracellular ISG15 is IFN-alpha/beta-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-alpha/beta and prevention of IFN-alpha/beta-dependent autoinflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4303590/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xianqin -- Bogunovic, Dusan -- Payelle-Brogard, Beatrice -- Francois-Newton, Veronique -- Speer, Scott D -- Yuan, Chao -- Volpi, Stefano -- Li, Zhi -- Sanal, Ozden -- Mansouri, Davood -- Tezcan, Ilhan -- Rice, Gillian I -- Chen, Chunyuan -- Mansouri, Nahal -- Mahdaviani, Seyed Alireza -- Itan, Yuval -- Boisson, Bertrand -- Okada, Satoshi -- Zeng, Lu -- Wang, Xing -- Jiang, Hui -- Liu, Wenqiang -- Han, Tiantian -- Liu, Delin -- Ma, Tao -- Wang, Bo -- Liu, Mugen -- Liu, Jing-Yu -- Wang, Qing K -- Yalnizoglu, Dilek -- Radoshevich, Lilliana -- Uze, Gilles -- Gros, Philippe -- Rozenberg, Flore -- Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Bustamante, Jacinta -- Garcia-Sastre, Adolfo -- Abel, Laurent -- Lebon, Pierre -- Notarangelo, Luigi D -- Crow, Yanick J -- Boisson-Dupuis, Stephanie -- Casanova, Jean-Laurent -- Pellegrini, Sandra -- 1P01AI076210-01A1/AI/NIAID NIH HHS/ -- 309449/European Research Council/International -- 8UL1TR000043/TR/NCATS NIH HHS/ -- P01 AI076210/AI/NIAID NIH HHS/ -- P01 AI090935/AI/NIAID NIH HHS/ -- P01AI090935/AI/NIAID NIH HHS/ -- R00 AI106942/AI/NIAID NIH HHS/ -- R00AI106942-02/AI/NIAID NIH HHS/ -- R01 AI035237/AI/NIAID NIH HHS/ -- R37 AI095983/AI/NIAID NIH HHS/ -- R37AI095983/AI/NIAID NIH HHS/ -- U19 AI083025/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 1;517(7532):89-93. doi: 10.1038/nature13801. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Microbiology Training Area, Graduate School of Biomedical Sciences of Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA [2] Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy. ; Immunology Division and Pediatric Neurology Department, Hacettepe University Children's Hospital, 06100 Ankara, Turkey. ; Division of Infectious Diseases and Clinical Immunology, Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, 4739 Teheran, Iran. ; Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK. ; Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China. ; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Sangzhi County People's Hospital, Sangzhi 427100, China. ; Genetics Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, China. ; 1] Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China [2] Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; Institut Pasteur, Bacteria-Cell Interactions Unit, 75724 Paris, France. ; CNRS UMR5235, Montpellier II University, Place Eugene Bataillon, 34095 Montpellier, France. ; Department of Biochemistry, McGill University, Montreal, QC H3A 0G4, Canada. ; Paris Descartes University, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, 75015 Paris, France. ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York 10065, USA [2] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [3] Paris Descartes University, Imagine Institute, 75015 Paris, France. ; Division of Immunology, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; 1] Manchester Academic Health Science Centre, University of Manchester, Genetic Medicine, Manchester, M13 9NT, UK [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] INSERM UMR 1163, Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, 75006 Paris, France. ; 1] Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France [2] Paris Descartes University, Imagine Institute, 75015 Paris, France [3] Howard Hughes Medical Institute, New York, New York 10065, USA [4] Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France [5]. ; 1] Institut Pasteur, Cytokine Signaling Unit, CNRS URA 1961, 75724 Paris, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307056" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Child ; Cytokines/deficiency/genetics/*metabolism ; Endopeptidases/chemistry/metabolism ; Female ; Gene Expression Regulation ; Humans ; Inflammation/genetics/immunology/*prevention & control ; Interferon Type I/*immunology/metabolism ; Intracellular Space/*metabolism ; Male ; Pedigree ; S-Phase Kinase-Associated Proteins/metabolism ; Signal Transduction ; Ubiquitination ; Ubiquitins/deficiency/genetics/*metabolism ; Viruses/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-24
    Description: Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deciphering Developmental Disorders Study -- 098395/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- CZD/16/6/Chief Scientist Office/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2015 Mar 12;519(7542):223-8. doi: 10.1038/nature14135. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533962" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Carrier Proteins/genetics ; Child ; Child, Preschool ; Chromosomal Proteins, Non-Histone/genetics ; Chromosome Aberrations ; DEAD-box RNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Developmental Disabilities/*diagnosis/*genetics ; Dynamin I/genetics ; Exome/genetics ; Female ; Gene Expression Regulation, Developmental ; Genes, Dominant/genetics ; Genome, Human/genetics ; Great Britain ; Guanine Nucleotide Exchange Factors/genetics ; Homeodomain Proteins/genetics ; Humans ; Infant ; Infant, Newborn ; Male ; Mutation, Missense/genetics ; Nerve Tissue Proteins/genetics ; Nuclear Proteins/genetics ; Parents ; Phosphoproteins/genetics ; Polycomb Repressive Complex 1/genetics ; Protein Phosphatase 2/genetics ; Protein-Serine-Threonine Kinases/genetics ; Rare Diseases/genetics ; Transcription Factors/genetics ; Transposases/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-12-10
    Description: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (〈/=50 years in males and 〈/=60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol 〉 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Do, Ron -- Stitziel, Nathan O -- Won, Hong-Hee -- Jorgensen, Anders Berg -- Duga, Stefano -- Angelica Merlini, Pier -- Kiezun, Adam -- Farrall, Martin -- Goel, Anuj -- Zuk, Or -- Guella, Illaria -- Asselta, Rosanna -- Lange, Leslie A -- Peloso, Gina M -- Auer, Paul L -- NHLBI Exome Sequencing Project -- Girelli, Domenico -- Martinelli, Nicola -- Farlow, Deborah N -- DePristo, Mark A -- Roberts, Robert -- Stewart, Alexander F R -- Saleheen, Danish -- Danesh, John -- Epstein, Stephen E -- Sivapalaratnam, Suthesh -- Hovingh, G Kees -- Kastelein, John J -- Samani, Nilesh J -- Schunkert, Heribert -- Erdmann, Jeanette -- Shah, Svati H -- Kraus, William E -- Davies, Robert -- Nikpay, Majid -- Johansen, Christopher T -- Wang, Jian -- Hegele, Robert A -- Hechter, Eliana -- Marz, Winfried -- Kleber, Marcus E -- Huang, Jie -- Johnson, Andrew D -- Li, Mingyao -- Burke, Greg L -- Gross, Myron -- Liu, Yongmei -- Assimes, Themistocles L -- Heiss, Gerardo -- Lange, Ethan M -- Folsom, Aaron R -- Taylor, Herman A -- Olivieri, Oliviero -- Hamsten, Anders -- Clarke, Robert -- Reilly, Dermot F -- Yin, Wu -- Rivas, Manuel A -- Donnelly, Peter -- Rossouw, Jacques E -- Psaty, Bruce M -- Herrington, David M -- Wilson, James G -- Rich, Stephen S -- Bamshad, Michael J -- Tracy, Russell P -- Cupples, L Adrienne -- Rader, Daniel J -- Reilly, Muredach P -- Spertus, John A -- Cresci, Sharon -- Hartiala, Jaana -- Tang, W H Wilson -- Hazen, Stanley L -- Allayee, Hooman -- Reiner, Alex P -- Carlson, Christopher S -- Kooperberg, Charles -- Jackson, Rebecca D -- Boerwinkle, Eric -- Lander, Eric S -- Schwartz, Stephen M -- Siscovick, David S -- McPherson, Ruth -- Tybjaerg-Hansen, Anne -- Abecasis, Goncalo R -- Watkins, Hugh -- Nickerson, Deborah A -- Ardissino, Diego -- Sunyaev, Shamil R -- O'Donnell, Christopher J -- Altshuler, David -- Gabriel, Stacey -- Kathiresan, Sekar -- 090532/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 5U54HG003067-11/HG/NHGRI NIH HHS/ -- G-0907/Parkinson's UK/United Kingdom -- K08 HL114642/HL/NHLBI NIH HHS/ -- K08HL114642/HL/NHLBI NIH HHS/ -- P01 HL076491/HL/NHLBI NIH HHS/ -- P01 HL098055/HL/NHLBI NIH HHS/ -- R01 HL107816/HL/NHLBI NIH HHS/ -- R01HL107816/HL/NHLBI NIH HHS/ -- RC2 HL-102923/HL/NHLBI NIH HHS/ -- RC2 HL-102924/HL/NHLBI NIH HHS/ -- RC2 HL-102925/HL/NHLBI NIH HHS/ -- RC2 HL-102926/HL/NHLBI NIH HHS/ -- RC2 HL-103010/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- T32HL00720/HL/NHLBI NIH HHS/ -- T32HL007604/HL/NHLBI NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Feb 5;518(7537):102-6. doi: 10.1038/nature13917. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [2] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [3] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA. [4] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark. ; Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universita degli Studi di Milano, Milano 20122, Italy. ; Division of Cardiology, Ospedale Niguarda, Milano 20162, Italy. ; Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2J, UK. ; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; University of Verona School of Medicine, Department of Medicine, Verona 37129, Italy. ; John &Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 1TN, UK. ; MedStar Health Research Institute, Cardiovascular Research Institute, Hyattsville, Maryland 20782, USA. ; Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands. ; Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE3 9QP, UK. ; DZHK (German Research Centre for Cardiovascular Research), Munich Heart Alliance, Deutsches Herzzentrum Munchen, Technische Universitat Munchen, Berlin 13347, Germany. ; Medizinische Klinik II, University of Lubeck, Lubeck 23562, Germany. ; 1] Center for Human Genetics, Duke University, Durham, North Carolina 27708, USA. [2] Department of Cardiology and Center for Genomic Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; Department of Cardiology and Center for Genomic Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; Department of Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. ; 1] Department of Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. [2] Department of Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. ; 1] Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine, Heidelberg University, Ludolf Krehl Strasse 7-11, Mannheim D-68167, Germany. [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria. [3] Synlab Academy, Mannheim 68259, Germany. ; Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine, Heidelberg University, Ludolf Krehl Strasse 7-11, Mannheim D-68167, Germany. ; The National Heart, Lung, Blood Institute's Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; National Heart, Lung, and Blood Institute Center for Population Studies, The Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Epidemiology, University of Alabama-Birmingham, Birmingham, Alabama 35233, USA. ; Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27106, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; 1] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. [2] Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota 55455, USA. ; University of Mississippi Medical Center, Jackson, Mississippi 39216, USA. ; Atherosclerosis Research Unit, Department of Medicine, and Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 77, Sweden. ; Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford OX1 2JD, UK. ; Merck Sharp &Dohme Corporation, Rahway, New Jersey 08889, USA. ; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. ; 1] The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. [2] Department of Statistics, University of Oxford, Oxford OX1 2JD, UK. ; National Heart, Lung, and Blood Institute, Bethesda, Maryland 20824, USA. ; 1] Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington 98195, USA. [2] Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA. ; Section on Cardiology, and Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27106, USA. ; Jackson Heart Study, University of Mississippi Medical Center, Jackson State University, Jackson, Mississippi 39217, USA. ; Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22904, USA. ; 1] Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Seattle Children's Hospital, Seattle, Washington 98105, USA. [3] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Biochemistry, University of Vermont, Burlington, Vermont 05405, USA. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; St Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri 64111, USA. ; 1] Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Department of Genetics, Washington University in St Louis, Missouri 63130, USA. ; Department of Preventive Medicine and Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA. ; Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. ; Ohio State University, Columbus, Ohio 43210, USA. ; Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA. ; 1] Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. [2] Department of Medicine, School of Medicine, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark. [2] Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Kobenhavn N, Denmark. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Missouri 48109, USA. ; 1] Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2J, UK. [2] The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Cardiology, Parma Hospital, Parma 43100, Italy. ; 1] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. [2] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [2] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487149" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Age of Onset ; *Alleles ; Apolipoproteins A/*genetics ; Case-Control Studies ; Cholesterol, LDL/blood ; Coronary Artery Disease/genetics ; Exome/*genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetics, Population ; Heterozygote ; Humans ; Male ; Middle Aged ; Mutation/genetics ; Myocardial Infarction/blood/*genetics ; National Heart, Lung, and Blood Institute (U.S.) ; Receptors, LDL/*genetics ; Triglycerides/blood ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-20
    Description: TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the DeltaN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the DeltaN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the beta cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatanarayan, Avinashnarayan -- Raulji, Payal -- Norton, William -- Chakravarti, Deepavali -- Coarfa, Cristian -- Su, Xiaohua -- Sandur, Santosh K -- Ramirez, Marc S -- Lee, Jaehuk -- Kingsley, Charles V -- Sananikone, Eliot F -- Rajapakshe, Kimal -- Naff, Katherine -- Parker-Thornburg, Jan -- Bankson, James A -- Tsai, Kenneth Y -- Gunaratne, Preethi H -- Flores, Elsa R -- CA-16672/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P50CA136411/CA/NCI NIH HHS/ -- R01 CA134796/CA/NCI NIH HHS/ -- R01 CA160394/CA/NCI NIH HHS/ -- R01CA134796/CA/NCI NIH HHS/ -- R01CA160394/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):626-30. doi: 10.1038/nature13910. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Graduate School of Biomedical Sciences, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [4] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Veterinary Medicine and Surgery, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [4] Radiation Biology &Health Sciences Division, Bhabha Atomic Research Center, Mumbai 400085, India. ; Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; 1] Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/pathology ; DNA-Binding Proteins/genetics/metabolism ; Female ; Genes, Tumor Suppressor ; Humans ; Islet Amyloid Polypeptide/*metabolism/pharmacology/secretion/therapeutic use ; Lymphoma/drug therapy/genetics/*metabolism/*pathology ; Male ; Mice ; Nuclear Proteins/genetics/metabolism ; Phosphoproteins/genetics/metabolism ; Receptor Activity-Modifying Protein 3/metabolism ; Receptors, Calcitonin/metabolism ; Thymus Gland/metabolism/pathology ; Trans-Activators/genetics/metabolism ; Tumor Suppressor Protein p53/*deficiency/genetics ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-04
    Description: Cytotoxic chemotherapy is effective in debulking tumour masses initially; however, in some patients tumours become progressively unresponsive after multiple treatment cycles. Previous studies have demonstrated that cancer stem cells (CSCs) are selectively enriched after chemotherapy through enhanced survival. Here we reveal a new mechanism by which bladder CSCs actively contribute to therapeutic resistance via an unexpected proliferative response to repopulate residual tumours between chemotherapy cycles, using human bladder cancer xenografts. Further analyses demonstrate the recruitment of a quiescent label-retaining pool of CSCs into cell division in response to chemotherapy-induced damages, similar to mobilization of normal stem cells during wound repair. While chemotherapy effectively induces apoptosis, associated prostaglandin E2 (PGE2) release paradoxically promotes neighbouring CSC repopulation. This repopulation can be abrogated by a PGE2-neutralizing antibody and celecoxib drug-mediated blockade of PGE2 signalling. In vivo administration of the cyclooxygenase-2 (COX2) inhibitor celecoxib effectively abolishes a PGE2- and COX2-mediated wound response gene signature, and attenuates progressive manifestation of chemoresistance in xenograft tumours, including primary xenografts derived from a patient who was resistant to chemotherapy. Collectively, these findings uncover a new underlying mechanism that models the progressive development of clinical chemoresistance, and implicate an adjunctive therapy to enhance chemotherapeutic response of bladder urothelial carcinomas by abrogating early tumour repopulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465385/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465385/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kurtova, Antonina V -- Xiao, Jing -- Mo, Qianxing -- Pazhanisamy, Senthil -- Krasnow, Ross -- Lerner, Seth P -- Chen, Fengju -- Roh, Terrence T -- Lay, Erica -- Ho, Philip Levy -- Chan, Keith Syson -- AI036211/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- CA129640/CA/NCI NIH HHS/ -- CA175397/CA/NCI NIH HHS/ -- R00 CA129640/CA/NCI NIH HHS/ -- R01 CA175397/CA/NCI NIH HHS/ -- RR024574/RR/NCRR NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):209-13. doi: 10.1038/nature14034. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Dan L Duncan Cancer Center and Center for Cell Gene &Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Scott Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Summer Medical and Research Training (SMART) Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Department of Molecular &Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [2] Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [3] Dan L Duncan Cancer Center and Center for Cell Gene &Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA [4] Scott Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470039" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology/pharmacology ; Apoptosis/drug effects ; Celecoxib ; Cell Proliferation/drug effects ; Cyclooxygenase 2/metabolism ; Cyclooxygenase 2 Inhibitors/pharmacology ; Dinoprostone/*antagonists & inhibitors/immunology/metabolism/secretion ; Drug Resistance, Neoplasm/*drug effects ; Female ; Humans ; Male ; Mice ; Neoplastic Stem Cells/*drug effects/metabolism/*pathology ; Pyrazoles/pharmacology ; Signal Transduction/drug effects ; Sulfonamides/pharmacology ; Urinary Bladder Neoplasms/*drug therapy/*pathology ; Wound Healing/genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tannock, Ian F -- England -- Nature. 2015 Jan 8;517(7533):152-3. doi: 10.1038/nature14075. Epub 2014 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dinoprostone/*antagonists & inhibitors ; Drug Resistance, Neoplasm/*drug effects ; Female ; Humans ; Male ; Neoplastic Stem Cells/*drug effects/*pathology ; Urinary Bladder Neoplasms/*drug therapy/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yao -- Pfeiffer, Julie K -- R01 AI074668/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):42-3. doi: 10.1038/nature13938. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Physiological Phenomena/*immunology ; Enterovirus/*physiology ; Female ; Immunity, Mucosal/*immunology ; Intestinal Mucosa/*immunology/*virology ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Potter, Nicola E -- Greaves, Mel -- England -- Nature. 2014 Feb 20;506(7488):300-1. doi: 10.1038/nature13056. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Hematopoietic Stem Cells/*cytology ; Humans ; Leukemia, Myeloid, Acute/*pathology ; Neoplastic Stem Cells/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-05-16
    Description: During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pouchelon, Gabrielle -- Gambino, Frederic -- Bellone, Camilla -- Telley, Ludovic -- Vitali, Ilaria -- Luscher, Christian -- Holtmaat, Anthony -- Jabaudon, Denis -- England -- Nature. 2014 Jul 24;511(7510):471-4. doi: 10.1038/nature13390. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland. ; 1] Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland [2] Interdisciplinary Institute for NeuroScience, CNRS UMR 5297, 33077 Bordeaux, France. ; 1] Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland [2] Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland [3] Institute of Genetics & Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/drug effects/physiology ; Capsaicin/pharmacology ; *Cell Differentiation/drug effects ; Female ; Male ; Mice, Inbred C57BL ; Neural Pathways/drug effects/*physiology ; Neurons/*cytology/drug effects/*physiology ; Noxae/pharmacology ; Optogenetics ; Post-Synaptic Density/drug effects/*physiology ; Somatosensory Cortex/cytology/drug effects/*physiology ; Synaptic Potentials/drug effects ; Thalamic Nuclei/cytology/drug effects/*physiology ; Touch/physiology ; Vibrissae/drug effects/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-02-07
    Description: Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Brownfield, Douglas G -- Krasnow, Mark A -- P30 CA124435/CA/NCI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):190-4. doi: 10.1038/nature12930. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA. ; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic/metabolism/pathology ; Cells, Cultured ; Cellular Reprogramming ; Clone Cells/cytology ; Female ; Lung/*cytology/embryology/*growth & development/pathology ; Lung Neoplasms/metabolism/*pathology ; Male ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Pulmonary Alveoli/*cytology ; Receptor, Epidermal Growth Factor/metabolism ; *Regeneration ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-03-29
    Description: Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152413/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152413/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, James B -- Boley, Nathan -- Eisman, Robert -- May, Gemma E -- Stoiber, Marcus H -- Duff, Michael O -- Booth, Ben W -- Wen, Jiayu -- Park, Soo -- Suzuki, Ana Maria -- Wan, Kenneth H -- Yu, Charles -- Zhang, Dayu -- Carlson, Joseph W -- Cherbas, Lucy -- Eads, Brian D -- Miller, David -- Mockaitis, Keithanne -- Roberts, Johnny -- Davis, Carrie A -- Frise, Erwin -- Hammonds, Ann S -- Olson, Sara -- Shenker, Sol -- Sturgill, David -- Samsonova, Anastasia A -- Weiszmann, Richard -- Robinson, Garret -- Hernandez, Juan -- Andrews, Justen -- Bickel, Peter J -- Carninci, Piero -- Cherbas, Peter -- Gingeras, Thomas R -- Hoskins, Roger A -- Kaufman, Thomas C -- Lai, Eric C -- Oliver, Brian -- Perrimon, Norbert -- Graveley, Brenton R -- Celniker, Susan E -- 1U01HG007031-01/HG/NHGRI NIH HHS/ -- 5U01HG004695-04/HG/NHGRI NIH HHS/ -- K99 HG006698/HG/NHGRI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 GM076655/GM/NIGMS NIH HHS/ -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01 GM097231/GM/NIGMS NIH HHS/ -- RC2-HG005639/HG/NHGRI NIH HHS/ -- U01 HG004271/HG/NHGRI NIH HHS/ -- U01 HG007031/HG/NHGRI NIH HHS/ -- U01-HG004261/HG/NHGRI NIH HHS/ -- U54 HG006944/HG/NHGRI NIH HHS/ -- ZIA DK015600-18/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Aug 28;512(7515):393-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670639" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/genetics ; Animals ; Drosophila melanogaster/anatomy & histology/cytology/*genetics ; Female ; *Gene Expression Profiling ; Male ; Molecular Sequence Annotation ; Nerve Tissue/metabolism ; Organ Specificity ; Poly A/genetics ; Polyadenylation ; Promoter Regions, Genetic/genetics ; RNA, Long Noncoding/genetics ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Stress, Physiological/genetics ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-06-12
    Description: Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma. However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans. Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Viros, Amaya -- Sanchez-Laorden, Berta -- Pedersen, Malin -- Furney, Simon J -- Rae, Joel -- Hogan, Kate -- Ejiama, Sarah -- Girotti, Maria Romina -- Cook, Martin -- Dhomen, Nathalie -- Marais, Richard -- A12738/Cancer Research UK/United Kingdom -- A13540/Cancer Research UK/United Kingdom -- A17240/Cancer Research UK/United Kingdom -- A7091/Cancer Research UK/United Kingdom -- A7192/Cancer Research UK/United Kingdom -- C107/A10433/Cancer Research UK/United Kingdom -- C5759/A12328/Cancer Research UK/United Kingdom -- England -- Nature. 2014 Jul 24;511(7510):478-82. doi: 10.1038/nature13298. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2]. ; 1] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Histopathology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK. ; 1] Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK [2] Signal Transduction Team, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Transformation, Neoplastic/*genetics/*radiation effects ; DNA Damage/genetics ; Disease Models, Animal ; Female ; Humans ; Melanocytes/metabolism/pathology/radiation effects ; Melanoma/etiology/*genetics/metabolism/*pathology ; Mice ; Mice, Inbred C57BL ; Mutagenesis/genetics/*radiation effects ; Mutation/genetics/radiation effects ; Nevus/etiology/genetics/metabolism/pathology ; Proto-Oncogene Proteins B-raf/*genetics/metabolism ; Skin Neoplasms/etiology/genetics/metabolism/pathology ; Sunburn/complications/etiology/genetics ; Sunscreening Agents/pharmacology ; Tumor Suppressor Protein p53/*genetics/metabolism ; Ultraviolet Rays/*adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-08-01
    Description: Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein-Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also known as PD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170219/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170219/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cancer Genome Atlas Research Network -- 5U24CA143799/CA/NCI NIH HHS/ -- 5U24CA143835/CA/NCI NIH HHS/ -- 5U24CA143840/CA/NCI NIH HHS/ -- 5U24CA143843/CA/NCI NIH HHS/ -- 5U24CA143845/CA/NCI NIH HHS/ -- 5U24CA143848/CA/NCI NIH HHS/ -- 5U24CA143858/CA/NCI NIH HHS/ -- 5U24CA143866/CA/NCI NIH HHS/ -- 5U24CA143867/CA/NCI NIH HHS/ -- 5U24CA143882/CA/NCI NIH HHS/ -- 5U24CA143883/CA/NCI NIH HHS/ -- 5U24CA144025/CA/NCI NIH HHS/ -- K08 CA134931/CA/NCI NIH HHS/ -- K99 CA166729/CA/NCI NIH HHS/ -- P30 CA006973/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- P30CA16672/CA/NCI NIH HHS/ -- P50 CA098258/CA/NCI NIH HHS/ -- U24 CA126543/CA/NCI NIH HHS/ -- U24 CA143799/CA/NCI NIH HHS/ -- U24 CA143835/CA/NCI NIH HHS/ -- U24 CA143840/CA/NCI NIH HHS/ -- U24 CA143843/CA/NCI NIH HHS/ -- U24 CA143845/CA/NCI NIH HHS/ -- U24 CA143848/CA/NCI NIH HHS/ -- U24 CA143858/CA/NCI NIH HHS/ -- U24 CA143866/CA/NCI NIH HHS/ -- U24 CA143867/CA/NCI NIH HHS/ -- U24 CA143882/CA/NCI NIH HHS/ -- U24 CA143883/CA/NCI NIH HHS/ -- U24 CA144025/CA/NCI NIH HHS/ -- U24 CA180951/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- U54HG003273/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079317" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*classification/*genetics/virology ; Female ; Gene Expression Regulation, Neoplastic ; Genome, Human/*genetics ; Herpesvirus 4, Human/genetics/isolation & purification ; Humans ; Male ; Mutation ; Proteome ; Stomach Neoplasms/*classification/*genetics/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mascarelli, Amanda -- England -- Nature. 2014 May 15;509(7500):389-91.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24834509" target="_blank"〉PubMed〈/a〉
    Keywords: Child Rearing ; Fathers ; Female ; Humans ; Infant ; Infant, Newborn ; Male ; Mothers ; Parental Leave/economics/*statistics & numerical data ; Parturition ; Research/economics/*manpower ; *Research Personnel/economics/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-07-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Chi V -- England -- Nature. 2014 Jul 24;511(7510):417-8. doi: 10.1038/nature13518. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation ; Cell Transformation, Neoplastic/*genetics ; Down-Regulation/*genetics ; Female ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, myc/*genetics ; Humans ; Lymphoma, B-Cell/*genetics/*pathology ; Male ; Neoplasms/*genetics ; Proto-Oncogene Proteins c-myc/*metabolism ; *Transcription, Genetic ; *Transcriptome ; Up-Regulation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, Peter R -- Grant, B Rosemary -- England -- Nature. 2014 Mar 13;507(7491):178-9. doi: 10.1038/507178b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Hybridization, Genetic ; Male ; *Mating Preference, Animal ; Songbirds/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sen, Taner Z -- England -- Nature. 2014 Sep 18;513(7518):315. doi: 10.1038/513315f.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ames, Iowa, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25230644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biology/history ; Female ; History, Ancient ; Humans ; Male ; *Observation ; Research Design ; Statistics as Topic ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-09-19
    Description: Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P 〈 5 x 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185210/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4185210/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, John R B -- Day, Felix -- Elks, Cathy E -- Sulem, Patrick -- Thompson, Deborah J -- Ferreira, Teresa -- He, Chunyan -- Chasman, Daniel I -- Esko, Tonu -- Thorleifsson, Gudmar -- Albrecht, Eva -- Ang, Wei Q -- Corre, Tanguy -- Cousminer, Diana L -- Feenstra, Bjarke -- Franceschini, Nora -- Ganna, Andrea -- Johnson, Andrew D -- Kjellqvist, Sanela -- Lunetta, Kathryn L -- McMahon, George -- Nolte, Ilja M -- Paternoster, Lavinia -- Porcu, Eleonora -- Smith, Albert V -- Stolk, Lisette -- Teumer, Alexander -- Tsernikova, Natalia -- Tikkanen, Emmi -- Ulivi, Sheila -- Wagner, Erin K -- Amin, Najaf -- Bierut, Laura J -- Byrne, Enda M -- Hottenga, Jouke-Jan -- Koller, Daniel L -- Mangino, Massimo -- Pers, Tune H -- Yerges-Armstrong, Laura M -- Hua Zhao, Jing -- Andrulis, Irene L -- Anton-Culver, Hoda -- Atsma, Femke -- Bandinelli, Stefania -- Beckmann, Matthias W -- Benitez, Javier -- Blomqvist, Carl -- Bojesen, Stig E -- Bolla, Manjeet K -- Bonanni, Bernardo -- Brauch, Hiltrud -- Brenner, Hermann -- Buring, Julie E -- Chang-Claude, Jenny -- Chanock, Stephen -- Chen, Jinhui -- Chenevix-Trench, Georgia -- Collee, J Margriet -- Couch, Fergus J -- Couper, David -- Coviello, Andrea D -- Cox, Angela -- Czene, Kamila -- D'adamo, Adamo Pio -- Davey Smith, George -- De Vivo, Immaculata -- Demerath, Ellen W -- Dennis, Joe -- Devilee, Peter -- Dieffenbach, Aida K -- Dunning, Alison M -- Eiriksdottir, Gudny -- Eriksson, Johan G -- Fasching, Peter A -- Ferrucci, Luigi -- Flesch-Janys, Dieter -- Flyger, Henrik -- Foroud, Tatiana -- Franke, Lude -- Garcia, Melissa E -- Garcia-Closas, Montserrat -- Geller, Frank -- de Geus, Eco E J -- Giles, Graham G -- Gudbjartsson, Daniel F -- Gudnason, Vilmundur -- Guenel, Pascal -- Guo, Suiqun -- Hall, Per -- Hamann, Ute -- Haring, Robin -- Hartman, Catharina A -- Heath, Andrew C -- Hofman, Albert -- Hooning, Maartje J -- Hopper, John L -- Hu, Frank B -- Hunter, David J -- Karasik, David -- Kiel, Douglas P -- Knight, Julia A -- Kosma, Veli-Matti -- Kutalik, Zoltan -- Lai, Sandra -- Lambrechts, Diether -- Lindblom, Annika -- Magi, Reedik -- Magnusson, Patrik K -- Mannermaa, Arto -- Martin, Nicholas G -- Masson, Gisli -- McArdle, Patrick F -- McArdle, Wendy L -- Melbye, Mads -- Michailidou, Kyriaki -- Mihailov, Evelin -- Milani, Lili -- Milne, Roger L -- Nevanlinna, Heli -- Neven, Patrick -- Nohr, Ellen A -- Oldehinkel, Albertine J -- Oostra, Ben A -- Palotie, Aarno -- Peacock, Munro -- Pedersen, Nancy L -- Peterlongo, Paolo -- Peto, Julian -- Pharoah, Paul D P -- Postma, Dirkje S -- Pouta, Anneli -- Pylkas, Katri -- Radice, Paolo -- Ring, Susan -- Rivadeneira, Fernando -- Robino, Antonietta -- Rose, Lynda M -- Rudolph, Anja -- Salomaa, Veikko -- Sanna, Serena -- Schlessinger, David -- Schmidt, Marjanka K -- Southey, Mellissa C -- Sovio, Ulla -- Stampfer, Meir J -- Stockl, Doris -- Storniolo, Anna M -- Timpson, Nicholas J -- Tyrer, Jonathan -- Visser, Jenny A -- Vollenweider, Peter -- Volzke, Henry -- Waeber, Gerard -- Waldenberger, Melanie -- Wallaschofski, Henri -- Wang, Qin -- Willemsen, Gonneke -- Winqvist, Robert -- Wolffenbuttel, Bruce H R -- Wright, Margaret J -- Australian Ovarian Cancer Study -- GENICA Network -- kConFab -- LifeLines Cohort Study -- InterAct Consortium -- Early Growth Genetics (EGG) Consortium -- Boomsma, Dorret I -- Econs, Michael J -- Khaw, Kay-Tee -- Loos, Ruth J F -- McCarthy, Mark I -- Montgomery, Grant W -- Rice, John P -- Streeten, Elizabeth A -- Thorsteinsdottir, Unnur -- van Duijn, Cornelia M -- Alizadeh, Behrooz Z -- Bergmann, Sven -- Boerwinkle, Eric -- Boyd, Heather A -- Crisponi, Laura -- Gasparini, Paolo -- Gieger, Christian -- Harris, Tamara B -- Ingelsson, Erik -- Jarvelin, Marjo-Riitta -- Kraft, Peter -- Lawlor, Debbie -- Metspalu, Andres -- Pennell, Craig E -- Ridker, Paul M -- Snieder, Harold -- Sorensen, Thorkild I A -- Spector, Tim D -- Strachan, David P -- Uitterlinden, Andre G -- Wareham, Nicholas J -- Widen, Elisabeth -- Zygmunt, Marek -- Murray, Anna -- Easton, Douglas F -- Stefansson, Kari -- Murabito, Joanne M -- Ong, Ken K -- 098381/Wellcome Trust/United Kingdom -- 10118/Cancer Research UK/United Kingdom -- G0701863/Medical Research Council/United Kingdom -- G1000143/Medical Research Council/United Kingdom -- G9815508/Medical Research Council/United Kingdom -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106179472/Medical Research Council/United Kingdom -- MC_UU_12013/1/Medical Research Council/United Kingdom -- MC_UU_12013/3/Medical Research Council/United Kingdom -- MC_UU_12015/1/Medical Research Council/United Kingdom -- MC_UU_12015/2/Medical Research Council/United Kingdom -- MR/J012165/1/Medical Research Council/United Kingdom -- P50 CA116201/CA/NCI NIH HHS/ -- R01 AG041517/AG/NIA NIH HHS/ -- UL1 TR001108/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):92-7. doi: 10.1038/nature13545. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. [3] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [4] Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. [5]. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2]. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2]. ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK. ; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. ; 1] Department of Epidemiology, Indiana University Richard M Fairbanks School of Public Health, Indianapolis, Indiana 46202, USA. [2] Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana 46202, USA. ; 1] Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. [2] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [3] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; deCODE Genetics, Reykjavik IS-101, Iceland. ; Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-85764 Neuherberg, Germany. ; School of Women's and Infants' Health, The University of Western Australia, WA-6009, Australia. ; 1] Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland. [2] Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland. ; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. ; Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark. ; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599-7400, USA. ; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden. ; NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. ; Science for Life Laboratory, Karolinska Institutet, Stockholm, Box 1031, 17121 Solna, Sweden. ; 1] NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. [2] Boston University School of Public Health, Department of Biostatistics, Boston, Massachusetts 02118, USA. ; 1] MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. [2] School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. ; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands. ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK. ; 1] Institute of Genetics and Biomedical Research, National Research Council, Cagliari, 09042 Sardinia, Italy. [2] University of Sassari, Department of Biomedical Sciences, 07100 Sassari, Italy. ; 1] Icelandic Heart Association, IS-201 Kopavogur, Iceland. [2] University of Iceland, IS-101 Reykjavik, Iceland. ; 1] Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. [2] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. ; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany. ; 1] Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. [2] Department of Biotechnology, University of Tartu, 51010 Tartu, Estonia. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. [2] Hjelt Institute, University of Helsinki, FI-00014, Finland. ; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137 Trieste, Italy. ; Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, the Netherlands. ; Department of Psychiatry, Washington University, St Louis, Missouri 63110, USA. ; 1] The University of Queensland, Queensland Brain Institute, St Lucia, Queensland 4072, Australia. [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia. ; Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands. ; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202-3082, USA. ; Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK. ; 1] Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [3] Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] Center for Biological Sequence Analysis, Department of Systems Biology, Technical 142 University of Denmark, DK-2800 Lyngby, Denmark. ; Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. ; MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. ; 1] Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Epidemiology, University of California Irvine, Irvine, California 92697-7550, USA. ; Sanquin Research, 6525 GA Nijmegen, The Netherlands. ; 1] Tuscany Regional Health Agency, Florence, Italy, I.O.T. and Department of Medical and Surgical Critical Care, University of Florence, 50134 Florence, Italy. [2] Geriatric Unit, Azienda Sanitaria di Firenze, 50122 Florence, Italy. ; University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany. ; 1] Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain. [2] Centro de Investigacion en Red de Enfermedades Raras (CIBERER), E-46010 Valencia, Spain. ; Department of Oncology, University of Helsinki and Helsinki University Central Hospital, FI-00100 Helsinki, Finland. ; 1] Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark. [2] Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, DK-2100 Copenhagen, Denmark. ; Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), 20139 Milan, Italy. ; 1] DrMargarete Fischer-Bosch-Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany. [2] University of Tubingen, D-72074 Tubingen, Germany. ; 1] Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. [2] German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany. ; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany. ; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA. ; 1] Departments of Anatomy and Neurological Surgery, Indiana University school of Medicine, Indianapolis, Indiana 46202, USA. [2] Stark Neuroscience Research Center, Indiana University school of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006 Australia. ; Department of Clinical Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. ; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA. ; Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599-7420, USA. ; Boston University School of Medicine, Department of Medicine, Sections of Preventive Medicine and Endocrinology, Boston, Massachusetts 02118, USA. ; Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield S10 2RX, UK. ; 1] Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", 34137 Trieste, Italy. [2] Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, 34149 Trieste, Italy. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; Department of Human Genetics &Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands. ; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge CB1 8RN, UK. ; Icelandic Heart Association, IS-201 Kopavogur, Iceland. ; 1] National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Department of General Practice and Primary health Care, University of Helsinki, FI-00014 Helsinki, Finland. [3] Helsinki University Central Hospital, Unit of General Practice, FI-00029 HUS Helsinki, Finland. [4] Folkhalsan Research Centre, FI-00290 Helsinki, Finland. ; Longitudinal Studies Section, Clinical Research Branch, Gerontology Research Center, National Institute on Aging, Baltimore, Maryland 20892, USA. ; Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, D-20246 Hamburg, Germany. ; Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark. ; Department of Genetics, University of Groningen, University Medical Centre Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; National Insitute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA. ; 1] Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK. [2] Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK. ; 1] Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands. [2] EMGO + Institute for Health and Care Research, VU University Medical Centre, Van der Boechorststraat 7, 1081 Bt, Amsterdam, The Netherlands. ; 1] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia. [2] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2] Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland. ; 1] Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, F-94807 Villejuif, France. [2] University Paris-Sud, UMRS 1018, F-94807 Villejuif, France. ; Department of Obstetrics and Gynecology, Southern Medical University, 510515 Guangzhou, China. ; Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany. ; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. ; Department of Psychiatry, University of Groningen, University Medical Center Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; Washington University, Department of Psychiatry, St Louis, Missouri 63110, USA. ; Department of Epidemiology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands. ; Department of Medical Oncology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands. ; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; 1] Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge, Massachusetts 02142, USA. [2] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [3] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Harvard Medical School, Boston, Massachusetts 02115, USA. [2] Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts 02131, USA. ; 1] Hebrew SeniorLife Institute for Aging Research, Boston, Massachusetts 02131, USA. [2] Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. [2] Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada. ; 1] School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland. [2] Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland. ; Institute of Genetics and Biomedical Research, National Research Council, Cagliari, 09042 Sardinia, Italy. ; 1] Vesalius Research Center (VRC), VIB, 3000 Leuven, Belgium. [2] Laboratory for Translational Genetics, Department of Oncology, University of Leuven, 3000 Leuven, Belgium. ; Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden. ; Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia. ; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. ; 1] Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark. [2] Department of Medicine, Stanford School of Medicine, Stanford, California 94305-5101, USA. ; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, P.O. Box 100, FI-00029 HUS Helsinki, Finland. ; KULeuven (University of Leuven), Department of Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, 3000 Leuven, Belgium. ; Research Unit of Obstetrics &Gynecology, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark. ; Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands. ; 1] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Finland. [2] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [3] Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA. [4] Psychiatric &Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy. ; Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK. ; University Groningen, University Medical Center Groningen, Department Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, P.O. Box 30.001, NL-9700 RB Groningen, The Netherlands. ; 1] National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. [2] Department of Obstetrics and Gynecology, Oulu University Hospital, P.O. Box 10, FI-90029 OYS Oulu, Finland. ; Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, P.O. Box 3000, FI-90014 Oulu, Finland. ; Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy. ; 1] Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. [2] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. [3] Department of Epidemiology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, the Netherlands. ; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215, USA. ; National Institute for Health and Welfare, P.O. Box 30, FI-00271 Helsinki, Finland. ; National Institute on Aging, Intramural Research Program, Baltimore, Maryland 21224-6825, USA. ; Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Postbus 90203, 1006 BE Amsterdam, The Netherlands. ; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3010, Australia. ; 1] Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK. [2] Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge CB2 0SW, UK. ; 1] Institute of Epidemiology II, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-8576 Neuherberg, Germany. [2] Department of Obstetrics and Gynaecology, Campus Grosshadern, Ludwig-Maximilians-University, D-81377 Munich, Germany. ; Department of Internal Medicine, Erasmus MC, 3015 GE Rotterdam, the Netherlands. ; Department of Internal Medicine, Lausanne University Hospital, CH-1015 Lausanne, Switzerland. ; 1] Institute for Community Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Research Unit of Molecular Epidemiology, Helmholtz Zentrum Munchen - German Research Center for Environmental Health, D-8576 Neuherberg, Germany. ; 1] Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany. [2] DZHK (German Centre for Cardiovascular Research), partner site Greifswald, D-17475 Greifswald, Germany. ; Department of Endocrinology, University of Groningen, University Medical Centre Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands. ; Queensland Insitute of Medical Research, Brisbane, Queensland 4029, Australia. ; 1] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202-3082, USA. [2] Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge CB2 0QQ, UK. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1003, New York, New York 10029, USA. ; 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. [2] NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK. [3] Oxford Centre for Diabetes, Endocrinology, &Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK. ; 1] Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. [2] Geriatric Research and Education Clinical Center (GRECC) - Veterans Administration Medical Center, Baltimore, Maryland 21201, USA. ; 1] Netherlands Consortium on Health Aging and National Genomics Initiative, 2300 RC Leiden, the Netherlands. [2] Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, 3015 GE, Rotterdam, the Netherlands. [3] Centre of Medical Systems Biology, PO Box 9600, 2300 RC Leiden, the Netherlands. ; Human Genetics Center and Divof Epidemiology, University of Houston, P.O. Box 20186, Texas 77025 USA. ; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Box 256, 751 05 Uppsala, Sweden. ; 1] Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK. [2] Institute of Health Sciences, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland. [3] Biocenter Oulu, University of Oulu, P.O. Box 5000, Aapistie 5A, FI-90014 Oulu, Finland. [4] Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland. [5] Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O. Box 20, FI-90220 Oulu, 90029 OYS, Finland. ; 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA. [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; 1] Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Denmark. [2] Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, DK-2000 Frederiksberg, Denmark. ; Division of Population Health Sciences and Education, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK. ; Department of Obstetrics and Gynecology, University Medicine Greifswald, D-17475 Greifswald, Germany. ; University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. ; 1] deCODE Genetics, Reykjavik IS-101, Iceland. [2] Faculty of Medicine, University of Iceland, IS-101 Reykjavik, Iceland. [3]. ; 1] NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA. [2] Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, Massachusetts 02118, USA. [3]. ; 1] MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. [2] Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK. [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231870" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Age Factors ; *Alleles ; Body Mass Index ; Breast Neoplasms/genetics ; Cardiovascular Diseases/genetics ; Child ; Diabetes Mellitus, Type 2/genetics ; Europe/ethnology ; Female ; Genetic Loci/*genetics ; Genome-Wide Association Study ; Genomic Imprinting/genetics ; Humans ; Hypothalamo-Hypophyseal System/physiology ; Intercellular Signaling Peptides and Proteins/genetics ; Male ; Membrane Proteins/genetics ; Menarche/*genetics ; Obesity/genetics ; Ovary/physiology ; *Parents ; Polymorphism, Single Nucleotide/genetics ; Potassium Channels, Tandem Pore Domain/genetics ; Proteins/genetics ; Quantitative Trait Loci/genetics ; Receptors, GABA-B/metabolism ; Receptors, Retinoic Acid/metabolism ; Ribonucleoproteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-01-28
    Description: The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca(2+) waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca(2+)-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westphalen, Kristin -- Gusarova, Galina A -- Islam, Mohammad N -- Subramanian, Manikandan -- Cohen, Taylor S -- Prince, Alice S -- Bhattacharya, Jahar -- HL57556/HL/NHLBI NIH HHS/ -- HL64896/HL/NHLBI NIH HHS/ -- HL73989/HL/NHLBI NIH HHS/ -- HL78645/HL/NHLBI NIH HHS/ -- R01 HL057556/HL/NHLBI NIH HHS/ -- R01 HL064896/HL/NHLBI NIH HHS/ -- R01 HL073989/HL/NHLBI NIH HHS/ -- R01 HL078645/HL/NHLBI NIH HHS/ -- R01 HL079395/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):503-6. doi: 10.1038/nature12902. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Medicine, Division of Molecular Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchoalveolar Lavage Fluid/immunology ; Calcium/metabolism ; Cell Adhesion ; *Cell Communication ; Connexin 43/deficiency/genetics/metabolism ; Cytokines/immunology/secretion ; Female ; Gap Junctions/metabolism ; Lipopolysaccharides/pharmacology ; Macrophages, Alveolar/*cytology/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophil Infiltration ; Neutrophils/immunology ; Pneumonia/chemically induced/immunology/pathology ; Pulmonary Alveoli/*cytology/*immunology ; Respiratory Mucosa/*cytology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-10-03
    Description: Systemic infection induces conserved physiological responses that include both resistance and 'tolerance of infection' mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid alpha(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host's resources to maintain host-microbial interactions during pathogen-induced stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pickard, Joseph M -- Maurice, Corinne F -- Kinnebrew, Melissa A -- Abt, Michael C -- Schenten, Dominik -- Golovkina, Tatyana V -- Bogatyrev, Said R -- Ismagilov, Rustem F -- Pamer, Eric G -- Turnbaugh, Peter J -- Chervonsky, Alexander V -- AI42135/AI/NIAID NIH HHS/ -- AI96706/AI/NIAID NIH HHS/ -- DK42086/DK/NIDDK NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- R01 AI090084/AI/NIAID NIH HHS/ -- R01 AI095706/AI/NIAID NIH HHS/ -- T32 AI007090/AI/NIAID NIH HHS/ -- T32 AI065382/AI/NIAID NIH HHS/ -- T32 GM007739/GM/NIGMS NIH HHS/ -- UL1 TR000430/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Oct 30;514(7524):638-41. doi: 10.1038/nature13823. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, Illinois 60637, USA. ; FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; The University of Arizona, Tucson, Arizona 85721, USA. ; Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA. ; California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274297" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anorexia/complications/microbiology ; Bacteria/genetics/metabolism/pathogenicity ; Citrobacter rodentium/immunology ; Dendritic Cells/immunology/metabolism ; *Disease ; Eating ; Epithelium/*metabolism/*microbiology ; Fatty Acids/chemistry/metabolism ; Female ; Fucose/*metabolism ; Fucosyltransferases/metabolism ; Gene Expression Regulation, Bacterial ; Glycosylation ; Immune Tolerance ; Immunity, Innate ; Interleukins/biosynthesis/immunology ; Intestine, Small/*metabolism/*microbiology ; Ligands ; Male ; Metabolic Networks and Pathways/genetics ; Mice ; Microbiota/physiology ; Protective Factors ; *Symbiosis ; Toll-Like Receptors/agonists/immunology/metabolism ; Virulence Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-04-11
    Description: The BRAF kinase is mutated, typically Val 600--〉Glu (V600E), to induce an active oncogenic state in a large fraction of melanomas, thyroid cancers, hairy cell leukaemias and, to a smaller extent, a wide spectrum of other cancers. BRAF(V600E) phosphorylates and activates the MEK1 and MEK2 kinases, which in turn phosphorylate and activate the ERK1 and ERK2 kinases, stimulating the mitogen-activated protein kinase (MAPK) pathway to promote cancer. Targeting MEK1/2 is proving to be an important therapeutic strategy, given that a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma, an effect that is increased when administered together with a BRAF(V600E) inhibitor. We previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction. Here we show decreasing the levels of CTR1 (Cu transporter 1), or mutations in MEK1 that disrupt Cu binding, decreased BRAF(V600E)-driven signalling and tumorigenesis in mice and human cell settings. Conversely, a MEK1-MEK5 chimaera that phosphorylated ERK1/2 independently of Cu or an active ERK2 restored the tumour growth of murine cells lacking Ctr1. Cu chelators used in the treatment of Wilson disease decreased tumour growth of human or murine cells transformed by BRAF(V600E) or engineered to be resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat cancers containing the BRAF(V600E) mutation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138975/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138975/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, Donita C -- Crowe, Matthew S -- Turski, Michelle L -- Hobbs, G Aaron -- Yao, Xiaojie -- Chaikuad, Apirat -- Knapp, Stefan -- Xiao, Kunhong -- Campbell, Sharon L -- Thiele, Dennis J -- Counter, Christopher M -- 092809/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- CA094184/CA/NCI NIH HHS/ -- CA172104/CA/NCI NIH HHS/ -- CA178145/CA/NCI NIH HHS/ -- DK074192/DK/NIDDK NIH HHS/ -- HL075443/HL/NHLBI NIH HHS/ -- K01 CA178145/CA/NCI NIH HHS/ -- P01 HL075443/HL/NHLBI NIH HHS/ -- P30 CA014236/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA089614/CA/NCI NIH HHS/ -- R01 CA094184/CA/NCI NIH HHS/ -- R01 DK074192/DK/NIDDK NIH HHS/ -- R21 CA172104/CA/NCI NIH HHS/ -- T32 GM007184/GM/NIGMS NIH HHS/ -- T32 GM008570/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 22;509(7501):492-6. doi: 10.1038/nature13180. Epub 2014 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Nuffield Department of Clinical Medicine, Target Discovery Institute and Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; 1] Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cation Transport Proteins/deficiency/genetics ; Cell Line, Tumor ; *Cell Transformation, Neoplastic/drug effects ; Chelating Agents/pharmacology/therapeutic use ; Copper/*metabolism/pharmacology ; Disease Models, Animal ; Drug Repositioning ; Drug Resistance, Neoplasm/drug effects ; Female ; Hepatolenticular Degeneration/drug therapy ; Humans ; Indoles/pharmacology ; Lung Neoplasms/drug therapy/genetics/metabolism/pathology ; *MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Mitogen-Activated Protein Kinase Kinases/antagonists & ; inhibitors/genetics/metabolism ; Phosphorylation/drug effects ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/*metabolism ; Sulfonamides/pharmacology ; Survival Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pitnick, Scott -- Pfennig, David W -- England -- Nature. 2014 Jan 30;505(7485):626-7. doi: 10.1038/nature12853. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Syracuse University, Syracuse, New York 13244, USA. ; Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cooperative Behavior ; Drosophila melanogaster/*physiology ; Female ; Male ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-01-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Cameron -- England -- Nature. 2014 Jan 9;505(7482):249-51.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24409476" target="_blank"〉PubMed〈/a〉
    Keywords: Data Collection ; Female ; *Homosexuality/statistics & numerical data ; Humans ; Male ; Mentors ; *Research Personnel/psychology/statistics & numerical data ; Social Support
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-11-20
    Description: Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-alpha receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kernbauer, Elisabeth -- Ding, Yi -- Cadwell, Ken -- J 3435/Austrian Science Fund FWF/Austria -- P30CA016087/CA/NCI NIH HHS/ -- R01 DK093668/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):94-8. doi: 10.1038/nature13960. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA [2] Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA. ; 1] New York Presbyterian Hospital, New York, New York 10065, USA [2] Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bacterial Physiological Phenomena/*immunology ; Citrobacter rodentium/physiology ; Enterobacteriaceae Infections/immunology ; Enterovirus/immunology/*physiology ; Female ; Gene Expression Profiling ; Gene Expression Regulation/immunology ; Immunity, Innate/immunology ; Immunity, Mucosal/*immunology ; Interferon Type I/immunology ; Intestinal Mucosa/cytology/drug effects/*immunology/*virology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Norovirus/immunology/physiology ; Signal Transduction/immunology ; Specific Pathogen-Free Organisms
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-07-22
    Description: The viral reservoir represents a critical challenge for human immunodeficiency virus type 1 (HIV-1) eradication strategies. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded rapidly after mucosal simian immunodeficiency virus (SIV) infection of rhesus monkeys and before systemic viraemia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10 and 14 after intrarectal SIVMAC251 infection. Treatment with ART on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later time points. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, after discontinuation of ART following 24 weeks of fully suppressive therapy, virus rebounded in all animals, although the monkeys that were treated on day 3 exhibited a delayed viral rebound as compared with those treated on days 7, 10 and 14. The time to viral rebound correlated with total viraemia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded rapidly after intrarectal SIV infection of rhesus monkeys, during the 'eclipse' phase, and before detectable viraemia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126858/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126858/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitney, James B -- Hill, Alison L -- Sanisetty, Srisowmya -- Penaloza-MacMaster, Pablo -- Liu, Jinyan -- Shetty, Mayuri -- Parenteau, Lily -- Cabral, Crystal -- Shields, Jennifer -- Blackmore, Stephen -- Smith, Jeffrey Y -- Brinkman, Amanda L -- Peter, Lauren E -- Mathew, Sheeba I -- Smith, Kaitlin M -- Borducchi, Erica N -- Rosenbloom, Daniel I S -- Lewis, Mark G -- Hattersley, Jillian -- Li, Bei -- Hesselgesser, Joseph -- Geleziunas, Romas -- Robb, Merlin L -- Kim, Jerome H -- Michael, Nelson L -- Barouch, Dan H -- AI060354/AI/NIAID NIH HHS/ -- AI078526/AI/NIAID NIH HHS/ -- AI084794/AI/NIAID NIH HHS/ -- AI095985/AI/NIAID NIH HHS/ -- AI096040/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- R01 AI084794/AI/NIAID NIH HHS/ -- R56 AI091514/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI078526/AI/NIAID NIH HHS/ -- U19 AI095985/AI/NIAID NIH HHS/ -- U19 AI096040/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Aug 7;512(7512):74-7. doi: 10.1038/nature13594. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts 02138 USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Bioqual, Rockville, Maryland 20852, USA. ; Gilead Sciences, Foster City, California 94404, USA. ; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25042999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Retroviral Agents/administration & dosage/pharmacology/therapeutic use ; Carrier State/drug therapy/virology ; DNA, Viral/analysis/biosynthesis/blood ; Disease Models, Animal ; Female ; Kinetics ; Macaca mulatta/immunology/*virology ; Male ; Proviruses/genetics ; RNA, Viral/blood ; Rectum/virology ; Simian Acquired Immunodeficiency Syndrome/drug therapy/immunology/*virology ; Simian Immunodeficiency Virus/drug effects/*growth & ; development/immunology/physiology ; Time Factors ; Treatment Failure ; *Viral Load/drug effects ; Viremia/drug therapy/*virology ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greif, Daniel M -- Eichmann, Anne -- England -- Nature. 2014 Apr 3;508(7494):50-1. doi: 10.1038/nature13217. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; 1] Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA. [2] Department of Cellular and Molecular Physiology, Yale University School of Medicine, and at the Center for Interdisciplinary Research in Biology, College de France, Paris.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670635" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capillaries/*cytology ; Cerebrovascular Circulation/*physiology ; *Disease ; Female ; *Health ; Male ; Pericytes/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-08-28
    Description: The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the malleability of emotional memory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, Roger L -- Kim, Joshua -- Arons, Autumn L -- Ramirez, Steve -- Liu, Xu -- Tonegawa, Susumu -- P50 MH058880/MH/NIMH NIH HHS/ -- R01 MH078821/MH/NIMH NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 18;513(7518):426-30. doi: 10.1038/nature13725. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]. ; 1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]. ; 1] RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162525" target="_blank"〉PubMed〈/a〉
    Keywords: Affect ; Amygdala/physiology ; Animals ; Avoidance Learning ; Conditioning, Classical/physiology ; Cues ; Dentate Gyrus/physiology ; Fear ; Female ; Hippocampus/*physiology ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity/physiology ; Optogenetics ; Reward
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-04-11
    Description: How we sense touch remains fundamentally unknown. The Merkel cell-neurite complex is a gentle touch receptor in the skin that mediates slowly adapting responses of Abeta sensory fibres to encode fine details of objects. This mechanoreceptor complex was recognized to have an essential role in sensing gentle touch nearly 50 years ago. However, whether Merkel cells or afferent fibres themselves sense mechanical force is still debated, and the molecular mechanism of mechanotransduction is unknown. Synapse-like junctions are observed between Merkel cells and associated afferents, and yet it is unclear whether Merkel cells are inherently mechanosensitive or whether they can rapidly transmit such information to the neighbouring nerve. Here we show that Merkel cells produce touch-sensitive currents in vitro. Piezo2, a mechanically activated cation channel, is expressed in Merkel cells. We engineered mice deficient in Piezo2 in the skin, but not in sensory neurons, and show that Merkel-cell mechanosensitivity completely depends on Piezo2. In these mice, slowly adapting responses in vivo mediated by the Merkel cell-neurite complex show reduced static firing rates, and moreover, the mice display moderately decreased behavioural responses to gentle touch. Our results indicate that Piezo2 is the Merkel-cell mechanotransduction channel and provide the first line of evidence that Piezo channels have a physiological role in mechanosensation in mammals. Furthermore, our data present evidence for a two-receptor-site model, in which both Merkel cells and innervating afferents act together as mechanosensors. The two-receptor system could provide this mechanoreceptor complex with a tuning mechanism to achieve highly sophisticated responses to a given mechanical stimulus.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woo, Seung-Hyun -- Ranade, Sanjeev -- Weyer, Andy D -- Dubin, Adrienne E -- Baba, Yoshichika -- Qiu, Zhaozhu -- Petrus, Matt -- Miyamoto, Takashi -- Reddy, Kritika -- Lumpkin, Ellen A -- Stucky, Cheryl L -- Patapoutian, Ardem -- P30 AR044535/AR/NIAMS NIH HHS/ -- R01 AR051219/AR/NIAMS NIH HHS/ -- R01 DE022358/DE/NIDCR NIH HHS/ -- R01 NS040538/NS/NINDS NIH HHS/ -- R01AR051219/AR/NIAMS NIH HHS/ -- R01DE022358/DE/NIDCR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):622-6. doi: 10.1038/nature13251. Epub 2014 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA. ; Departments of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA [2] Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717433" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Electric Conductivity ; Female ; In Vitro Techniques ; Ion Channels/deficiency/genetics/*metabolism ; Male ; *Mechanotransduction, Cellular/genetics ; Merkel Cells/*metabolism ; Mice ; Mice, Knockout ; Neurites/metabolism ; Neurons, Afferent/metabolism ; Skin/cytology/innervation ; Touch/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-07-22
    Description: The evolution of the placenta from a non-placental ancestor causes a shift of maternal investment from pre- to post-fertilization, creating a venue for parent-offspring conflicts during pregnancy. Theory predicts that the rise of these conflicts should drive a shift from a reliance on pre-copulatory female mate choice to polyandry in conjunction with post-zygotic mechanisms of sexual selection. This hypothesis has not yet been empirically tested. Here we apply comparative methods to test a key prediction of this hypothesis, which is that the evolution of placentation is associated with reduced pre-copulatory female mate choice. We exploit a unique quality of the livebearing fish family Poeciliidae: placentas have repeatedly evolved or been lost, creating diversity among closely related lineages in the presence or absence of placentation. We show that post-zygotic maternal provisioning by means of a placenta is associated with the absence of bright coloration, courtship behaviour and exaggerated ornamental display traits in males. Furthermore, we found that males of placental species have smaller bodies and longer genitalia, which facilitate sneak or coercive mating and, hence, circumvents female choice. Moreover, we demonstrate that post-zygotic maternal provisioning correlates with superfetation, a female reproductive adaptation that may result in polyandry through the formation of temporally overlapping, mixed-paternity litters. Our results suggest that the emergence of prenatal conflict during the evolution of the placenta correlates with a suite of phenotypic and behavioural male traits that is associated with a reduced reliance on pre-copulatory female mate choice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pollux, B J A -- Meredith, R W -- Springer, M S -- Garland, T -- Reznick, D N -- England -- Nature. 2014 Sep 11;513(7517):233-6. doi: 10.1038/nature13451. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biology, University of California, Riverside, California 92521, USA [2] Experimental Zoology Group, Wageningen University, 6708 WD Wageningen, the Netherlands. ; 1] Department of Biology, University of California, Riverside, California 92521, USA [2] Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey 07043, USA. ; Department of Biology, University of California, Riverside, California 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Cyprinodontiformes/anatomy & histology/*classification/*physiology ; Female ; Genitalia, Male/anatomy & histology ; Male ; *Phylogeny ; Reproduction ; Sexual Behavior, Animal/*physiology ; Viviparity, Nonmammalian/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subbaraman, Nidhi -- England -- Nature. 2014 Sep 11;513(7517):S16-7. doi: 10.1038/513S16a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25208069" target="_blank"〉PubMed〈/a〉
    Keywords: Coal ; Cooking ; Far East/epidemiology ; Female ; Genetic Variation ; Humans ; Lung Neoplasms/*epidemiology/genetics ; Risk Factors ; Smoking
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subramanian, Meera -- England -- Nature. 2014 May 29;509(7502):548-51. doi: 10.1038/509548a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870526" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollution, Indoor/*adverse effects/*prevention & control/statistics & ; numerical data ; Animals ; Atmosphere/chemistry ; *Biomass ; Cattle ; Cooking/economics/*instrumentation ; Developing Countries/statistics & numerical data ; Electricity ; Environmental Health/statistics & numerical data/trends ; Feces ; Female ; *Fires ; Global Health/*statistics & numerical data/trends ; Global Warming ; *Housing ; Humans ; India/epidemiology ; Meals ; Renewable Energy/economics ; Soot/adverse effects/analysis ; Wood
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-01-07
    Description: Performing genetic studies in multiple human populations can identify disease risk alleles that are common in one population but rare in others, with the potential to illuminate pathophysiology, health disparities, and the population genetic origins of disease alleles. Here we analysed 9.2 million single nucleotide polymorphisms (SNPs) in each of 8,214 Mexicans and other Latin Americans: 3,848 with type 2 diabetes and 4,366 non-diabetic controls. In addition to replicating previous findings, we identified a novel locus associated with type 2 diabetes at genome-wide significance spanning the solute carriers SLC16A11 and SLC16A13 (P = 3.9 x 10(-13); odds ratio (OR) = 1.29). The association was stronger in younger, leaner people with type 2 diabetes, and replicated in independent samples (P = 1.1 x 10(-4); OR = 1.20). The risk haplotype carries four amino acid substitutions, all in SLC16A11; it is present at ~50% frequency in Native American samples and ~10% in east Asian, but is rare in European and African samples. Analysis of an archaic genome sequence indicated that the risk haplotype introgressed into modern humans via admixture with Neanderthals. The SLC16A11 messenger RNA is expressed in liver, and V5-tagged SLC16A11 protein localizes to the endoplasmic reticulum. Expression of SLC16A11 in heterologous cells alters lipid metabolism, most notably causing an increase in intracellular triacylglycerol levels. Despite type 2 diabetes having been well studied by genome-wide association studies in other populations, analysis in Mexican and Latin American individuals identified SLC16A11 as a novel candidate gene for type 2 diabetes with a possible role in triacylglycerol metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127086/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127086/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉SIGMA Type 2 Diabetes Consortium -- Williams, Amy L -- Jacobs, Suzanne B R -- Moreno-Macias, Hortensia -- Huerta-Chagoya, Alicia -- Churchhouse, Claire -- Marquez-Luna, Carla -- Garcia-Ortiz, Humberto -- Gomez-Vazquez, Maria Jose -- Burtt, Noel P -- Aguilar-Salinas, Carlos A -- Gonzalez-Villalpando, Clicerio -- Florez, Jose C -- Orozco, Lorena -- Haiman, Christopher A -- Tusie-Luna, Teresa -- Altshuler, David -- F32 HG005944/HG/NHGRI NIH HHS/ -- P01 HL045522/HL/NHLBI NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 CA144034/CA/NCI NIH HHS/ -- R01 CA55069/CA/NCI NIH HHS/ -- R01 CA80205/CA/NCI NIH HHS/ -- R01 DK042273/DK/NIDDK NIH HHS/ -- R01 DK047482/DK/NIDDK NIH HHS/ -- R01 DK057295/DK/NIDDK NIH HHS/ -- R01 HG006399/HG/NHGRI NIH HHS/ -- R01DK053889/DK/NIDDK NIH HHS/ -- R01HL24799/HL/NHLBI NIH HHS/ -- R35 CA53890/CA/NCI NIH HHS/ -- U01DK085526/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Feb 6;506(7486):97-101. doi: 10.1038/nature12828. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390345" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Alleles ; Animals ; Asian Continental Ancestry Group/genetics ; Cohort Studies ; Diabetes Mellitus, Type 2/*genetics ; Endoplasmic Reticulum/genetics ; European Continental Ancestry Group/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Haplotypes/genetics ; HeLa Cells ; Humans ; Indians, North American/genetics ; Lipid Metabolism/genetics ; Liver/cytology/metabolism ; Male ; Mexico ; Monocarboxylic Acid Transporters/*genetics ; Neanderthals/genetics ; Polymorphism, Single Nucleotide/*genetics ; RNA, Messenger/genetics/metabolism ; Triglycerides/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-07-18
    Description: Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs), and LSC deficiency is a major cause of blindness worldwide. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts, a gene allowing for prospective LSC enrichment has not been identified so far. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5) marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs in mice and p63alpha-positive LSCs in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ksander, Bruce R -- Kolovou, Paraskevi E -- Wilson, Brian J -- Saab, Karim R -- Guo, Qin -- Ma, Jie -- McGuire, Sean P -- Gregory, Meredith S -- Vincent, William J B -- Perez, Victor L -- Cruz-Guilloty, Fernando -- Kao, Winston W Y -- Call, Mindy K -- Tucker, Budd A -- Zhan, Qian -- Murphy, George F -- Lathrop, Kira L -- Alt, Clemens -- Mortensen, Luke J -- Lin, Charles P -- Zieske, James D -- Frank, Markus H -- Frank, Natasha Y -- DP2 OD007483/OD/NIH HHS/ -- DP2OD007483/OD/NIH HHS/ -- EY08098/EY/NEI NIH HHS/ -- I01 BX000516/BX/BLRD VA/ -- I01 RX000989/RX/RRD VA/ -- K08 NS051349/NS/NINDS NIH HHS/ -- K08NS051349/NS/NINDS NIH HHS/ -- P30 EY014801/EY/NEI NIH HHS/ -- P30EY014801/EY/NEI NIH HHS/ -- P41EB015903/EB/NIBIB NIH HHS/ -- R01 CA113796/CA/NCI NIH HHS/ -- R01 CA138231/CA/NCI NIH HHS/ -- R01 CA158467/CA/NCI NIH HHS/ -- R01 EB017274/EB/NIBIB NIH HHS/ -- R01CA113796/CA/NCI NIH HHS/ -- R01CA138231/CA/NCI NIH HHS/ -- R01CA158467/CA/NCI NIH HHS/ -- R01EY018624/EY/NEI NIH HHS/ -- R01EY021768/EY/NEI NIH HHS/ -- U01HL100402/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):353-7. doi: 10.1038/nature13426. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114, USA [2]. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; 1] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA [2] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Bascom Palmer Eye Institute and the Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, Ohio 45229, USA. ; Stephen A Wynn Institute for Vision Research, Carver College of Medicine, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 52242, USA. ; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Ophthalmology, University of Pittsburgh School of Medicine & Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15213, USA. ; Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02138, USA [4]. ; 1] Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts 02130, USA [2] Transplant Research Program, Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02138, USA [4] Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [5].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030174" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/deficiency/*metabolism ; Animals ; Apoptosis ; Biomarkers/metabolism ; Cell Differentiation ; Cell Proliferation ; Female ; Humans ; Limbus Corneae/*cytology/*physiology ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; P-Glycoprotein/deficiency/*metabolism ; *Regeneration ; Stem Cell Transplantation ; Stem Cells/cytology/*metabolism ; Transcription Factors/metabolism ; Tumor Suppressor Proteins/metabolism ; *Wound Healing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-07-06
    Description: Tuberculosis remains second only to HIV/AIDS as the leading cause of mortality worldwide due to a single infectious agent. Despite chemotherapy, the global tuberculosis epidemic has intensified because of HIV co-infection, the lack of an effective vaccine and the emergence of multi-drug-resistant bacteria. Alternative host-directed strategies could be exploited to improve treatment efficacy and outcome, contain drug-resistant strains and reduce disease severity and mortality. The innate inflammatory response elicited by Mycobacterium tuberculosis (Mtb) represents a logical host target. Here we demonstrate that interleukin-1 (IL-1) confers host resistance through the induction of eicosanoids that limit excessive type I interferon (IFN) production and foster bacterial containment. We further show that, in infected mice and patients, reduced IL-1 responses and/or excessive type I IFN induction are linked to an eicosanoid imbalance associated with disease exacerbation. Host-directed immunotherapy with clinically approved drugs that augment prostaglandin E2 levels in these settings prevented acute mortality of Mtb-infected mice. Thus, IL-1 and type I IFNs represent two major counter-regulatory classes of inflammatory cytokines that control the outcome of Mtb infection and are functionally linked via eicosanoids. Our findings establish proof of concept for host-directed treatment strategies that manipulate the host eicosanoid network and represent feasible alternatives to conventional chemotherapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer-Barber, Katrin D -- Andrade, Bruno B -- Oland, Sandra D -- Amaral, Eduardo P -- Barber, Daniel L -- Gonzales, Jacqueline -- Derrick, Steven C -- Shi, Ruiru -- Kumar, Nathella Pavan -- Wei, Wang -- Yuan, Xing -- Zhang, Guolong -- Cai, Ying -- Babu, Subash -- Catalfamo, Marta -- Salazar, Andres M -- Via, Laura E -- Barry, Clifton E 3rd -- Sher, Alan -- Intramural NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):99-103. doi: 10.1038/nature13489. Epub 2014 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. ; 1] Immunobiology Section, Laboratory of Parasitic Diseases (LPD), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA [2] Department of Immunology, Biomedical Sciences Institutes, University of Sao Paulo, 05508-900 Sao Paulo, Brazil. ; T Lymphocyte Biology Unit, LPD, NIAID, NIH, Bethesda, Maryland 20892, USA. ; Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, NIAID, NIH, Bethesda, Maryland 20892, USA. ; Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA. ; Henan Chest Hospital, 450003 Zhengzhou, China. ; 1] NIH, International Center for Excellence in Research, 600 031 Chennai, India [2] National Institute for Research in Tuberculosis (NIRT), 600 031 Chennai, India. ; Sino-US International Research Center for Tuberculosis, and Henan Public Health Center, 450003 Zhengzhou, China. ; 1] NIH, International Center for Excellence in Research, 600 031 Chennai, India [2] Helminth Immunology Section, LPD, NIAID, NIH, Bethesda, Maryland 20892, USA. ; Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland 20892, USA. ; Oncovir Inc., Washington, Washington DC 20008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990750" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dinoprostone/antagonists & inhibitors/biosynthesis/metabolism ; Disease Models, Animal ; Female ; Humans ; Immunity, Innate/immunology ; *Immunotherapy ; Interferon Type I/antagonists & inhibitors/biosynthesis/*immunology ; Interleukin-1/*immunology ; Male ; Mice ; Mice, Inbred C57BL ; Mycobacterium tuberculosis/*immunology ; Tuberculosis, Pulmonary/*immunology/microbiology/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pope, Benjamin D -- Gilbert, David M -- F31 CA165863/CA/NCI NIH HHS/ -- R01 GM083337/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Apr 17;508(7496):323-4. doi: 10.1038/508323a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24740061" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Down Syndrome/*genetics ; Female ; Gene Expression Regulation/*genetics ; Genome/*genetics ; Humans ; Male ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Helen -- England -- Nature. 2014 Oct 9;514(7521):263-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25302356" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; *Caregivers/psychology ; Female ; Humans ; Long-Term Care/*organization & administration ; Male ; *Parents ; *Research Personnel/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-09-19
    Description: Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suez, Jotham -- Korem, Tal -- Zeevi, David -- Zilberman-Schapira, Gili -- Thaiss, Christoph A -- Maza, Ori -- Israeli, David -- Zmora, Niv -- Gilad, Shlomit -- Weinberger, Adina -- Kuperman, Yael -- Harmelin, Alon -- Kolodkin-Gal, Ilana -- Shapiro, Hagit -- Halpern, Zamir -- Segal, Eran -- Elinav, Eran -- England -- Nature. 2014 Oct 9;514(7521):181-6. doi: 10.1038/nature13793. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; 1] Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; Day Care Unit and the Laboratory of Imaging and Brain Stimulation, Kfar Shaul hospital, Jerusalem Center for Mental Health, Jerusalem 91060, Israel. ; 1] Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel [2] Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel [3] Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel. ; The Nancy and Stephen Grand Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel [2] Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Aspartame/adverse effects ; Body Weight/drug effects ; Diet, High-Fat ; Dietary Fats/pharmacology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*drug effects/*microbiology ; Germ-Free Life ; Glucose/metabolism ; Glucose Intolerance/*chemically induced/metabolism/*microbiology ; Humans ; Male ; Metabolic Syndrome X/chemically induced/metabolism/microbiology ; Mice ; Mice, Inbred C57BL ; Microbiota/*drug effects ; Saccharin/administration & dosage/adverse effects ; Sucrose/adverse effects/analogs & derivatives ; Sweetening Agents/*adverse effects ; Waist-Hip Ratio
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cech, Erin A -- England -- Nature. 2014 Jan 23;505(7484):477-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24459713" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; *Curriculum ; Data Collection ; Engineering/education ; Female ; Humans ; Male ; Prejudice ; Science/*education ; Sociology/*education ; Technology/education ; Universities
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-04-18
    Description: Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Hyosang -- Kim, Dong-Wook -- Remedios, Ryan -- Anthony, Todd E -- Chang, Angela -- Madisen, Linda -- Zeng, Hongkui -- Anderson, David J -- 1F32HD055198-01/HD/NICHD NIH HHS/ -- 1K99NS074077/NS/NINDS NIH HHS/ -- R01 MH085082/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):627-32. doi: 10.1038/nature13169. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA [2] Howard Hughes Medical Institute, Pasadena, California 91125, USA. ; Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, USA. ; Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; 1] Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California 91125, USA [2] Howard Hughes Medical Institute, Pasadena, California 91125, USA [3] Computation and Neural Systems, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739975" target="_blank"〉PubMed〈/a〉
    Keywords: Aggression/*physiology ; Animals ; Estrogen Receptor alpha/*metabolism ; Female ; Integrases/genetics/metabolism ; Male ; Mice ; Neurons/*metabolism ; Optogenetics ; Sexual Behavior, Animal/*physiology ; Ventromedial Hypothalamic Nucleus/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-09-19
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feehley, Taylor -- Nagler, Cathryn R -- R01 AI106302/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Oct 9;514(7521):176-7. doi: 10.1038/nature13752. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gastrointestinal Tract/*drug effects/*microbiology ; Glucose Intolerance/*chemically induced/*microbiology ; Humans ; Male ; Microbiota/*drug effects ; Sweetening Agents/*adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-03-05
    Description: Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is used throughout development in most animals. Little is known, however, about how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow formation. We find that cytoplasmic redistribution during the lengthening phase of ventral furrow formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to, or driving force on, the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells before gastrulation ('acellular' embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild-type embryos. Our results indicate that during the lengthening phase of ventral furrow formation, hydrodynamic behaviour of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Bing -- Doubrovinski, Konstantin -- Polyakov, Oleg -- Wieschaus, Eric -- 5R37HD15587/HD/NICHD NIH HHS/ -- P50 GM 071508/GM/NIGMS NIH HHS/ -- R01 HD015587/HD/NICHD NIH HHS/ -- R37 HD015587/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 17;508(7496):392-6. doi: 10.1038/nature13070. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2]. ; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; *Cell Polarity ; *Cell Shape ; Cytoplasm/metabolism ; Drosophila melanogaster/*cytology/*embryology ; Female ; Gastrulation ; Hydrodynamics ; Male ; Mesoderm/cytology/metabolism ; *Morphogenesis ; Movement
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-08-15
    Description: The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4(+) T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with Citrobacter rodentium. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to C. rodentium infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (db/db) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaoting -- Ota, Naruhisa -- Manzanillo, Paolo -- Kates, Lance -- Zavala-Solorio, Jose -- Eidenschenk, Celine -- Zhang, Juan -- Lesch, Justin -- Lee, Wyne P -- Ross, Jed -- Diehl, Lauri -- van Bruggen, Nicholas -- Kolumam, Ganesh -- Ouyang, Wenjun -- England -- Nature. 2014 Oct 9;514(7521):237-41. doi: 10.1038/nature13564. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Immunology, Genentech, South San Francisco, California 94080, USA [2]. ; Department of Immunology, Genentech, South San Francisco, California 94080, USA. ; Department of Biomedical Imaging, Genentech, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, South San Francisco, California 94080, USA. ; 1] Department of Biomedical Imaging, Genentech, South San Francisco, California 94080, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119041" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/drug effects/metabolism ; Animals ; CD4-Positive T-Lymphocytes/immunology/secretion ; Chronic Disease ; Citrobacter rodentium/drug effects/immunology/physiology ; Colon/drug effects/immunology/microbiology ; Diabetes Mellitus/*immunology/*metabolism/pathology ; Diet, High-Fat ; Female ; Hyperglycemia/diet therapy/drug therapy/metabolism ; *Immunity, Mucosal/drug effects ; Inflammation/drug therapy/metabolism/pathology ; Insulin/metabolism ; Insulin Resistance ; Interleukin-23/immunology/metabolism/pharmacology ; Interleukins/*immunology/*metabolism/pharmacology/therapeutic use ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Male ; Metabolic Diseases/diet therapy/drug therapy/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Obesity/metabolism ; Receptors, Interleukin/deficiency/metabolism ; Receptors, Leptin/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, Sujata -- England -- Nature. 2014 Jun 26;510(7506):S10-1. doi: 10.1038/510S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24964021" target="_blank"〉PubMed〈/a〉
    Keywords: Activities of Daily Living/psychology ; Antidepressive Agents/therapeutic use ; Depressive Disorder, Major/diagnosis/drug therapy/*etiology/psychology ; Female ; Humans ; Mental Health ; Middle Aged ; Stroke/drug therapy/*psychology/rehabilitation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-02-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2014 Feb 13;506(7487):132.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24527498" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Endangered Species/*statistics & numerical data ; Female ; *Islands ; Male ; Wolves/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eberl, Gerard -- England -- Nature. 2014 Apr 3;508(7494):47-8. doi: 10.1038/nature13216. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphoid Tissue Development Unit, Institut Pasteur, 75724 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Fetus/*immunology ; Immunity, Innate/*immunology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology ; Tretinoin/*immunology/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-08-01
    Description: In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Zachary D -- Chan, Michelle M -- Humm, Kathryn C -- Karnik, Rahul -- Mekhoubad, Shila -- Regev, Aviv -- Eggan, Kevin -- Meissner, Alexander -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003958/OD/NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 31;511(7511):611-5. doi: 10.1038/nature13581. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [4] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [5]. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3]. ; 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Division of Reproductive Endocrinology &Infertility, Department of Obstetrics &Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA [3] Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02215, USA [4] Boston IVF, Waltham, Massachusetts 02451, USA [5] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [6]. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [4] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [5] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079558" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/*metabolism ; Cell Line ; CpG Islands/physiology ; DNA/metabolism ; *DNA Methylation ; Embryonic Stem Cells ; Female ; Gene Expression Regulation, Developmental ; Humans ; Male ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-10-03
    Description: Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor-beta-deficient (Csf2rb(-/-)) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236859/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236859/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Takuji -- Arumugam, Paritha -- Sakagami, Takuro -- Lachmann, Nico -- Chalk, Claudia -- Sallese, Anthony -- Abe, Shuichi -- Trapnell, Cole -- Carey, Brenna -- Moritz, Thomas -- Malik, Punam -- Lutzko, Carolyn -- Wood, Robert E -- Trapnell, Bruce C -- 8UL1TR000077-05/TR/NCATS NIH HHS/ -- AR-47363/AR/NIAMS NIH HHS/ -- DK78392/DK/NIDDK NIH HHS/ -- DK90971/DK/NIDDK NIH HHS/ -- P30 AR047363/AR/NIAMS NIH HHS/ -- R01 HL069549/HL/NHLBI NIH HHS/ -- R01 HL085453/HL/NHLBI NIH HHS/ -- R01 HL118342/HL/NHLBI NIH HHS/ -- R01HL085453/HL/NHLBI NIH HHS/ -- R01HL118342/HL/NHLBI NIH HHS/ -- R21 HL106134/HL/NHLBI NIH HHS/ -- U54 HL127672/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):450-4. doi: 10.1038/nature13807. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA. ; Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA. ; RG Reprograming and Gene Therapy, Institute of Experimental Hematology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany. ; 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02138, USA. ; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA. ; 1] Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA [2] Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA [3] Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Separation ; *Cell Transplantation ; Cytokine Receptor Common beta Subunit/deficiency/*genetics ; Female ; *Genetic Therapy ; Lung/*cytology/metabolism/pathology ; Macrophages, Alveolar/*metabolism/*transplantation ; Male ; Mice ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Pulmonary Alveolar Proteinosis/genetics/pathology/*therapy ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richardson, Sarah S -- Daniels, Cynthia R -- Gillman, Matthew W -- Golden, Janet -- Kukla, Rebecca -- Kuzawa, Christopher -- Rich-Edwards, Janet -- England -- Nature. 2014 Aug 14;512(7513):131-2. doi: 10.1038/512131a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University in Cambridge, Massachusetts, USA. ; Rutgers University in New Brunswick, New Jersey, USA. ; Harvard Medical School in Boston, Massachusetts, USA. ; Rutgers University in Camden, New Jersey, USA. ; Georgetown University in Washington DC, USA. ; Northwestern University in Evanston, Illinois, USA. ; Connors Center for Women's Health and Gender Biology at Harvard Medical School in Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119222" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Humans ; Male ; *Maternal Exposure/legislation & jurisprudence/prevention & control ; Pregnancy ; *Prenatal Exposure Delayed Effects ; Publications/standards ; Social Control Policies ; *Social Environment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-01-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leeman, Dena S -- Brunet, Anne -- P01 AG036695/AG/NIA NIH HHS/ -- England -- Nature. 2014 Jan 23;505(7484):488-90. doi: 10.1038/505488a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, the Cancer Biology Program, and the Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24451537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Estrogens/*metabolism ; Female ; Hematopoietic Stem Cells/*cytology/*metabolism ; Male ; Pregnancy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-29
    Description: Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976267/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976267/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Catherine N -- Reynell, Clare -- Gesslein, Bodil -- Hamilton, Nicola B -- Mishra, Anusha -- Sutherland, Brad A -- O'Farrell, Fergus M -- Buchan, Alastair M -- Lauritzen, Martin -- Attwell, David -- 075232/Wellcome Trust/United Kingdom -- G0500495/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Apr 3;508(7494):55-60. doi: 10.1038/nature13165. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK [2]. ; 1] Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen N, Denmark [2]. ; Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK. ; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK. ; 1] Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen N, Denmark [2] Department of Clinical Neurophysiology, Glostrup University Hospital, DK-2600 Glostrup, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/physiology ; Blood-Brain Barrier/pathology/physiopathology ; Brain Ischemia/pathology ; Capillaries/*cytology/drug effects ; Cell Death ; Cerebellum/blood supply ; Cerebral Cortex/blood supply/cytology ; Cerebrovascular Circulation/drug effects/*physiology ; Dinoprostone/metabolism ; Excitatory Amino Acid Antagonists/pharmacology ; Female ; Functional Neuroimaging ; Glutamic Acid/pharmacology ; Hydroxyeicosatetraenoic Acids/biosynthesis ; In Vitro Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Nitric Oxide/metabolism ; Pericytes/cytology/drug effects/pathology/*physiology ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Receptors, Glutamate/metabolism ; Signal Transduction/drug effects ; Stroke/pathology ; Vasoconstriction ; Vasodilation/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-01-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hall, Stephen S -- England -- Nature. 2014 Jan 2;505(7481):14-7. doi: 10.1038/505014a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York University.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24380939" target="_blank"〉PubMed〈/a〉
    Keywords: *Aggression ; Animals ; Canada ; *Epigenomics ; Female ; Humans ; Infant ; Male ; Pregnancy ; Prenatal Exposure Delayed Effects/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- England -- Nature. 2014 May 22;509(7501):414-7. doi: 10.1038/509414a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24848045" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Child, Preschool ; Clinical Trials as Topic ; Cytoplasm/metabolism ; Female ; Great Britain ; Humans ; Infant ; Leigh Disease/genetics/*pathology/*prevention & control ; Macaca mulatta ; Male ; *Mitochondria/genetics/pathology ; *Nuclear Transfer Techniques ; Ovum/cytology/metabolism/pathology ; Reproductive Medicine/*methods ; United States ; United States Food and Drug Administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-05-16
    Description: Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is essential for normal brain growth and cognitive function. Consistent with its importance in the brain, DHA is highly enriched in brain phospholipids. Despite being an abundant fatty acid in brain phospholipids, DHA cannot be de novo synthesized in brain and must be imported across the blood-brain barrier, but mechanisms for DHA uptake in brain have remained enigmatic. Here we identify a member of the major facilitator superfamily--Mfsd2a (previously an orphan transporter)--as the major transporter for DHA uptake into brain. Mfsd2a is found to be expressed exclusively in endothelium of the blood-brain barrier of micro-vessels. Lipidomic analysis indicates that Mfsd2a-deficient (Mfsd2a-knockout) mice show markedly reduced levels of DHA in brain accompanied by neuronal cell loss in hippocampus and cerebellum, as well as cognitive deficits and severe anxiety, and microcephaly. Unexpectedly, cell-based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine (LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC palmitate, but not LPCs with less than a 14-carbon acyl chain. Moreover, we determine that the phosphor-zwitterionic headgroup of LPC is critical for transport. Importantly, Mfsd2a-knockout mice have markedly reduced uptake of labelled LPC DHA, and other LPCs, from plasma into brain, demonstrating that Mfsd2a is required for brain uptake of DHA. Our findings reveal an unexpected essential physiological role of plasma-derived LPCs in brain growth and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Long N -- Ma, Dongliang -- Shui, Guanghou -- Wong, Peiyan -- Cazenave-Gassiot, Amaury -- Zhang, Xiaodong -- Wenk, Markus R -- Goh, Eyleen L K -- Silver, David L -- England -- Nature. 2014 May 22;509(7501):503-6. doi: 10.1038/nature13241. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857 Singapore. ; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857 Singapore. ; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Block MD7, 117597 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anxiety/physiopathology ; Biological Transport ; Blood-Brain Barrier/metabolism ; Brain/*metabolism/pathology/physiopathology ; Cognition Disorders/pathology/physiopathology ; Docosahexaenoic Acids/deficiency/*metabolism ; Endothelium, Vascular/metabolism ; Female ; Lysophosphatidylcholines/chemistry/metabolism ; Male ; Membrane Transport Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Knockout ; Microcephaly/metabolism/pathology ; Microvessels/metabolism ; Neurons/metabolism/pathology ; Organ Size ; Sodium/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-01-07
    Description: Recombinant adeno-associated viral (rAAV) vectors have shown early promise in clinical trials. The therapeutic transgene cassette can be packaged in different AAV capsid pseudotypes, each having a unique transduction profile. At present, rAAV capsid serotype selection for a specific clinical trial is based on effectiveness in animal models. However, preclinical animal studies are not always predictive of human outcome. Here, in an attempt to further our understanding of these discrepancies, we used a chimaeric human-murine liver model to compare directly the relative efficiency of rAAV transduction in human versus mouse hepatocytes in vivo. As predicted from preclinical and clinical studies, rAAV2 vectors functionally transduced mouse and human hepatocytes at equivalent but relatively low levels. However, rAAV8 vectors, which are very effective in many animal models, transduced human hepatocytes rather poorly-approximately 20 times less efficiently than mouse hepatocytes. In light of the limitations of the rAAV vectors currently used in clinical studies, we used the same murine chimaeric liver model to perform serial selection using a human-specific replication-competent viral library composed of DNA-shuffled AAV capsids. One chimaeric capsid composed of five different parental AAV capsids was found to transduce human primary hepatocytes at high efficiency in vitro and in vivo, and provided species-selected transduction in primary liver, cultured cells and a hepatocellular carcinoma xenograft model. This vector is an ideal clinical candidate and a reagent for gene modification of human xenotransplants in mouse models of human diseases. More importantly, our results suggest that humanized murine models may represent a more precise approach for both selecting and evaluating clinically relevant rAAV serotypes for gene therapeutic applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lisowski, Leszek -- Dane, Allison P -- Chu, Kirk -- Zhang, Yue -- Cunningham, Sharon C -- Wilson, Elizabeth M -- Nygaard, Sean -- Grompe, Markus -- Alexander, Ian E -- Kay, Mark A -- DK048252/DK/NIDDK NIH HHS/ -- HL064274/HL/NHLBI NIH HHS/ -- HL092096/HL/NHLBI NIH HHS/ -- R01 DK048252/DK/NIDDK NIH HHS/ -- R01 HL064274/HL/NHLBI NIH HHS/ -- R01 HL092096/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):382-6. doi: 10.1038/nature12875. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stanford University, School of Medicine, Departments of Pediatrics and Genetics, 269 Campus Drive, Stanford, California 94305, USA [2] Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, San Diego, California 92037, USA (L.L.); Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK (A.P.D.). ; 1] Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia [2] Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, San Diego, California 92037, USA (L.L.); Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK (A.P.D.). ; Stanford University, School of Medicine, Departments of Pediatrics and Genetics, 269 Campus Drive, Stanford, California 94305, USA. ; Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia. ; Yecuris Corporation, Portland, Oregon 97062, USA. ; Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon 97239, USA. ; 1] Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia [2] Discipline of Paediatrics and Child Health, The University of Sydney, 2145 New South Wales, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/metabolism ; Capsid Proteins/genetics/metabolism ; Carcinoma, Hepatocellular/genetics/pathology ; Cell Line, Tumor ; Cells, Cultured ; Chimera/genetics/metabolism ; Clinical Trials as Topic ; Dependovirus/*genetics/isolation & purification ; Disease Models, Animal ; Female ; Genetic Therapy/*methods ; Genetic Vectors/*genetics ; Hepatocytes/cytology/metabolism/pathology/transplantation ; Heterografts/*metabolism ; Humans ; Liver/cytology/*metabolism/pathology ; Male ; Mice ; Species Specificity ; Transduction, Genetic/*methods ; Transgenes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fields, R Douglas -- England -- Nature. 2014 Jun 19;510(7505):340. doi: 10.1038/510340a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24943947" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Experimentation ; Animals ; Biomedical Research/*methods ; Female ; Humans ; Male ; *National Institutes of Health (U.S.) ; *Research Design ; *Sex Characteristics ; *Sex Ratio
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-10-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2014 Oct 30;514(7524):546. doi: 10.1038/514546a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25355339" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*drug effects ; Animals ; Clinical Trials as Topic/*veterinary ; Dogs/*physiology ; Female ; Humans ; Longevity/*drug effects ; Male ; Mice ; Models, Animal ; Pets/*physiology ; Pilot Projects ; Sirolimus/administration & dosage/adverse effects/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-09-26
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fieni, Francesca -- Johnson, Derrick E -- Hudmon, Andy -- Kirichok, Yuriy -- R01 NS078171/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Sep 25;513(7519):E1-2. doi: 10.1038/nature13626.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California San Francisco, San Francisco, California 94158, USA. ; Department of Biochemistry and Molecular Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25254480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Female ; Mitochondria, Heart/*metabolism/*pathology ; Myocardium/*enzymology/*pathology ; *Stress, Physiological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-11-20
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429762/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429762/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muoio, Deborah M -- Newgard, Christopher B -- P01 DK058398/DK/NIDDK NIH HHS/ -- R01 DK089312/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):49-50. doi: 10.1038/nature14070. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, and the Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27701, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409152" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*metabolism ; Animals ; Diabetes Mellitus, Type 2/*metabolism ; Esters/*metabolism ; Fatty Acids/*metabolism ; Female ; Humans ; Male
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeuchi, Tomonori -- Morris, Richard G M -- England -- Nature. 2014 Sep 18;513(7518):323-4. doi: 10.1038/nature13745. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162529" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Hippocampus/*physiology ; Male ; Memory/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Callaway, Ewen -- Sutikna, Thomas -- Roberts, Richard -- Saptomo, Wahyu -- Brown, Peter -- Gee, Henry -- Dayton, Leigh -- Jungers, Bill -- Henneberg, Maciej -- Falk, Dean -- Martin, Robert -- Aiello, Leslie -- England -- Nature. 2014 Oct 23;514(7523):422-6. doi: 10.1038/514422a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25341771" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Caves ; Expeditions ; Female ; *Fossils ; Hominidae/*anatomy & histology/*classification ; Humans ; Indonesia ; Islands ; Microcephaly ; Skeleton ; Skull/anatomy & histology/pathology ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-09-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landecker, Hannah -- England -- Nature. 2014 Sep 11;513(7517):172. doi: 10.1038/513172b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Los Angeles, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209787" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Humans ; Male ; *Maternal Exposure ; Pregnancy ; *Prenatal Exposure Delayed Effects ; *Social Environment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-10-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomassen, Mary Jane -- Kavuru, Mani S -- England -- Nature. 2014 Oct 23;514(7523):438-40. doi: 10.1038/nature13758. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Greenville, North Carolina 27834, USA. ; Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania 19107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274303" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Transplantation ; Cytokine Receptor Common beta Subunit/*genetics ; Female ; *Genetic Therapy ; Lung/*cytology ; Macrophages, Alveolar/*metabolism/*transplantation ; Male ; Pulmonary Alveolar Proteinosis/*therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-02-21
    Description: Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murthy, Aditya -- Li, Yun -- Peng, Ivan -- Reichelt, Mike -- Katakam, Anand Kumar -- Noubade, Rajkumar -- Roose-Girma, Merone -- DeVoss, Jason -- Diehl, Lauri -- Graham, Robert R -- van Lookeren Campagne, Menno -- England -- Nature. 2014 Feb 27;506(7489):456-62. doi: 10.1038/nature13044. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; ITGR Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553140" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Autophagy/genetics ; Carrier Proteins/chemistry/*genetics/*metabolism ; Caspase 3/deficiency/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Crohn Disease/*genetics/pathology ; Cytokines/immunology ; Enzyme Activation ; Female ; Food Deprivation ; Humans ; Macrophages/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Polymorphism, Single Nucleotide/*genetics ; *Proteolysis ; Stress, Physiological ; Yersinia enterocolitica/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-02-28
    Description: The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where and when. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus to CA3 and then to CA1, the main hippocampal output. Genetic lesions of EC (ref. 3) and hippocampal dentate gyrus (ref. 4), CA3 (ref. 5) and CA1 (ref. 6) regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output. Here we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioural role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory--the ability of an animal to remember a conspecific--with no change in sociability or several other hippocampus-dependent behaviours, including spatial and contextual memory. These behavioural and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000264/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000264/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hitti, Frederick L -- Siegelbaum, Steven A -- F30 MH098633/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 3;508(7494):88-92. doi: 10.1038/nature13028. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University 1051 Riverside Drive, New York, New York 10032, USA. ; 1] Department of Neuroscience, Kavli Institute, College of Physicians and Surgeons, Columbia University 1051 Riverside Drive, New York, New York 10032, USA [2] Department of Pharmacology, Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University 1051 Riverside Drive, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572357" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/physiopathology ; CA2 Region, Hippocampal/cytology/*physiology ; Electrophysiology ; Female ; Integrases/genetics/metabolism ; Male ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Pyramidal Cells/physiology ; Schizophrenia/physiopathology ; *Social Behavior ; Space Perception/physiology ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-09-19
    Description: Gain-of-function mutations in the fibroblast growth factor receptor 3 gene (FGFR3) result in skeletal dysplasias, such as thanatophoric dysplasia and achondroplasia (ACH). The lack of disease models using human cells has hampered the identification of a clinically effective treatment for these diseases. Here we show that statin treatment can rescue patient-specific induced pluripotent stem cell (iPSC) models and a mouse model of FGFR3 skeletal dysplasia. We converted fibroblasts from thanatophoric dysplasia type I (TD1) and ACH patients into iPSCs. The chondrogenic differentiation of TD1 iPSCs and ACH iPSCs resulted in the formation of degraded cartilage. We found that statins could correct the degraded cartilage in both chondrogenically differentiated TD1 and ACH iPSCs. Treatment of ACH model mice with statin led to a significant recovery of bone growth. These results suggest that statins could represent a medical treatment for infants and children with TD1 and ACH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamashita, Akihiro -- Morioka, Miho -- Kishi, Hiromi -- Kimura, Takeshi -- Yahara, Yasuhito -- Okada, Minoru -- Fujita, Kaori -- Sawai, Hideaki -- Ikegawa, Shiro -- Tsumaki, Noriyuki -- England -- Nature. 2014 Sep 25;513(7519):507-11. doi: 10.1038/nature13775. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan. ; 1] Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan [2] Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan. ; Department of Obstetrics and Gynecology, Hyogo College of Medicine, Hyogo 663-8501, Japan. ; Laboratory of Bone and Joint Diseases, Center for Integrated Medical Sciences, RIKEN, Tokyo 108-8639, Japan. ; 1] Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan [2] Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231866" target="_blank"〉PubMed〈/a〉
    Keywords: Achondroplasia/*drug therapy/genetics/*pathology ; Animals ; Bone Development/drug effects ; Cartilage/cytology/drug effects/pathology ; Cell Differentiation ; Chondrocytes/cytology/pathology ; Disease Models, Animal ; Female ; Fluorobenzenes/administration & dosage/pharmacology/therapeutic use ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & ; dosage/pharmacology/*therapeutic use ; Induced Pluripotent Stem Cells/cytology/pathology ; Lovastatin/pharmacology/therapeutic use ; Male ; Mice ; Mice, Inbred C57BL ; Phenotype ; Pyrimidines/administration & dosage/pharmacology/therapeutic use ; Receptor, Fibroblast Growth Factor, Type 3/*deficiency/*genetics ; Rosuvastatin Calcium ; Sulfonamides/administration & dosage/pharmacology/therapeutic use ; Thanatophoric Dysplasia/*drug therapy/genetics/*pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Ivan -- England -- Nature. 2014 May 15;509(7500):294-6. doi: 10.1038/509294a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Galanin/*metabolism ; Male ; Maternal Behavior/*physiology ; Neurons/*metabolism ; Paternal Behavior/*physiology ; Preoptic Area/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-09-16
    Description: The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Chao -- Liu, Degang -- Li, Liwei -- Wempe, Michael F -- Guin, Sunny -- Khanna, May -- Meier, Jeremy -- Hoffman, Brenton -- Owens, Charles -- Wysoczynski, Christina L -- Nitz, Matthew D -- Knabe, William E -- Ahmed, Mansoor -- Brautigan, David L -- Paschal, Bryce M -- Schwartz, Martin A -- Jones, David N M -- Ross, David -- Meroueh, Samy O -- Theodorescu, Dan -- CA075115/CA/NCI NIH HHS/ -- CA091846/CA/NCI NIH HHS/ -- CA104106/CA/NCI NIH HHS/ -- GM47214/GM/NIGMS NIH HHS/ -- P01 CA104106/CA/NCI NIH HHS/ -- P30 CA044579/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- R01 CA075115/CA/NCI NIH HHS/ -- R01 CA143971/CA/NCI NIH HHS/ -- T32 GM007635/GM/NIGMS NIH HHS/ -- UL1 TR001082/TR/NCATS NIH HHS/ -- UL1TR001082/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):443-7. doi: 10.1038/nature13713. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA. ; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Cardiology, Yale University, New Haven, Connecticut 06511, USA [2] Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA. ; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Chemistry and Chemical Biology, Indiana University - Purdue University, Indianapolis, Indiana 46202, USA. ; 1] Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA [2] Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA [3] University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219851" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Computer Simulation ; *Drug Screening Assays, Antitumor ; Female ; GTPase-Activating Proteins/metabolism ; Humans ; Mice ; Models, Molecular ; *Molecular Targeted Therapy ; Neoplasms/drug therapy/enzymology/metabolism/pathology ; Protein Binding/drug effects ; Signal Transduction/drug effects ; Small Molecule Libraries/*chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ral GTP-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; ras Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreno, Eduardo -- England -- Nature. 2014 May 22;509(7501):435-6. doi: 10.1038/nature13337. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, IZB, University of Bern, Bern CH-3012, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Transformation, Neoplastic ; Female ; Hematopoietic Stem Cells/*cytology ; Humans ; Male ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*pathology ; Thymus Gland/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-01-28
    Description: To resolve the mechanisms that switch competition to cooperation is key to understanding biological organization. This is particularly relevant for intrasexual competition, which often leads to males harming females. Recent theory proposes that kin selection may modulate female harm by relaxing competition among male relatives. Here we experimentally manipulate the relatedness of groups of male Drosophila melanogaster competing over females to demonstrate that, as expected, within-group relatedness inhibits male competition and female harm. Females exposed to groups of three brothers unrelated to the female had higher lifetime reproductive success and slower reproductive ageing compared to females exposed to groups of three males unrelated to each other. Triplets of brothers also fought less with each other, courted females less intensively and lived longer than triplets of unrelated males. However, associations among brothers may be vulnerable to invasion by minorities of unrelated males: when two brothers were matched with an unrelated male, the unrelated male sired on average twice as many offspring as either brother. These results demonstrate that relatedness can profoundly affect fitness through its modulation of intrasexual competition, as flies plastically adjust sexual behaviour in a manner consistent with kin-selection theory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carazo, Pau -- Tan, Cedric K W -- Allen, Felicity -- Wigby, Stuart -- Pizzari, Tommaso -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 Jan 30;505(7485):672-5. doi: 10.1038/nature12949. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK [2]. ; Edward Grey Institute, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463521" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Competitive Behavior/physiology ; *Cooperative Behavior ; Drosophila melanogaster/genetics/*physiology ; Female ; Heredity/physiology ; Longevity/genetics/physiology ; Male ; Models, Biological ; Reproduction/physiology ; Sexual Behavior, Animal/*physiology ; *Siblings
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Andrew G -- England -- Nature. 2014 Apr 24;508(7497):463-5. doi: 10.1038/508463a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evolution, Molecular ; Female ; Gene Dosage/*genetics ; Humans ; Male ; Mammals/*genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-04-04
    Description: Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Kilian V M -- Salah, Eidarus -- Radic, Branka -- Gridling, Manuela -- Elkins, Jonathan M -- Stukalov, Alexey -- Jemth, Ann-Sofie -- Gokturk, Camilla -- Sanjiv, Kumar -- Stromberg, Kia -- Pham, Therese -- Berglund, Ulrika Warpman -- Colinge, Jacques -- Bennett, Keiryn L -- Loizou, Joanna I -- Helleday, Thomas -- Knapp, Stefan -- Superti-Furga, Giulio -- 092809/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- F 4711/Austrian Science Fund FWF/Austria -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Apr 10;508(7495):222-7. doi: 10.1038/nature13194. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17121 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695225" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoquinolines/pharmacology ; Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Colonic Neoplasms/drug therapy/genetics/pathology ; Crystallization ; DNA Breaks, Single-Stranded/drug effects ; DNA Repair ; DNA Repair Enzymes/*antagonists & inhibitors/biosynthesis/chemistry/*metabolism ; Disease Models, Animal ; Female ; Homeostasis/drug effects ; Humans ; Mice ; Mice, SCID ; Models, Molecular ; Nucleotides/metabolism ; Phosphoric Monoester Hydrolases/*antagonists & ; inhibitors/biosynthesis/chemistry/*metabolism ; Protein Conformation ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Proteomics ; Proto-Oncogene Proteins/genetics ; Pyrazoles/chemistry/*pharmacology ; Pyridines/chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-04-04
    Description: Cancer genome sequencing studies indicate that a single breast cancer typically harbours multiple genetically distinct subclones. As carcinogenesis involves a breakdown in the cell-cell cooperation that normally maintains epithelial tissue architecture, individual subclones within a malignant microenvironment are commonly depicted as self-interested competitors. Alternatively, breast cancer subclones might interact cooperatively to gain a selective growth advantage in some cases. Although interclonal cooperation has been shown to drive tumorigenesis in fruitfly models, definitive evidence for functional cooperation between epithelial tumour cell subclones in mammals is lacking. Here we use mouse models of breast cancer to show that interclonal cooperation can be essential for tumour maintenance. Aberrant expression of the secreted signalling molecule Wnt1 generates mixed-lineage mammary tumours composed of basal and luminal tumour cell subtypes, which purportedly derive from a bipotent malignant progenitor cell residing atop a tumour cell hierarchy. Using somatic Hras mutations as clonal markers, we show that some Wnt tumours indeed conform to a hierarchical configuration, but that others unexpectedly harbour genetically distinct basal Hras mutant and luminal Hras wild-type subclones. Both subclones are required for efficient tumour propagation, which strictly depends on luminally produced Wnt1. When biclonal tumours were challenged with Wnt withdrawal to simulate targeted therapy, analysis of tumour regression and relapse revealed that basal subclones recruit heterologous Wnt-producing cells to restore tumour growth. Alternatively, in the absence of a substitute Wnt source, the original subclones often evolve to rescue Wnt pathway activation and drive relapse, either by restoring cooperation or by switching to a defector strategy. Uncovering similar modes of interclonal cooperation in human cancers may inform efforts aimed at eradicating tumour cell communities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050741/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050741/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cleary, Allison S -- Leonard, Travis L -- Gestl, Shelley A -- Gunther, Edward J -- R01 CA152222/CA/NCI NIH HHS/ -- England -- Nature. 2014 Apr 3;508(7494):113-7. doi: 10.1038/nature13187.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA [2] Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Hershey, Pennsylvania 17033, USA. ; 1] Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA [2] Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Hershey, Pennsylvania 17033, USA [3] Department of Medicine (Hematology/Oncology), Pennsylvania State University College of Medicine, Hershey, Hershey, Pennsylvania 17033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Breast Neoplasms/genetics/*metabolism/*pathology ; Cell Lineage ; Cell Proliferation ; Clone Cells/metabolism/pathology ; Disease Models, Animal ; Female ; Mice ; Mosaicism ; Mutation ; Neoplasm Recurrence, Local/genetics/metabolism/pathology ; Neoplastic Stem Cells/metabolism/pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Wnt Signaling Pathway ; Wnt1 Protein/deficiency/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-06-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Irma -- Dynlacht, Brian D -- England -- Nature. 2014 Jun 5;510(7503):40-2. doi: 10.1038/510040a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calmodulin-Binding Proteins/*deficiency/*genetics ; Cilia/*genetics/*physiology ; Female ; Male ; MicroRNAs/*genetics ; Morphogenesis/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2014-03-07
    Description: The generation of acoustic communication signals is widespread across the animal kingdom, and males of many species, including Drosophilidae, produce patterned courtship songs to increase their chance of success with a female. For some animals, song structure can vary considerably from one rendition to the next; neural noise within pattern generating circuits is widely assumed to be the primary source of such variability, and statistical models that incorporate neural noise are successful at reproducing the full variation present in natural songs. In direct contrast, here we demonstrate that much of the pattern variability in Drosophila courtship song can be explained by taking into account the dynamic sensory experience of the male. In particular, using a quantitative behavioural assay combined with computational modelling, we find that males use fast modulations in visual and self-motion signals to pattern their songs, a relationship that we show is evolutionarily conserved. Using neural circuit manipulations, we also identify the pathways involved in song patterning choices and show that females are sensitive to song features. Our data not only demonstrate that Drosophila song production is not a fixed action pattern, but establish Drosophila as a valuable new model for studies of rapid decision-making under both social and naturalistic conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coen, Philip -- Clemens, Jan -- Weinstein, Andrew J -- Pacheco, Diego A -- Deng, Yi -- Murthy, Mala -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 13;507(7491):233-7. doi: 10.1038/nature13131. Epub 2014 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Physics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24598544" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Communication ; Animals ; *Courtship ; Cues ; Decision Making/physiology ; Drosophila melanogaster/anatomy & histology/*physiology ; Female ; Male ; Neural Pathways ; Sexual Behavior, Animal/physiology ; *Vibration ; Wings, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-10-03
    Description: The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhan, Shuai -- Zhang, Wei -- Niitepold, Kristjan -- Hsu, Jeremy -- Haeger, Juan Fernandez -- Zalucki, Myron P -- Altizer, Sonia -- de Roode, Jacobus C -- Reppert, Steven M -- Kronforst, Marcus R -- GM086794-02S1/GM/NIGMS NIH HHS/ -- R01 GM086794/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):317-21. doi: 10.1038/nature13812. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA [3] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland. ; Department of Biology, Stanford University, Stanford, California 94305, USA. ; Departamento de Botanica, Ecologia y Fisiologia Vegetal, Universidad de Cordoba, 14071 Cordoba, Spain. ; School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274300" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Biological Evolution ; Butterflies/*genetics/*physiology ; Collagen Type IV/metabolism ; Female ; Flight, Animal ; Male ; Mice ; Muscles/physiology ; Myosin Type V/genetics/metabolism ; North America ; Phenotype ; Pigmentation/*genetics/*physiology ; Selection, Genetic ; Wings, Animal/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-04-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Virginia -- England -- Nature. 2014 Apr 17;508(7496):296-7. doi: 10.1038/508296a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24740043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbohydrate Metabolism/genetics ; Depression/genetics ; Epigenesis, Genetic/genetics ; Female ; Heredity/*genetics ; Hippocampus/metabolism ; Humans ; Male ; Mice ; MicroRNAs/*analysis/blood/*genetics ; Models, Genetic ; Parent-Child Relations ; Receptors, Glucocorticoid/metabolism ; Spermatozoa/*metabolism ; Stress, Psychological/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marris, Emma -- England -- Nature. 2014 Feb 13;506(7487):140-1. doi: 10.1038/506140a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522579" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Canada ; Endangered Species/*statistics & numerical data ; Female ; Freezing ; Inbreeding ; *Islands ; Lakes ; Male ; Population Dynamics ; Predatory Behavior ; Ruminants/physiology ; United States ; Wolves/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-03-29
    Description: Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124901/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124901/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Eunju -- Wu, Guangming -- Ma, Hong -- Li, Ying -- Tippner-Hedges, Rebecca -- Tachibana, Masahito -- Sparman, Michelle -- Wolf, Don P -- Scholer, Hans R -- Mitalipov, Shoukhrat -- P51 OD011092/OD/NIH HHS/ -- P51OD011092/OD/NIH HHS/ -- R01 EY021214/EY/NEI NIH HHS/ -- R01 HD057121/HD/NICHD NIH HHS/ -- R01 HD059946/HD/NICHD NIH HHS/ -- R01 HD063276/HD/NICHD NIH HHS/ -- R01EY021214/EY/NEI NIH HHS/ -- R01HD057121/HD/NICHD NIH HHS/ -- R01HD059946/HD/NICHD NIH HHS/ -- R01HD063276/HD/NICHD NIH HHS/ -- England -- Nature. 2014 May 1;509(7498):101-4. doi: 10.1038/nature13134. Epub 2014 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA. ; Max Planck Institute for Molecular Biomedicine, Munster 48149, Germany. ; 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006, USA [2] South Miyagi Medical Center, Miyagi 989-1253, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; *Cellular Reprogramming ; Cloning, Organism ; Cytoplasm/*metabolism ; Embryo, Mammalian/*cytology ; Embryonic Stem Cells/*cytology ; Female ; Induced Pluripotent Stem Cells/*cytology ; *Interphase ; Male ; Metaphase ; Mice ; *Nuclear Transfer Techniques
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-07-06
    Description: The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Rios, Javier -- Duchesne, Amandine -- Speziale, Dario -- Andrey, Guillaume -- Peterson, Kevin A -- Germann, Philipp -- Unal, Erkan -- Liu, Jing -- Floriot, Sandrine -- Barbey, Sarah -- Gallard, Yves -- Muller-Gerbl, Magdalena -- Courtney, Andrew D -- Klopp, Christophe -- Rodriguez, Sabrina -- Ivanek, Robert -- Beisel, Christian -- Wicking, Carol -- Iber, Dagmar -- Robert, Benoit -- McMahon, Andrew P -- Duboule, Denis -- Zeller, Rolf -- NS 033642/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):46-51. doi: 10.1038/nature13289. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2]. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [3]. ; Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland. ; School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland. ; Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA. ; Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France. ; Institut National de la Recherche Agronomique, Domaine Experimental du Pin au Haras, F-61310 Exmes, France. ; Institute of Anatomy, Department Biomedicine, University of Basel, CH-4056 Basel, Switzerland. ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Institut National de la Recherche Agronomique, Biometrie et Intelligence Artificielle, F-31326 Castanet-Tolosan, France. ; 1] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [2] Institut National de la Recherche Agronomique, Laboratoire d'Ingenierie des Systemes Biologiques et des Procedes, F-31077 Toulouse, France. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut Pasteur, Genetique Moleculaire de la Morphogenese and Centre National de la Recherche Scientifique URA-2578, F-75015 Paris, France. ; 1] School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland [2] Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Patterning ; Cattle ; Extremities/*anatomy & histology/*embryology ; Female ; Gene Expression Regulation, Developmental/genetics ; Hedgehog Proteins/*metabolism ; Limb Buds/anatomy & histology/embryology ; Male ; Mesoderm/metabolism ; Mice ; Mice, Transgenic ; Receptors, Cell Surface/genetics/*metabolism ; Regulatory Sequences, Nucleic Acid/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coffelt, Seth B -- de Visser, Karin E -- England -- Nature. 2014 Mar 6;507(7490):48-9. doi: 10.1038/nature13062. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Inflammation/*etiology ; Lung Neoplasms/*secondary ; Male ; Melanoma/*blood supply/*pathology ; Skin Neoplasms/*pathology ; Sunburn/*etiology ; *Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, Courtney -- England -- Nature. 2014 Dec 4;516(7529):S10-1. doi: 10.1038/516S10a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma, Hepatocellular/drug therapy/*epidemiology/*genetics/physiopathology ; Drug Discovery/trends ; Female ; Genetic Predisposition to Disease ; Hormones/metabolism ; Humans ; Inflammation ; Liver Neoplasms/drug therapy/*epidemiology/*genetics/physiopathology ; Male ; Mice ; Prolactin/metabolism ; Risk Factors ; Sex Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-01-31
    Description: We recently discovered an unexpected phenomenon of somatic cell reprogramming into pluripotent cells by exposure to sublethal stimuli, which we call stimulus-triggered acquisition of pluripotency (STAP). This reprogramming does not require nuclear transfer or genetic manipulation. Here we report that reprogrammed STAP cells, unlike embryonic stem (ES) cells, can contribute to both embryonic and placental tissues, as seen in a blastocyst injection assay. Mouse STAP cells lose the ability to contribute to the placenta as well as trophoblast marker expression on converting into ES-like stem cells by treatment with adrenocorticotropic hormone (ACTH) and leukaemia inhibitory factor (LIF). In contrast, when cultured with Fgf4, STAP cells give rise to proliferative stem cells with enhanced trophoblastic characteristics. Notably, unlike conventional trophoblast stem cells, the Fgf4-induced stem cells from STAP cells contribute to both embryonic and placental tissues in vivo and transform into ES-like cells when cultured with LIF-containing medium. Taken together, the developmental potential of STAP cells, shown by chimaera formation and in vitro cell conversion, indicates that they represent a unique state of pluripotency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obokata, Haruko -- Sasai, Yoshiki -- Niwa, Hitoshi -- Kadota, Mitsutaka -- Andrabi, Munazah -- Takata, Nozomu -- Tokoro, Mikiko -- Terashita, Yukari -- Yonemura, Shigenobu -- Vacanti, Charles A -- Wakayama, Teruhiko -- England -- Nature. 2014 Jan 30;505(7485):676-80. doi: 10.1038/nature12969.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory for Cellular Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [2] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [3] Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; 1] Laboratory for Cellular Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [2] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Electron Microscopy Laboratory, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [2] Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476891" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenocorticotropic Hormone/pharmacology ; Animals ; *Cell Differentiation/drug effects/genetics ; Cell Lineage/drug effects ; *Cellular Reprogramming/drug effects ; Embryonic Stem Cells/*cytology/drug effects/metabolism ; Epigenesis, Genetic/drug effects/genetics ; Female ; Fibroblast Growth Factor 4/pharmacology ; Induced Pluripotent Stem Cells/*cytology/drug effects ; Leukemia Inhibitory Factor/pharmacology ; Mice ; Mice, Inbred ICR ; Placenta/*cytology/drug effects ; Pregnancy ; Trophoblasts/*cytology/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-01-17
    Description: Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural responses during both perception and production in an overt word-repetition task. Using a non-word transformation task, we show that bilateral sensory-motor responses can perform transformations between speech-perception- and speech-production-based representations. These results establish a bilateral sublexical speech sensory-motor system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000028/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000028/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cogan, Gregory B -- Thesen, Thomas -- Carlson, Chad -- Doyle, Werner -- Devinsky, Orrin -- Pesaran, Bijan -- R03 DC010475/DC/NIDCD NIH HHS/ -- R03-DC010475/DC/NIDCD NIH HHS/ -- England -- Nature. 2014 Mar 6;507(7490):94-8. doi: 10.1038/nature12935. Epub 2014 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Science, New York University, New York, New York 10003, USA. ; Department of Neurology, New York University School of Medicine, New York, New York 10016, USA. ; 1] Department of Neurology, New York University School of Medicine, New York, New York 10016, USA [2] Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA. ; 1] Department of Neurology, New York University School of Medicine, New York, New York 10016, USA [2] Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24429520" target="_blank"〉PubMed〈/a〉
    Keywords: Brain/*anatomy & histology/*physiology ; Brain Mapping ; Female ; Frontal Lobe/physiology ; Functional Laterality/physiology ; Hearing/physiology ; Humans ; Language ; Male ; Models, Neurological ; Psychomotor Performance/*physiology ; Speech/*physiology ; Speech Perception/*physiology ; Temporal Lobe/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-02-28
    Description: Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bald, Tobias -- Quast, Thomas -- Landsberg, Jennifer -- Rogava, Meri -- Glodde, Nicole -- Lopez-Ramos, Dorys -- Kohlmeyer, Judith -- Riesenberg, Stefanie -- van den Boorn-Konijnenberg, Debby -- Homig-Holzel, Cornelia -- Reuten, Raphael -- Schadow, Benjamin -- Weighardt, Heike -- Wenzel, Daniela -- Helfrich, Iris -- Schadendorf, Dirk -- Bloch, Wilhelm -- Bianchi, Marco E -- Lugassy, Claire -- Barnhill, Raymond L -- Koch, Manuel -- Fleischmann, Bernd K -- Forster, Irmgard -- Kastenmuller, Wolfgang -- Kolanus, Waldemar -- Holzel, Michael -- Gaffal, Evelyn -- Tuting, Thomas -- England -- Nature. 2014 Mar 6;507(7490):109-13. doi: 10.1038/nature13111. Epub 2014 Feb 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, 53115 Bonn, Germany. ; Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany. ; Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany. ; Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany. ; Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany. ; Institute for Physiology I, Life & Brain Center, University of Bonn, 53105 Bonn, Germany. ; Department of Dermatology, University Hospital Essen, 45122 Essen, Germany. ; Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany. ; Division of Genetics and Cell Biology, San Raffaele University and Scientific Institute, 20132 Milan, Italy. ; Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, California 90095, USA. ; Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, 53105 Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572365" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement/radiation effects ; Cell Transformation, Neoplastic/radiation effects ; Disease Models, Animal ; Disease Progression ; Female ; HMGB1 Protein/metabolism ; Immunity, Innate/radiation effects ; Inflammation/*etiology ; Keratinocytes/metabolism/pathology/radiation effects ; Lung Neoplasms/blood supply/etiology/*secondary ; Male ; Melanocytes/pathology/radiation effects ; Melanoma/*blood supply/etiology/*pathology ; Mice ; Mice, Inbred C57BL ; Neovascularization, Pathologic/etiology ; Neutrophils/immunology/metabolism ; Skin Neoplasms/blood supply/etiology/*pathology ; Sunburn/complications/*etiology ; Toll-Like Receptor 4/metabolism ; *Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-01-31
    Description: Here we report a unique cellular reprogramming phenomenon, called stimulus-triggered acquisition of pluripotency (STAP), which requires neither nuclear transfer nor the introduction of transcription factors. In STAP, strong external stimuli such as a transient low-pH stressor reprogrammed mammalian somatic cells, resulting in the generation of pluripotent cells. Through real-time imaging of STAP cells derived from purified lymphocytes, as well as gene rearrangement analysis, we found that committed somatic cells give rise to STAP cells by reprogramming rather than selection. STAP cells showed a substantial decrease in DNA methylation in the regulatory regions of pluripotency marker genes. Blastocyst injection showed that STAP cells efficiently contribute to chimaeric embryos and to offspring via germline transmission. We also demonstrate the derivation of robustly expandable pluripotent cell lines from STAP cells. Thus, our findings indicate that epigenetic fate determination of mammalian cells can be markedly converted in a context-dependent manner by strong environmental cues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obokata, Haruko -- Wakayama, Teruhiko -- Sasai, Yoshiki -- Kojima, Koji -- Vacanti, Martin P -- Niwa, Hitoshi -- Yamato, Masayuki -- Vacanti, Charles A -- England -- Nature. 2014 Jan 30;505(7485):641-7. doi: 10.1038/nature12968.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Laboratory for Cellular Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan [3] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; 1] Laboratory for Genomic Reprogramming, RIKEN Center for Developmental biology, Kobe 650-0047, Japan [2] Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan. ; Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Laboratory for Tissue Engineering and Regenerative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Pathology, Irwin Army Community Hospital, Fort Riley, Kansas 66442, USA. ; Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental biology, Kobe 650-0047, Japan. ; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo 162-8666, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476887" target="_blank"〉PubMed〈/a〉
    Keywords: Acids/*pharmacology ; Animals ; Antigens, CD45/metabolism ; Cell Dedifferentiation/drug effects ; Cell Proliferation ; Cellular Reprogramming/*drug effects ; Chimera/metabolism ; DNA Methylation/drug effects ; Embryonic Stem Cells/cytology/metabolism ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Hydrogen-Ion Concentration ; Induced Pluripotent Stem Cells/*cytology/*drug effects/metabolism ; Lymphocytes/cytology/drug effects/metabolism ; Male ; Mice ; Mice, Inbred ICR ; Octamer Transcription Factor-3/metabolism ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-07-18
    Description: Generating engraftable human haematopoietic cells from autologous tissues is a potential route to new therapies for blood diseases. However, directed differentiation of pluripotent stem cells yields haematopoietic cells that engraft poorly. Here, we have devised a method to phenocopy the vascular-niche microenvironment of haemogenic cells, thereby enabling reprogramming of human endothelial cells into engraftable haematopoietic cells without transition through a pluripotent intermediate. Highly purified non-haemogenic human umbilical vein endothelial cells or adult dermal microvascular endothelial cells were transduced with the transcription factors FOSB, GFI1, RUNX1 and SPI1 (hereafter referred to as FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of haematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPPs). These endothelial cells that have been reprogrammed into human MPPs (rEC-hMPPs) acquire colony-forming-cell potential and durably engraft into immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (natural killer and B cell) progenies. Conditional expression of FGRS transgenes, combined with vascular induction, activates endogenous FGRS genes, endowing rEC-hMPPs with a transcriptional and functional profile similar to that of self-renewing MPPs. Our approach underscores the role of inductive cues from the vascular niche in coordinating and sustaining haematopoietic specification and may prove useful for engineering autologous haematopoietic grafts to treat inherited and acquired blood disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandler, Vladislav M -- Lis, Raphael -- Liu, Ying -- Kedem, Alon -- James, Daylon -- Elemento, Olivier -- Butler, Jason M -- Scandura, Joseph M -- Rafii, Shahin -- CA159175/CA/NCI NIH HHS/ -- CA163167/CA/NCI NIH HHS/ -- HL055748/HL/NHLBI NIH HHS/ -- HL119872/HL/NHLBI NIH HHS/ -- R01 DK095039/DK/NIDDK NIH HHS/ -- R01 HL097797/HL/NHLBI NIH HHS/ -- R01 HL115128/HL/NHLBI NIH HHS/ -- R01 HL119872/HL/NHLBI NIH HHS/ -- R01DK095039/DK/NIDDK NIH HHS/ -- R01HL097797/HL/NHLBI NIH HHS/ -- R01HL119872/HL/NHLBI NIH HHS/ -- U01 HL099997/HL/NHLBI NIH HHS/ -- U01-HL099997/HL/NHLBI NIH HHS/ -- U54 CA163167/CA/NCI NIH HHS/ -- U54CA163167/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):312-8. doi: 10.1038/nature13547. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA. ; 1] Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA [2] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Medicine, Hematology-Oncology, Weill Cornell Medical College and the New York Presbyterian Hospital, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030167" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/metabolism/transplantation ; Animals ; Aorta ; Cell Lineage ; *Cellular Microenvironment ; *Cellular Reprogramming ; Endothelial Cells/*cytology/metabolism ; Female ; Gene Expression Regulation ; Gonads ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Lymphocytes/cytology ; Mesonephros ; Mice ; Multipotent Stem Cells/*cytology/metabolism/transplantation ; Myeloid Cells/cytology ; Pluripotent Stem Cells ; Time Factors ; Transcription Factors/genetics/metabolism ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-05-16
    Description: Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between 'young' bone-marrow-derived and 'old' thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martins, Vera C -- Busch, Katrin -- Juraeva, Dilafruz -- Blum, Carmen -- Ludwig, Carolin -- Rasche, Volker -- Lasitschka, Felix -- Mastitsky, Sergey E -- Brors, Benedikt -- Hielscher, Thomas -- Fehling, Hans Joerg -- Rodewald, Hans-Reimer -- England -- Nature. 2014 May 22;509(7501):465-70. doi: 10.1038/nature13317. Epub 2014 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany [2] Institute of Immunology, University of Ulm, D-89081 Ulm, Germany. ; Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany. ; Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany. ; Institute of Immunology, University of Ulm, D-89081 Ulm, Germany. ; Core Facility Small Animal MRI, University of Ulm, D-89081 Ulm, Germany. ; Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany. ; Division of Biostatistics, German Cancer Research Center, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828041" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Movement ; *Cell Transformation, Neoplastic/genetics ; Disease Progression ; Female ; Gene Expression Regulation, Neoplastic ; HMGA Proteins/genetics ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics/*pathology ; Receptor, Notch1/genetics ; T-Lymphocytes/cytology/metabolism/pathology ; Thymus Gland/*cytology/pathology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Stephen H -- Crevecoeur, Frederic -- England -- Nature. 2014 May 1;509(7498):38-9. doi: 10.1038/509038a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24784211" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Feedback, Sensory/*physiology ; Female ; Male ; Motor Skills/*physiology ; Movement/*physiology ; Neural Inhibition/*physiology ; Presynaptic Terminals/*physiology ; Spinal Cord/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...