ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-20
    Description: The transcription factor TFIID contains the TATA box binding protein (TBP) and multiple TBP-associated factors (TAFs). Here, the association of TFIID components with promoters that either are dependent on multiple TAFs (TAFdep) or have no apparent TAF requirement (TAFind) is analyzed in yeast. At TAFdep promoters, TAFs are present at levels comparable to that of TBP, whereas at TAFind promoters, TAFs are present at levels that approximate background. After inactivation of several general transcription factors, including TBP, TAFs are still recruited by activators to TAFdep promoters. The results reveal two classes of promoters: at TAFind promoters, TBP is recruited in the apparent absence of TAFs, whereas at TAFdep promoters, TAFs are co-recruited with TBP in a manner consistent with direct activator-TAF interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, X Y -- Bhaumik, S R -- Green, M R -- GM33977/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 May 19;288(5469):1242-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10817999" target="_blank"〉PubMed〈/a〉
    Keywords: Cross-Linking Reagents ; DNA/chemistry ; DNA-Binding Proteins/genetics/metabolism ; Formaldehyde ; Mutation ; Precipitin Tests ; *Promoter Regions, Genetic ; Saccharomyces cerevisiae/*genetics ; TATA Box ; TATA-Box Binding Protein ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription Factors, TFII/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-04
    Description: Many hematopoietic cells undergo apoptosis when deprived of specific cytokines, and this process requires de novo RNA/protein synthesis. Using DNA microarrays to analyze interleukin-3 (IL-3)-dependent murine FL5.12 pro-B cells, we found that the gene undergoing maximal transcriptional induction after cytokine withdrawal is 24p3, which encodes a secreted lipocalin. Conditioned medium from IL-3-deprived FL5.12 cells contained 24p3 and induced apoptosis in naive FL5.12 cells even when IL-3 was present. 24p3 also induced apoptosis in a wide variety of leukocytes but not other cell types. Apoptotic sensitivity correlated with the presence of a putative 24p3 cell surface receptor. We conclude that IL-3 deprivation activates 24p3 transcription, leading to synthesis and secretion of 24p3, which induces apoptosis through an autocrine pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devireddy, L R -- Teodoro, J G -- Richard, F A -- Green, M R -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):829-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486081" target="_blank"〉PubMed〈/a〉
    Keywords: Acute-Phase Proteins/*genetics/*metabolism ; Animals ; *Apoptosis/drug effects ; Autocrine Communication ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Culture Media, Conditioned ; Dexamethasone/pharmacology ; *Gene Expression Regulation ; Humans ; Insulin-Like Growth Factor I/pharmacology ; Interleukin-3/*metabolism ; Interleukins/metabolism ; Leukocytes/cytology/*physiology ; Lipocalins ; Mice ; Oligonucleotide Array Sequence Analysis ; Oncogene Proteins/*genetics/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; Transcription, Genetic ; Tumor Cells, Cultured ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-10-09
    Description: Short RNA aptamers that specifically bind to a wide variety of ligands in vitro can be isolated from randomized pools of RNA. Here it is shown that small molecule aptamers also bound their ligand in vivo, enabling development of a method for controlling gene expression in living cells. Insertion of a small molecule aptamer into the 5' untranslated region of a messenger RNA allowed its translation to be repressible by ligand addition in vitro as well as in mammalian cells. The ability of small molecules to control expression of specific genes could facilitate studies in many areas of biology and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werstuck, G -- Green, M R -- New York, N.Y. -- Science. 1998 Oct 9;282(5387):296-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, 373 Plantation Street, Suite 309, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9765156" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*metabolism/pharmacology ; Base Sequence ; Benzimidazoles/pharmacology ; Bisbenzimidazole/*metabolism/pharmacology ; CHO Cells ; Cricetinae ; Drug Resistance, Microbial ; Escherichia coli/genetics ; *Gene Expression Regulation/drug effects ; Kanamycin/metabolism/pharmacology ; Ligands ; Molecular Sequence Data ; Protein Biosynthesis/drug effects ; RNA/*metabolism ; RNA, Messenger/genetics ; Tobramycin/metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-22
    Description: Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X chromosome (Deltam) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Deltam female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967734/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967734/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Jongdae -- Bossenz, Michael -- Chung, Young -- Ma, Hong -- Byron, Meg -- Taniguchi-Ishigaki, Naoko -- Zhu, Xiaochun -- Jiao, Baowei -- Hall, Lisa L -- Green, Michael R -- Jones, Stephen N -- Hermans-Borgmeyer, Irm -- Lawrence, Jeanne B -- Bach, Ingolf -- 5 P30 DK32520/DK/NIDDK NIH HHS/ -- DK32520/DK/NIDDK NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 CA131158/CA/NCI NIH HHS/ -- R01 CA131158-04/CA/NCI NIH HHS/ -- R01 GM033977/GM/NIGMS NIH HHS/ -- R01 GM053234/GM/NIGMS NIH HHS/ -- R01CA131158/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Oct 21;467(7318):977-81. doi: 10.1038/nature09457.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962847" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Blastocyst/metabolism ; Cell Line ; Chromosomes, Mammalian/*genetics ; Embryo Loss/genetics ; Fathers ; Female ; Gene Silencing ; *Genomic Imprinting ; Male ; Mice ; Mice, Transgenic ; *Mothers ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Repressor Proteins/deficiency/genetics/*metabolism ; Ubiquitin-Protein Ligases ; X Chromosome/*genetics ; X Chromosome Inactivation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-05-05
    Description: In response to DNA damage, eukaryotic cells initiate a complex signalling pathway, termed the DNA damage response (DDR), which coordinates cell cycle arrest with DNA repair. Studies have shown that oncogene-induced senescence, which provides a barrier to tumour development, involves activation of the DDR. Using a genome-wide RNA interference (RNAi) screen, we have identified 17 factors required for oncogenic BRAF to induce senescence in primary fibroblasts and melanocytes. One of these factors is an F-box protein, FBXO31, a candidate tumour suppressor encoded in 16q24.3, a region in which there is loss of heterozygosity in breast, ovarian, hepatocellular and prostate cancers. Here we study the cellular role of FBXO31, identify its target substrate and determine the basis for its growth inhibitory activity. We show that ectopic expression of FBXO31 acts through a proteasome-directed pathway to mediate the degradation of cyclin D1, an important regulator of progression from G1 to S phase, resulting in arrest in G1. Cyclin D1 degradation results from a direct interaction with FBXO31 and is dependent on the F-box motif of FBXO31 and phosphorylation of cyclin D1 at Thr 286, which is known to be required for cyclin D1 proteolysis. The involvement of the DDR in oncogene-induced senescence prompted us to investigate the role of FBXO31 in DNA repair. We find that DNA damage induced by gamma-irradiation results in increased FBXO31 levels, which requires phosphorylation of FBXO31 by the DDR-initiating kinase ATM. RNAi-mediated knockdown of FBXO31 prevents cells from undergoing efficient arrest in G1 after gamma-irradiation and markedly increases sensitivity to DNA damage. Finally, we show that a variety of DNA damaging agents all result in a large increase in FBXO31 levels, indicating that induction of FBXO31 is a general response to genotoxic stress. Our results reveal FBXO31 as a regulator of the G1/S transition that is specifically required for DNA damage-induced growth arrest.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santra, Manas K -- Wajapeyee, Narendra -- Green, Michael R -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jun 4;459(7247):722-5. doi: 10.1038/nature08011. Epub 2009 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19412162" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/analogs & derivatives/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line, Tumor ; Cyclin D1/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; DNA Damage/drug effects/*genetics ; DNA-Binding Proteins/metabolism ; F-Box Proteins/*metabolism ; G1 Phase/*physiology ; Humans ; Melanoma/genetics/physiopathology ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Transcriptional Activation ; Tumor Suppressor Proteins/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-04
    Description: The TRIM37 (also known as MUL) gene is located in the 17q23 chromosomal region, which is amplified in up to approximately 40% of breast cancers. TRIM37 contains a RING finger domain, a hallmark of E3 ubiquitin ligases, but its protein substrate(s) is unknown. Here we report that TRIM37 mono-ubiquitinates histone H2A, a chromatin modification associated with transcriptional repression. We find that in human breast cancer cell lines containing amplified 17q23, TRIM37 is upregulated and, reciprocally, the major H2A ubiquitin ligase RNF2 (also known as RING1B) is downregulated. Genome-wide chromatin immunoprecipitation (ChIP)-chip experiments in 17q23-amplified breast cancer cells identified many genes, including multiple tumour suppressors, whose promoters were bound by TRIM37 and enriched for ubiquitinated H2A. However, unlike RNF2, which is a subunit of polycomb repressive complex 1 (PRC1), we find that TRIM37 associates with polycomb repressive complex 2 (PRC2). TRIM37, PRC2 and PRC1 are co-bound to specific target genes, resulting in their transcriptional silencing. RNA-interference-mediated knockdown of TRIM37 results in loss of ubiquitinated H2A, dissociation of PRC1 and PRC2 from target promoters, and transcriptional reactivation of silenced genes. Knockdown of TRIM37 in human breast cancer cells containing amplified 17q23 substantially decreases tumour growth in mouse xenografts. Conversely, ectopic expression of TRIM37 renders non-transformed cells tumorigenic. Collectively, our results reveal TRIM37 as an oncogenic H2A ubiquitin ligase that is overexpressed in a subset of breast cancers and promotes transformation by facilitating silencing of tumour suppressors and other genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269325/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatnagar, Sanchita -- Gazin, Claude -- Chamberlain, Lynn -- Ou, Jianhong -- Zhu, Xiaochun -- Tushir, Jogender S -- Virbasius, Ching-Man -- Lin, Ling -- Zhu, Lihua J -- Wajapeyee, Narendra -- Green, Michael R -- R01 GM033977/GM/NIGMS NIH HHS/ -- R01GM033977/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):116-20. doi: 10.1038/nature13955. Epub 2014 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; CEA/DSV/iRCM/LEFG, Genopole G2, and Universite Paris Diderot, 91057 Evry, France. ; Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, USA. ; 1] Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA [2] Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470042" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*enzymology/*genetics ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Gene Silencing ; Heterografts ; Histones/metabolism ; Humans ; MCF-7 Cells ; Mice ; NIH 3T3 Cells ; Nuclear Proteins/*genetics/*metabolism ; Oncogene Proteins/*genetics/metabolism ; Polycomb Repressive Complex 1/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-12
    Description: We present results from a study of the dense circumnuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas. We characterize the dense gas traced by HCN, HCO + and HNC and examine its kinematics in the circumnuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1–0) and HCO + (1–0) in seven of the nine galaxies and HNC (1–0) in four. Approximately 7 arcsec resolution maps of the circumnuclear molecular gas are presented. The velocity-integrated intensity ratios, HCO + (1–0)/HCN (1–0) and HNC (1–0)/HCN (1–0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps, we identify photon-dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region. We also observe unusually strong HNC emission in NGC 5236, but it is not strong enough to be consistent with X-ray-dominated region chemistry. Rotation curves are derived for five of the galaxies and dynamical mass estimates of the inner regions of three of the galaxies are made.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-05-26
    Description: In higher eukaryotes, the polypyrimidine-tract (Py-tract) adjacent to the 3' splice site is recognized by several proteins, including the essential splicing factor U2AF65, the splicing regulator Sex-lethal (Sxl), and polypyrimidine tract-binding protein (PTB), whose function is unknown. Iterative in vitro genetic selection was used to show that these proteins have distinct sequence preferences. The uridine-rich degenerate sequences selected by U2AF65 are similar to those present in the diverse array of natural metazoan Py-tracts. In contrast, the Sxl-consensus is a highly specific sequence, which can help explain the ability of Sxl to regulate splicing of transformer pre-mRNA and autoregulate splicing of its own pre-mRNA. The PTB-consensus is not a typical Py-tract; it can be found in certain alternatively spliced pre-mRNAs that undergo negative regulation. Here it is shown that PTB can regulate alternative splicing by selectively repressing 3' splice sites that contain a PTB-binding site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, R -- Valcarcel, J -- Green, M R -- New York, N.Y. -- Science. 1995 May 26;268(5214):1173-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761834" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Consensus Sequence ; DNA, Complementary ; Drosophila ; *Drosophila Proteins ; Female ; Humans ; Insect Hormones/metabolism ; Male ; Molecular Sequence Data ; *Nuclear Proteins ; Polypyrimidine Tract-Binding Protein ; *RNA Splicing ; RNA-Binding Proteins/*metabolism ; Ribonucleoproteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-09-20
    Description: The mammalian splicing factor U2AF65 binds to the polypyrimidine tract adjacent to the 3' splice site and promotes assembly of U2 small nuclear ribonucleoprotein on the upstream branch point, an interaction that involves base pairing with U2 small nuclear RNA (snRNA). U2AF65 contains an RNA binding domain, required for interaction with the polypyrimidine tract, and an arginine-serine-rich (RS) region, required for U2 snRNP recruitment and splicing. Here it is reported that binding of U2AF65 to the polypyrimidine tract directed the RS domain to contact the branch point and promoted U2 snRNA-branch point base pairing even in the absence of other splicing factors. Analysis of RS domain mutants indicated that the ability of U2AF65 to contact the branch point, to promote the U2 snRNA-branch point interaction, and to support splicing are related activities, requiring only a few basic amino acids. Thus, the U2AF65 RS domain plays a direct role in modulating spliceosomal RNA-RNA interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valcarcel, J -- Gaur, R K -- Singh, R -- Green, M R -- New York, N.Y. -- Science. 1996 Sep 20;273(5282):1706-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Massachusetts Medical Center, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8781232" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry ; Base Composition ; Base Sequence ; Cross-Linking Reagents ; Models, Genetic ; Molecular Sequence Data ; *Nuclear Proteins ; Nucleic Acid Conformation ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/*metabolism ; RNA, Small Nuclear/*metabolism ; Ribonucleoproteins/chemistry/*metabolism ; Serine/chemistry ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-10-22
    Description: The large subunit of the human pre-messenger RNA splicing factor U2 small nuclear ribonucleoprotein auxiliary factor (hU2AF65) is required for spliceosome assembly in vitro. A complementary DNA clone encoding the large subunit of Drosophila U2AF (dU2AF50) has been isolated. The dU2AF50 protein is closely related to its mammalian counterpart and contains three carboxyl-terminal ribonucleoprotein consensus sequence RNA binding domains and an amino-terminal arginine- and serine-rich (R/S) domain. Recombinant dU2AF50 protein complements mammalian splicing extracts depleted of U2AF activity. Germline transformation of Drosophila with the dU2AF50 complementary DNA rescues a lethal mutation, establishing that the dU2AF50 gene is essential for viability. R/S domains have been found in numerous metazoan splicing factors, but their function is unknown. The mutation in Drosophila U2AF will allow in vivo analysis of a conserved R/S domain-containing general splicing factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanaar, R -- Roche, S E -- Beall, E L -- Green, M R -- Rio, D C -- R01-HD28063/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 22;262(5133):569-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7692602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Conserved Sequence ; DNA, Complementary ; Drosophila melanogaster/*genetics/growth & development ; Female ; Gene Transfer Techniques ; Genes, Insect ; Genes, Lethal ; In Situ Hybridization ; Male ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; RNA/metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; Recombinant Proteins/metabolism ; Ribonucleoproteins/chemistry/*genetics/metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...