ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-22
    Description: Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X chromosome (Deltam) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Deltam female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967734/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967734/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, Jongdae -- Bossenz, Michael -- Chung, Young -- Ma, Hong -- Byron, Meg -- Taniguchi-Ishigaki, Naoko -- Zhu, Xiaochun -- Jiao, Baowei -- Hall, Lisa L -- Green, Michael R -- Jones, Stephen N -- Hermans-Borgmeyer, Irm -- Lawrence, Jeanne B -- Bach, Ingolf -- 5 P30 DK32520/DK/NIDDK NIH HHS/ -- DK32520/DK/NIDDK NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 CA131158/CA/NCI NIH HHS/ -- R01 CA131158-04/CA/NCI NIH HHS/ -- R01 GM033977/GM/NIGMS NIH HHS/ -- R01 GM053234/GM/NIGMS NIH HHS/ -- R01CA131158/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Oct 21;467(7318):977-81. doi: 10.1038/nature09457.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962847" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Blastocyst/metabolism ; Cell Line ; Chromosomes, Mammalian/*genetics ; Embryo Loss/genetics ; Fathers ; Female ; Gene Silencing ; *Genomic Imprinting ; Male ; Mice ; Mice, Transgenic ; *Mothers ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; Repressor Proteins/deficiency/genetics/*metabolism ; Ubiquitin-Protein Ligases ; X Chromosome/*genetics ; X Chromosome Inactivation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-30
    Description: In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shin, JongDae -- Wallingford, Mary C -- Gallant, Judith -- Marcho, Chelsea -- Jiao, Baowei -- Byron, Meg -- Bossenz, Michael -- Lawrence, Jeanne B -- Jones, Stephen N -- Mager, Jesse -- Bach, Ingolf -- CA077735/CA/NCI NIH HHS/ -- CA131158/CA/NCI NIH HHS/ -- DK32520/DK/NIDDK NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 CA131158/CA/NCI NIH HHS/ -- R01 GM053234/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):86-9. doi: 10.1038/nature13286. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA. ; Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA. ; Department of Cell and Developmental Biology, UMMS, Worcester, Massachusetts 01605, USA. ; 1] Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA [2] Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China. ; Ortenau Klinikum Lahr-Ettenheim, Institut fur Pathologie, 77933 Lahr, Germany. ; 1] Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA [2] Program in Molecular Medicine, UMMS, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Down-Regulation ; Embryo Implantation ; Embryo, Mammalian/embryology/metabolism ; Female ; Germ Layers/*embryology/*metabolism ; Histones/chemistry/metabolism ; In Situ Hybridization, Fluorescence ; Lysine/metabolism ; Methylation ; Mice ; Mice, Knockout ; RNA, Long Noncoding/genetics ; Ubiquitin-Protein Ligases/genetics/*metabolism ; X Chromosome Inactivation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...