ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-23
    Description: The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7alpha-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buffie, Charlie G -- Bucci, Vanni -- Stein, Richard R -- McKenney, Peter T -- Ling, Lilan -- Gobourne, Asia -- No, Daniel -- Liu, Hui -- Kinnebrew, Melissa -- Viale, Agnes -- Littmann, Eric -- van den Brink, Marcel R M -- Jenq, Robert R -- Taur, Ying -- Sander, Chris -- Cross, Justin R -- Toussaint, Nora C -- Xavier, Joao B -- Pamer, Eric G -- AI95706/AI/NIAID NIH HHS/ -- DP2 OD008440/OD/NIH HHS/ -- DP2OD008440/OD/NIH HHS/ -- K23 AI095398/AI/NIAID NIH HHS/ -- P01 CA023766/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI042135/AI/NIAID NIH HHS/ -- R01 AI095706/AI/NIAID NIH HHS/ -- R01 AI42135/AI/NIAID NIH HHS/ -- T32 CA009149/CA/NCI NIH HHS/ -- T32 GM007739/GM/NIGMS NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- U54 CA148967/CA/NCI NIH HHS/ -- England -- Nature. 2015 Jan 8;517(7533):205-8. doi: 10.1038/nature13828. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA [2] Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. ; Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA. ; Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; 1] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. ; 1] Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2] Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [3] Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Bile Acids and Salts/*metabolism ; Biological Evolution ; Clostridium/metabolism ; Clostridium difficile/drug effects/*physiology ; Colitis/metabolism/microbiology/prevention & control/therapy ; Disease Susceptibility/*microbiology ; Feces/microbiology ; Female ; Humans ; Intestines/drug effects/*metabolism/*microbiology ; Metagenome/genetics ; Mice ; Mice, Inbred C57BL ; Microbiota/drug effects/genetics/*physiology ; Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...