ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-28
    Description: Sensory regions of the brain integrate environmental cues with copies of motor-related signals important for imminent and ongoing movements. In mammals, signals propagating from the motor cortex to the auditory cortex are thought to have a critical role in normal hearing and behaviour, yet the synaptic and circuit mechanisms by which these motor-related signals influence auditory cortical activity remain poorly understood. Using in vivo intracellular recordings in behaving mice, we find that excitatory neurons in the auditory cortex are suppressed before and during movement, owing in part to increased activity of local parvalbumin-positive interneurons. Electrophysiology and optogenetic gain- and loss-of-function experiments reveal that motor-related changes in auditory cortical dynamics are driven by a subset of neurons in the secondary motor cortex that innervate the auditory cortex and are active during movement. These findings provide a synaptic and circuit basis for the motor-related corollary discharge hypothesized to facilitate hearing and auditory-guided behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, David M -- Nelson, Anders -- Mooney, Richard -- NS079929/NS/NINDS NIH HHS/ -- R01 DC013826/DC/NIDCD NIH HHS/ -- R21 NS079929/NS/NINDS NIH HHS/ -- T32 GM008441/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Sep 11;513(7517):189-94. doi: 10.1038/nature13724. Epub 2014 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA [2]. ; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25162524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Auditory Cortex/*physiology ; Electrical Synapses/*physiology ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity/*physiology ; Optogenetics ; Sensory Receptor Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...