ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-06
    Description: The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Rios, Javier -- Duchesne, Amandine -- Speziale, Dario -- Andrey, Guillaume -- Peterson, Kevin A -- Germann, Philipp -- Unal, Erkan -- Liu, Jing -- Floriot, Sandrine -- Barbey, Sarah -- Gallard, Yves -- Muller-Gerbl, Magdalena -- Courtney, Andrew D -- Klopp, Christophe -- Rodriguez, Sabrina -- Ivanek, Robert -- Beisel, Christian -- Wicking, Carol -- Iber, Dagmar -- Robert, Benoit -- McMahon, Andrew P -- Duboule, Denis -- Zeller, Rolf -- NS 033642/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Jul 3;511(7507):46-51. doi: 10.1038/nature13289. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2]. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [3]. ; Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland. ; School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland. ; Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA. ; Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Department for Biosystems Science and Engineering, Federal Institute of Technology Zurich and Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France. ; Institut National de la Recherche Agronomique, Domaine Experimental du Pin au Haras, F-61310 Exmes, France. ; Institute of Anatomy, Department Biomedicine, University of Basel, CH-4056 Basel, Switzerland. ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia. ; Institut National de la Recherche Agronomique, Biometrie et Intelligence Artificielle, F-31326 Castanet-Tolosan, France. ; 1] Institut National de la Recherche Agronomique, Genetique Animale et Biologie Integrative, F-78350 Jouy-en-Josas, France [2] Institut National de la Recherche Agronomique, Laboratoire d'Ingenierie des Systemes Biologiques et des Procedes, F-31077 Toulouse, France. ; 1] Developmental Genetics, Department Biomedicine, University of Basel, CH-4058 Basel, Switzerland [2] Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland. ; Institut Pasteur, Genetique Moleculaire de la Morphogenese and Centre National de la Recherche Scientifique URA-2578, F-75015 Paris, France. ; 1] School of Life Sciences, Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland [2] Department of Genetics and Evolution, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24990743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Patterning ; Cattle ; Extremities/*anatomy & histology/*embryology ; Female ; Gene Expression Regulation, Developmental/genetics ; Hedgehog Proteins/*metabolism ; Limb Buds/anatomy & histology/embryology ; Male ; Mesoderm/metabolism ; Mice ; Mice, Transgenic ; Receptors, Cell Surface/genetics/*metabolism ; Regulatory Sequences, Nucleic Acid/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-16
    Description: Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive. To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors. Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30%. These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays. LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs. A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors. This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stadler, Michael B -- Murr, Rabih -- Burger, Lukas -- Ivanek, Robert -- Lienert, Florian -- Scholer, Anne -- van Nimwegen, Erik -- Wirbelauer, Christiane -- Oakeley, Edward J -- Gaidatzis, Dimos -- Tiwari, Vijay K -- Schubeler, Dirk -- England -- Nature. 2011 Dec 14;480(7378):490-5. doi: 10.1038/nature10716.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22170606" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; CpG Islands ; Cytosine/*metabolism ; *DNA Methylation ; DNA-Binding Proteins/*metabolism ; Embryonic Stem Cells/cytology ; *Epigenomics ; Mice ; Neurons/cytology ; Promoter Regions, Genetic/genetics ; Protein Binding ; Stem Cells/cytology ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...