ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-07
    Description: Ecological speciation occurs when ecologically based, divergent selection causes the evolution of reproductive isolation. There are many empirical examples of this process; however, there exists a poorly characterized stage during which the traits that distinguish species ecologically and reproductively segregate in a single population. By using a combination of genetic mapping, mate-choice experiments, field observations, and population genetics, we studied a butterfly population with a mimetic wing color polymorphism and found that the butterflies exhibited partial, color-based, assortative mate preference. These traits represent the divergent, ecologically based signal and preference components of sexual isolation that usually distinguish incipient and sibling species. The association between behavior and recognition trait in a single population may enhance the probability of speciation and provides an example of the missing link between an interbreeding population and isolated species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamberlain, Nicola L -- Hill, Ryan I -- Kapan, Durrell D -- Gilbert, Lawrence E -- Kronforst, Marcus R -- GM068763/GM/NIGMS NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- P50 GM068763-06/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 6;326(5954):847-50. doi: 10.1126/science.1179141.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892982" target="_blank"〉PubMed〈/a〉
    Keywords: Amplified Fragment Length Polymorphism Analysis ; Animals ; Butterflies/anatomy & histology/*genetics/*physiology ; Color ; Ecosystem ; Female ; Genes, Insect ; Genetic Linkage ; *Genetic Speciation ; Linkage Disequilibrium ; Male ; *Mating Preference, Animal ; Molecular Sequence Data ; Phenotype ; *Pigmentation/genetics ; *Polymorphism, Genetic ; Reproduction ; Selection, Genetic ; Wings, Animal/*anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-03
    Description: The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331202/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhan, Shuai -- Zhang, Wei -- Niitepold, Kristjan -- Hsu, Jeremy -- Haeger, Juan Fernandez -- Zalucki, Myron P -- Altizer, Sonia -- de Roode, Jacobus C -- Reppert, Steven M -- Kronforst, Marcus R -- GM086794-02S1/GM/NIGMS NIH HHS/ -- R01 GM086794/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Oct 16;514(7522):317-21. doi: 10.1038/nature13812. Epub 2014 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China [2] Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA [3] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; Department of Ecology &Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Department of Biology, Stanford University, Stanford, California 94305, USA [2] Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland. ; Department of Biology, Stanford University, Stanford, California 94305, USA. ; Departamento de Botanica, Ecologia y Fisiologia Vegetal, Universidad de Cordoba, 14071 Cordoba, Spain. ; School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. ; Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA. ; Department of Biology, Emory University, Atlanta, Georgia 30322, USA. ; Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25274300" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; Biological Evolution ; Butterflies/*genetics/*physiology ; Collagen Type IV/metabolism ; Female ; Flight, Animal ; Male ; Mice ; Muscles/physiology ; Myosin Type V/genetics/metabolism ; North America ; Phenotype ; Pigmentation/*genetics/*physiology ; Selection, Genetic ; Wings, Animal/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-07
    Description: One of the most striking examples of sexual dimorphism is sex-limited mimicry in butterflies, a phenomenon in which one sex--usually the female--mimics a toxic model species, whereas the other sex displays a different wing pattern. Sex-limited mimicry is phylogenetically widespread in the swallowtail butterfly genus Papilio, in which it is often associated with female mimetic polymorphism. In multiple polymorphic species, the entire wing pattern phenotype is controlled by a single Mendelian 'supergene'. Although theoretical work has explored the evolutionary dynamics of supergene mimicry, there are almost no empirical data that address the critical issue of what a mimicry supergene actually is at a functional level. Using an integrative approach combining genetic and association mapping, transcriptome and genome sequencing, and gene expression analyses, we show that a single gene, doublesex, controls supergene mimicry in Papilio polytes. This is in contrast to the long-held view that supergenes are likely to be controlled by a tightly linked cluster of loci. Analysis of gene expression and DNA sequence variation indicates that isoform expression differences contribute to the functional differences between dsx mimicry alleles, and protein sequence evolution may also have a role. Our results combine elements from different hypotheses for the identity of supergenes, showing that a single gene can switch the entire wing pattern among mimicry phenotypes but may require multiple, tightly linked mutations to do so.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunte, K -- Zhang, W -- Tenger-Trolander, A -- Palmer, D H -- Martin, A -- Reed, R D -- Mullen, S P -- Kronforst, M R -- England -- Nature. 2014 Mar 13;507(7491):229-32. doi: 10.1038/nature13112. Epub 2014 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India [2]. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2]. ; Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA. ; Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA. ; Department of Biology, Boston University, Boston, Massachusetts 02215, USA. ; 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24598547" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Butterflies/anatomy & histology/*genetics/*physiology ; *DNA-Binding Proteins ; *Drosophila Proteins ; Evolution, Molecular ; Female ; Gene Expression Regulation ; *Genes, Insect ; Male ; Molecular Mimicry/*genetics/physiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Pigmentation/genetics/physiology ; Polymorphism, Genetic/genetics ; *Sex Characteristics ; Transcriptome/genetics ; Wings, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-23
    Description: Mimicry--whereby warning signals in different species evolve to look similar--has long served as a paradigm of convergent evolution. Little is known, however, about the genes that underlie the evolution of mimetic phenotypes or to what extent the same or different genes drive such convergence. Here, we characterize one of the major genes responsible for mimetic wing pattern evolution in Heliconius butterflies. Mapping, gene expression, and population genetic work all identify a single gene, optix, that controls extreme red wing pattern variation across multiple species of Heliconius. Our results show that the cis-regulatory evolution of a single transcription factor can repeatedly drive the convergent evolution of complex color patterns in distantly related species, thus blurring the distinction between convergence and homology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reed, Robert D -- Papa, Riccardo -- Martin, Arnaud -- Hines, Heather M -- Counterman, Brian A -- Pardo-Diaz, Carolina -- Jiggins, Chris D -- Chamberlain, Nicola L -- Kronforst, Marcus R -- Chen, Rui -- Halder, Georg -- Nijhout, H Frederik -- McMillan, W Owen -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1137-41. doi: 10.1126/science.1208227. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. rreed@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778360" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Biological Evolution ; Butterflies/anatomy & histology/*genetics/growth & development ; Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; *Genes, Insect ; Genetic Variation ; Genome, Insect ; Homeodomain Proteins/*genetics ; Insect Proteins/*genetics ; Linkage Disequilibrium ; Molecular Sequence Data ; Moths/genetics ; Phenotype ; Pigmentation/*genetics ; Regulatory Elements, Transcriptional ; Selection, Genetic ; Species Specificity ; Transcription Factors/genetics ; Transcription, Genetic ; Wings, Animal/*anatomy & histology/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2006-04-12
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2011-12-07
    Description: The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80–250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-08-01
    Description: Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-30
    Description: Hybrid speciation appears to be rare in animals, yet characterization of possible examples offers to shed light on the genomic consequences of this unique phenomenon, as well as more general processes such as the role of adaptation in speciation. Here, we first generate transcriptome assemblies for a putative hybrid butterfly species, Papilio appalachiensis , its parental species, P. glaucus and P. canadensis , and an outgroup, P. polytes . Then, we use these data to infer genome-wide patterns of introgression and genomic mosaicism using both phylogenetic and population genetic approaches. Our results reveal that there is little genetic divergence among all three of the focal species, but the subset of gene trees that strongly support a specific tree topology suggest widespread sharing of genetic variation between P. appalachiensis and both parental species, likely as a result of hybrid speciation. We also find evidence for substantial shared genetic variation between P. glaucus and P. canadensis, which may be due to gene flow or ancestral variation. Consistent with previous work, we show that P. applachiensis is more similar to P. canadensis at Z-linked genes and more similar to P. glaucus at mitochondrial genes. We also identify a variety of targets of adaptive evolution, which appear to be enriched for traits that are likely to be important in the evolution of this butterfly system, such as pigmentation, hormone sensitivity, developmental processes, and cuticle formation. Overall, our results provide a genome-wide portrait of divergence and introgression associated with adaptation and speciation in an iconic butterfly radiation.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...