ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-01-12
    Description: Homoploid hybrid speciation in animals has been inferred frequently from patterns of variation, but few examples have withstood critical scrutiny. Here we report a directly documented example, from its origin to reproductive isolation. An immigrant Darwin’s finch to Daphne Major in the Galápagos archipelago initiated a new genetic lineage by breeding with a resident finch ( Geospiza fortis ). Genome sequencing of the immigrant identified it as a G. conirostris male that originated on Española 〉100 kilometers from Daphne Major. From the second generation onward, the lineage bred endogamously and, despite intense inbreeding, was ecologically successful and showed transgressive segregation of bill morphology. This example shows that reproductive isolation, which typically develops over hundreds of generations, can be established in only three.
    Keywords: Evolution, Genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-09
    Description: Bird beaks display tremendous variation in shape and size, which is closely associated with the exploitation of multiple ecological niches and likely played a key role in the diversification of thousands of avian species. Previous studies have demonstrated some of the molecular mechanisms that regulate morphogenesis of the prenasal cartilage, which forms the initial beak skeleton. However, much of the beak diversity in birds depends on variation in the premaxillary bone. It forms later in development and becomes the most prominent functional and structural component of the adult upper beak/jaw, yet its regulation is unknown. Here, we studied a group of Darwin's finch species with different beak shapes. We found that TGFβIIr, β-catenin, and Dickkopf-3, the top candidate genes from a cDNA microarray screen, are differentially expressed in the developing premaxillary bone of embryos of species with different beak shapes. Furthermore, our functional experiments demonstrate that these molecules form a regulatory network governing the morphology of the premaxillary bone, which differs from the network controlling the prenasal cartilage, but has the same species-specific domains of expression. These results offer potential mechanisms that may explain how the tightly coupled depth and width dimensions can evolve independently. The two-module program of development involving independent regulating molecules offers unique insights into how different developmental pathways may be modified and combined to induce multidimensional shifts in beak morphology. Similar modularity in development may characterize complex traits in other organisms to a greater extent than is currently appreciated.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-12
    Description: The genetic basis of variation in fitness of many organisms has been studied in the laboratory, but relatively little is known of fitness variation in natural environments or its causes. Lifetime fitness (recruitment) may be determined solely by producing many offspring, modified by stochastic effects on their subsequent survival up to the point of breeding, or by an additional contribution made by the high quality of the offspring owing to nonrandom mate choice. To investigate the determinants of lifetime fitness, we measured offspring production, longevity, and lifetime number of mates in four cohorts of two long-lived species of socially monogamous Darwin's finch species, Geospiza fortis and G. scandens, on the equatorial Galápagos Island of Daphne Major. Regression analysis showed that the lifetime production of fledglings was predicted by lifetime number of clutches and that recruitment was predicted by lifetime number of fledglings and longevity. There was little support for a hypothesis of selective mating by females. The offspring sired by extrapair mates were no more fit in terms of recruitment than were half-sibs sired by social mates. These findings provide insight into the evolution of life history strategies of tropical birds. Darwin's finches deviate from the standard tropical pattern of a slow pace of life by combining tropical (long lifespan) and temperate (large clutch size) characteristics. Our study of fitness shows why this is so in terms of selective pressures (fledgling production and adult longevity) and ecological opportunities (pulsed food supply and relatively low predation).
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-27
    Description: Evolution can be predicted in the short term from a knowledge of selection and inheritance. However, in the long term evolution is unpredictable because environments, which determine the directions and magnitudes of selection coefficients, fluctuate unpredictably. These two features of evolution, the predictable and unpredictable, are demonstrated in a study of two populations of Darwin's finches on the Galapagos island of Daphne Major. From 1972 to 2001, Geospiza fortis (medium ground finch) and Geospiza scandens (cactus finch) changed several times in body size and two beak traits. Natural selection occurred frequently in both species and varied from unidirectional to oscillating, episodic to gradual. Hybridization occurred repeatedly though rarely, resulting in elevated phenotypic variances in G. scandens and a change in beak shape. The phenotypic states of both species at the end of the 30-year study could not have been predicted at the beginning. Continuous, long-term studies are needed to detect and interpret rare but important events and nonuniform evolutionary change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, Peter R -- Grant, B Rosemary -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):707-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Washington Road, Princeton, NJ 08544-1003, USA. prgrantprinceton.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976447" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology ; *Biological Evolution ; Body Constitution ; Climate ; Ecosystem ; Ecuador ; Female ; Food ; Genetic Variation ; Genetics, Population ; Hybridization, Genetic ; Male ; Phenotype ; Sampling Studies ; Seeds ; *Selection, Genetic ; Sex Ratio ; *Songbirds/anatomy & histology/genetics/physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-10
    Description: Hybridization, the interbreeding of species, provides favorable conditions for major and rapid evolution to occur. In birds it is widespread. Approximately one in ten species is known to hybridize, and the true global incidence is likely to be much higher. A longitudinal study of Darwin's finch populations on a Galapagos island shows that hybrids exhibit higher fitness than the parental species over several years. Hybrids may be at an occasional disadvantage for ecological rather than genetic reasons in this climatically fluctuating environment. Hybridization presents challenges to the reconstruction of phylogenies, formulation of biological species concepts and definitions, and the practice of biological conservation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, P R -- Grant, B R -- New York, N.Y. -- Science. 1992 Apr 10;256(5054):193-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17744718" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-09
    Description: Darwin's finches are a classic example of species diversification by natural selection. Their impressive variation in beak morphology is associated with the exploitation of a variety of ecological niches, but its developmental basis is unknown. We performed a comparative analysis of expression patterns of various growth factors in species comprising the genus Geospiza. We found that expression of Bmp4 in the mesenchyme of the upper beaks strongly correlated with deep and broad beak morphology. When misexpressed in chicken embryos, Bmp4 caused morphological transformations paralleling the beak morphology of the large ground finch G. magnirostris.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abzhanov, Arhat -- Protas, Meredith -- Grant, B Rosemary -- Grant, Peter R -- Tabin, Clifford J -- P01 DK56246/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1462-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/anatomy & histology/*embryology/metabolism ; Biological Evolution ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/genetics/*metabolism ; Chick Embryo ; Chickens/anatomy & histology ; Ectoderm/metabolism ; Epithelium/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Transfer Techniques ; Genetic Variation ; Genetic Vectors ; Growth Substances/genetics/metabolism ; Mesoderm/metabolism ; Morphogenesis ; Signal Transduction ; Songbirds/anatomy & histology/*embryology/genetics/metabolism ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, Peter R -- Grant, B Rosemary -- England -- Nature. 2014 Mar 13;507(7491):178-9. doi: 10.1038/507178b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24622197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; *Hybridization, Genetic ; Male ; *Mating Preference, Animal ; Songbirds/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-15
    Description: Competitor species can have evolutionary effects on each other that result in ecological character displacement; that is, divergence in resource-exploiting traits such as jaws and beaks. Nevertheless, the process of character displacement occurring in nature, from the initial encounter of competitors to the evolutionary change in one or more of them, has not previously been investigated. Here we report that a Darwin's finch species (Geospiza fortis) on an undisturbed Galapagos island diverged in beak size from a competitor species (G. magnirostris) 22 years after the competitor's arrival, when they jointly and severely depleted the food supply. The observed evolutionary response to natural selection was the strongest recorded in 33 years of study, and close to the value predicted from the high heritability of beak size. These findings support the role of competition in models of community assembly, speciation, and adaptive radiations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, Peter R -- Grant, B Rosemary -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):224-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA. prgrant@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840700" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology ; *Biological Evolution ; Biomass ; Body Size ; Competitive Behavior ; Disasters ; Ecosystem ; Ecuador ; Feeding Behavior ; Female ; *Finches/anatomy & histology/physiology ; *Food ; Male ; Organ Size ; Population Density ; Population Dynamics ; *Seeds ; *Selection, Genetic ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-23
    Description: Ecological character displacement is a process of morphological divergence that reduces competition for limited resources. We used genomic analysis to investigate the genetic basis of a documented character displacement event in Darwin's finches on Daphne Major in the Galapagos Islands: The medium ground finch diverged from its competitor, the large ground finch, during a severe drought. We discovered a genomic region containing the HMGA2 gene that varies systematically among Darwin's finch species with different beak sizes. Two haplotypes that diverged early in the radiation were involved in the character displacement event: Genotypes associated with large beak size were at a strong selective disadvantage in medium ground finches (selection coefficient s = 0.59). Thus, a major locus has apparently facilitated a rapid ecological diversification in the adaptive radiation of Darwin's finches.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamichhaney, Sangeet -- Han, Fan -- Berglund, Jonas -- Wang, Chao -- Almen, Markus Sallman -- Webster, Matthew T -- Grant, B Rosemary -- Grant, Peter R -- Andersson, Leif -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):470-4. doi: 10.1126/science.aad8786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. ; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA. leif.andersson@imbim.uu.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27102486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/*anatomy & histology ; Body Size/genetics ; *Droughts ; Ecuador ; Female ; Finches/*anatomy & histology/classification/*genetics ; Genomics ; Genotype ; HMGA2 Protein/genetics ; Haplotypes ; Organ Size/genetics ; Phylogeny ; *Quantitative Trait Loci ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-18
    Description: Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamichhaney, Sangeet -- Berglund, Jonas -- Almen, Markus Sallman -- Maqbool, Khurram -- Grabherr, Manfred -- Martinez-Barrio, Alvaro -- Promerova, Marta -- Rubin, Carl-Johan -- Wang, Chao -- Zamani, Neda -- Grant, B Rosemary -- Grant, Peter R -- Webster, Matthew T -- Andersson, Leif -- England -- Nature. 2015 Feb 19;518(7539):371-5. doi: 10.1038/nature14181. Epub 2015 Feb 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Plant Physiology, Umea University, SE-901 87 Umea, Sweden. ; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden [2] Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden [3] Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25686609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics/metabolism ; Beak/*anatomy & histology ; Ecuador ; *Evolution, Molecular ; Female ; Finches/*anatomy & histology/classification/embryology/*genetics ; Gene Flow ; Genome/genetics ; Haplotypes/genetics ; Hybridization, Genetic ; Indian Ocean Islands ; Male ; Molecular Sequence Data ; Phylogeny ; Transcription Factors/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...