ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-04
    Description: Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Kilian V M -- Salah, Eidarus -- Radic, Branka -- Gridling, Manuela -- Elkins, Jonathan M -- Stukalov, Alexey -- Jemth, Ann-Sofie -- Gokturk, Camilla -- Sanjiv, Kumar -- Stromberg, Kia -- Pham, Therese -- Berglund, Ulrika Warpman -- Colinge, Jacques -- Bennett, Keiryn L -- Loizou, Joanna I -- Helleday, Thomas -- Knapp, Stefan -- Superti-Furga, Giulio -- 092809/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- F 4711/Austrian Science Fund FWF/Austria -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2014 Apr 10;508(7495):222-7. doi: 10.1038/nature13194. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. ; Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK. ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17121 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695225" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoquinolines/pharmacology ; Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Colonic Neoplasms/drug therapy/genetics/pathology ; Crystallization ; DNA Breaks, Single-Stranded/drug effects ; DNA Repair ; DNA Repair Enzymes/*antagonists & inhibitors/biosynthesis/chemistry/*metabolism ; Disease Models, Animal ; Female ; Homeostasis/drug effects ; Humans ; Mice ; Mice, SCID ; Models, Molecular ; Nucleotides/metabolism ; Phosphoric Monoester Hydrolases/*antagonists & ; inhibitors/biosynthesis/chemistry/*metabolism ; Protein Conformation ; Protein Kinase Inhibitors/chemistry/*pharmacology ; Proteomics ; Proto-Oncogene Proteins/genetics ; Pyrazoles/chemistry/*pharmacology ; Pyridines/chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-04
    Description: Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gad, Helge -- Koolmeister, Tobias -- Jemth, Ann-Sofie -- Eshtad, Saeed -- Jacques, Sylvain A -- Strom, Cecilia E -- Svensson, Linda M -- Schultz, Niklas -- Lundback, Thomas -- Einarsdottir, Berglind Osk -- Saleh, Aljona -- Gokturk, Camilla -- Baranczewski, Pawel -- Svensson, Richard -- Berntsson, Ronnie P-A -- Gustafsson, Robert -- Stromberg, Kia -- Sanjiv, Kumar -- Jacques-Cordonnier, Marie-Caroline -- Desroses, Matthieu -- Gustavsson, Anna-Lena -- Olofsson, Roger -- Johansson, Fredrik -- Homan, Evert J -- Loseva, Olga -- Brautigam, Lars -- Johansson, Lars -- Hoglund, Andreas -- Hagenkort, Anna -- Pham, Therese -- Altun, Mikael -- Gaugaz, Fabienne Z -- Vikingsson, Svante -- Evers, Bastiaan -- Henriksson, Martin -- Vallin, Karl S A -- Wallner, Olov A -- Hammarstrom, Lars G J -- Wiita, Elisee -- Almlof, Ingrid -- Kalderen, Christina -- Axelsson, Hanna -- Djureinovic, Tatjana -- Puigvert, Jordi Carreras -- Haggblad, Maria -- Jeppsson, Fredrik -- Martens, Ulf -- Lundin, Cecilia -- Lundgren, Bo -- Granelli, Ingrid -- Jensen, Annika Jenmalm -- Artursson, Per -- Nilsson, Jonas A -- Stenmark, Pal -- Scobie, Martin -- Berglund, Ulrika Warpman -- Helleday, Thomas -- England -- Nature. 2014 Apr 10;508(7495):215-21. doi: 10.1038/nature13181. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2]. ; Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden. ; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden. ; 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden. ; Sahlgrenska Translational Melanoma Group, Sahlgrenska Cancer Center, Department of Surgery, University of Gothenburg and Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden. ; Department of Analytical Chemistry, Stockholm University, S-106 91 Stockholm, Sweden. ; 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden. ; 1] Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy, Uppsala University, S-751 23 Uppsala, Sweden. ; Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden. ; 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Clinical Pharmacology, Department of Medical and Health Sciences, Linkoping University, S-58185 Linkoping, Sweden. ; 1] Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden [2] Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands (B.E.); Department of Immunology, Genetics, and Pathology, Uppsala University, S-751 23 Uppsala, Sweden (T.D.). ; 1] Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden [2] Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1006 Amsterdam, The Netherlands (B.E.); Department of Immunology, Genetics, and Pathology, Uppsala University, S-751 23 Uppsala, Sweden (T.D.). ; Science for Life Laboratory, RNAi Cell Screening Facility, Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695224" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Cell Death/drug effects ; Cell Survival/drug effects ; Crystallization ; DNA Damage ; DNA Repair Enzymes/*antagonists & inhibitors/chemistry/metabolism ; Deoxyguanine Nucleotides/metabolism ; Enzyme Inhibitors/chemistry/pharmacokinetics/pharmacology/therapeutic use ; Female ; Humans ; Male ; Mice ; Models, Molecular ; Molecular Conformation ; Molecular Targeted Therapy ; Neoplasms/*drug therapy/*metabolism/pathology ; Nucleotides/*metabolism ; Oxidation-Reduction/drug effects ; Phosphoric Monoester Hydrolases/*antagonists & inhibitors/chemistry/metabolism ; Pyrimidines/chemistry/pharmacokinetics/pharmacology/therapeutic use ; Pyrophosphatases/antagonists & inhibitors ; Reproducibility of Results ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈p〉The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because 〈i〉Ogg1〈/i〉-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor–α–induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor B and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-16
    Description: The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1 -deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor–α–induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor B and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.
    Keywords: Chemistry, Immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...