ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-17
    Description: Meiotic cohesin complexes at centromeres behave differently from those along chromosome arms, but the basis for these differences has remained elusive. The fission yeast cohesin molecule Rec8 largely replaces its mitotic counterpart, Rad21/Scc1, along the entire chromosome during meiosis. Here we show that Rec8 complexes along chromosome arms contain Rec11, whereas those in the vicinity of centromeres have a different partner subunit, Psc3. The arm associated Rec8-Rec11 complexes are critical for meiotic recombination. The Rec8-Psc3 complexes comprise two different types of assemblies. First, pericentromeric Rec8-Psc3 complexes depend on histone methylation-directed heterochromatin for their localization and are required for cohesion during meiosis II. Second, central core Rec8-Psc3 complexes form independently of heterochromatin and are presumably required for establishing monopolar attachment at meiosis I. These findings define distinct modes of assembly and functions for cohesin complexes at different regions along chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kitajima, Tomoya S -- Yokobayashi, Shihori -- Yamamoto, Masayuki -- Watanabe, Yoshinori -- New York, N.Y. -- Science. 2003 May 16;300(5622):1152-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750522" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Centromere/physiology ; Chromatids/*physiology ; Chromatin ; *Chromosome Segregation ; Chromosomes, Fungal/*physiology ; Green Fluorescent Proteins ; Luminescent Proteins ; Meiosis/*physiology ; Phosphoproteins/*physiology ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-10-15
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...