ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-08-22
    Description: The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamagishi, Yuya -- Sakuno, Takeshi -- Shimura, Mari -- Watanabe, Yoshinori -- England -- Nature. 2008 Sep 11;455(7210):251-5. doi: 10.1038/nature07217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18716626" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*metabolism ; Centromere/*metabolism ; Chromosomal Proteins, Non-Histone/*metabolism ; Chromosome Segregation ; Heterochromatin/*metabolism ; Humans ; Meiosis ; Mitosis ; Protein Binding ; Protein Transport ; Schizosaccharomyces/genetics/metabolism ; Schizosaccharomyces pombe Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-17
    Description: During cell division microtubules capture chromosomes by binding to the kinetochore assembled in the centromeric region of chromosomes. In mitosis sister chromatids are captured by microtubules emanating from both spindle poles, a process called bipolar attachment, whereas in meiosis I sisters are attached to microtubules originating from one spindle pole, called monopolar attachment. For determining chromosome orientation, kinetochore geometry or structure might be an important target of regulation. However, the molecular basis of this regulation has remained elusive. Here we show the link between kinetochore orientation and cohesion within the centromere in fission yeast Schizosaccharomyces pombe by strategies developed to visualize the concealed cohesion within the centromere, and to introduce artificial tethers that can influence kinetochore geometry. Our data imply that cohesion at the core centromere induces the mono-orientation of kinetochores whereas cohesion at the peri-centromeric region promotes bi-orientation. Our study may reveal a general mechanism for the geometric regulation of kinetochores, which collaborates with previously defined tension-dependent reorientation machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakuno, Takeshi -- Tada, Kenji -- Watanabe, Yoshinori -- England -- Nature. 2009 Apr 16;458(7240):852-8. doi: 10.1038/nature07876.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370027" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/*metabolism ; Chromosome Segregation ; Kinetochores/*metabolism ; Meiosis ; Microtubules/metabolism ; Mitosis ; Models, Biological ; Schizosaccharomyces/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-03
    Description: Chromosome structure is dynamically regulated during cell division, and this regulation is dependent, in part, on condensin. The localization of condensin at chromosome arms is crucial for chromosome partitioning during anaphase. Condensin is also enriched at kinetochores but its precise role and loading machinery remain unclear. Here we show that fission yeast (Schizosaccharomyces pombe) kinetochore proteins Pcs1 and Mde4--homologues of budding yeast (Saccharomyces cerevisiae) monopolin subunits and known to prevent merotelic kinetochore orientation--act as a condensin 'recruiter' at kinetochores, and that condensin itself may act to clamp microtubule binding sites during metaphase. In addition to the regional recruitment factors, overall condensin association with chromatin is governed by the chromosomal passenger kinase Aurora B. Aurora-B-dependent phosphorylation of condensin promotes its association with histone H2A and H2A.Z, which we identify as conserved chromatin 'receptors' of condensin. Condensin phosphorylation and its deposition onto chromosome arms reach a peak during anaphase, when Aurora B kinase relocates from centromeres to the spindle midzone, where the separating chromosome arms are positioned. Our results elucidate the molecular basis for the spatiotemporal regulation of mitotic chromosome architecture, which is crucial for chromosome partitioning.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tada, Kenji -- Susumu, Hiroaki -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2011 Jun 1;474(7352):477-83. doi: 10.1038/nature10179.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21633354" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Aurora Kinase B ; Aurora Kinases ; Binding Sites ; Cell Cycle Proteins/metabolism ; Chromatin/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Fungal/*metabolism ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Histones/*metabolism ; Humans ; Kinetochores/metabolism ; Microtubules/metabolism ; *Mitosis ; Multiprotein Complexes/*metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Binding ; Protein Transport ; Protein-Serine-Threonine Kinases/metabolism ; Schizosaccharomyces/cytology/*metabolism ; Schizosaccharomyces pombe Proteins/metabolism ; cdc25 Phosphatases/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-10-01
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-01
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...