ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-17
    Description: Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Headley, Mark B -- Bins, Adriaan -- Nip, Alyssa -- Roberts, Edward W -- Looney, Mark R -- Gerard, Audrey -- Krummel, Matthew F -- P01 HL024136/HL/NHLBI NIH HHS/ -- R21 CA167601/CA/NCI NIH HHS/ -- R21CA167601/CA/NCI NIH HHS/ -- U54 CA163123/CA/NCI NIH HHS/ -- England -- Nature. 2016 Mar 24;531(7595):513-7. doi: 10.1038/nature16985. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143-0511, USA. ; Department of Medical Oncology, Academic Medical Center Amsterdam, Meibergdreef, 91105AZ Amsterdam, The Netherlands. ; Departments of Medicine and Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSW512, California 94143-0511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capillaries/pathology ; Cell Line, Tumor ; Cell Lineage ; *Cell Movement ; Dendritic Cells/cytology/immunology ; Female ; Genes, Reporter/genetics ; Humans ; Lung/blood supply/cytology/*immunology/*pathology ; Lung Neoplasms/*immunology/pathology/*secondary ; Male ; Melanoma, Experimental/immunology/pathology ; Mice ; Microscopy, Confocal ; Myeloid Cells/cytology ; Neoplasm Metastasis/*immunology/*pathology ; Neoplastic Cells, Circulating/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Broadly, tissue regeneration is achieved in two ways: by proliferation of common differentiated cells and/or by deployment of specialized stem/progenitor cells. Which of these pathways applies is both organ- and injury-specific. Current models in the lung posit that epithelial repair can be attributed to cells expressing mature lineage markers. By contrast, here we define the regenerative role of previously uncharacterized, rare lineage-negative epithelial stem/progenitor (LNEP) cells present within normal distal lung. Quiescent LNEPs activate a DeltaNp63 (a p63 splice variant) and cytokeratin 5 remodelling program after influenza or bleomycin injury in mice. Activated cells proliferate and migrate widely to occupy heavily injured areas depleted of mature lineages, at which point they differentiate towards mature epithelium. Lineage tracing revealed scant contribution of pre-existing mature epithelial cells in such repair, whereas orthotopic transplantation of LNEPs, isolated by a definitive surface profile identified through single-cell sequencing, directly demonstrated the proliferative capacity and multipotency of this population. LNEPs require Notch signalling to activate the DeltaNp63 and cytokeratin 5 program, and subsequent Notch blockade promotes an alveolar cell fate. Persistent Notch signalling after injury led to parenchymal 'micro-honeycombing' (alveolar cysts), indicative of failed regeneration. Lungs from patients with fibrosis show analogous honeycomb cysts with evidence of hyperactive Notch signalling. Our findings indicate that distinct stem/progenitor cell pools repopulate injured tissue depending on the extent of the injury, and the outcomes of regeneration or fibrosis may depend in part on the dynamics of LNEP Notch signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vaughan, Andrew E -- Brumwell, Alexis N -- Xi, Ying -- Gotts, Jeffrey E -- Brownfield, Doug G -- Treutlein, Barbara -- Tan, Kevin -- Tan, Victor -- Liu, Feng Chun -- Looney, Mark R -- Matthay, Michael A -- Rock, Jason R -- Chapman, Harold A -- F32 HL117600-01/HL/NHLBI NIH HHS/ -- R01 HL44712/HL/NHLBI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- U01 HL111054/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):621-5. doi: 10.1038/nature14112. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, California 94143, USA. ; Department of Biochemistry, Stanford University School of Medicine and Howard Hughes Medical Institute, Stanford, California 94305, USA. ; Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Anatomy, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bleomycin ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cysts/metabolism/pathology ; Epithelial Cells/*cytology/metabolism/*pathology ; Female ; Humans ; Keratin-5/metabolism ; Lung/*cytology/*pathology/physiology ; Lung Injury/chemically induced/*pathology/virology ; Male ; Mice ; Orthomyxoviridae Infections/pathology/virology ; Phosphoproteins/genetics/metabolism ; *Re-Epithelialization ; Receptors, Notch/metabolism ; Signal Transduction ; Stem Cell Transplantation ; Stem Cells/*cytology/metabolism ; Trans-Activators/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...