ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-19
    Description: Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suez, Jotham -- Korem, Tal -- Zeevi, David -- Zilberman-Schapira, Gili -- Thaiss, Christoph A -- Maza, Ori -- Israeli, David -- Zmora, Niv -- Gilad, Shlomit -- Weinberger, Adina -- Kuperman, Yael -- Harmelin, Alon -- Kolodkin-Gal, Ilana -- Shapiro, Hagit -- Halpern, Zamir -- Segal, Eran -- Elinav, Eran -- England -- Nature. 2014 Oct 9;514(7521):181-6. doi: 10.1038/nature13793. Epub 2014 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; 1] Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; Day Care Unit and the Laboratory of Imaging and Brain Stimulation, Kfar Shaul hospital, Jerusalem Center for Mental Health, Jerusalem 91060, Israel. ; 1] Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel [2] Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel [3] Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel. ; The Nancy and Stephen Grand Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel [2] Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25231862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Aspartame/adverse effects ; Body Weight/drug effects ; Diet, High-Fat ; Dietary Fats/pharmacology ; Feces/microbiology ; Female ; Gastrointestinal Tract/*drug effects/*microbiology ; Germ-Free Life ; Glucose/metabolism ; Glucose Intolerance/*chemically induced/metabolism/*microbiology ; Humans ; Male ; Metabolic Syndrome X/chemically induced/metabolism/microbiology ; Mice ; Mice, Inbred C57BL ; Microbiota/*drug effects ; Saccharin/administration & dosage/adverse effects ; Sucrose/adverse effects/analogs & derivatives ; Sweetening Agents/*adverse effects ; Waist-Hip Ratio
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-10-27
    Description: mazEF is a toxin-antitoxin module located on many bacterial chromosomes, including those of pathogens. Here, we report that Escherichia coli mazEF-mediated cell death is a population phenomenon requiring a quorum-sensing molecule that we call the extracellular death factor (EDF). Structural analysis revealed that EDF is a linear pentapeptide, Asn-Asn-Trp-Asn-Asn. Each of the five amino acids of EDF is important for its activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Hazan, Ronen -- Gaathon, Ariel -- Carmeli, Shmuel -- Engelberg-Kulka, Hanna -- GM069509/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962566" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Aspartate-Ammonia Ligase/genetics/metabolism ; DNA-Binding Proteins/*physiology ; Endoribonucleases/*physiology ; Escherichia coli/cytology/growth & development/*physiology ; Escherichia coli Proteins/*physiology ; Microbial Viability ; Oligopeptides/chemistry/isolation & purification/*metabolism ; *Quorum Sensing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...