ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Transfection  (758)
  • American Association for the Advancement of Science (AAAS)  (758)
  • American Geophysical Union
  • American Meteorological Society
  • 2000-2004  (217)
  • 1995-1999  (270)
  • 1990-1994  (271)
  • 1950-1954
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (758)
  • American Geophysical Union
  • American Meteorological Society
  • Springer  (13)
  • Wiley-Blackwell  (5)
Years
Year
  • 1
    Publication Date: 2002-04-16
    Description: Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells. Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice. In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection. These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arase, Hisashi -- Mocarski, Edward S -- Campbell, Ann E -- Hill, Ann B -- Lanier, Lewis L -- AI30363/AI/NIAID NIH HHS/ -- CA89294/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1323-6. Epub 2002 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11950999" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antigens, Ly/chemistry/genetics/*immunology/metabolism ; Cell Line ; Coculture Techniques ; Disease Susceptibility ; Evolution, Molecular ; Herpesviridae Infections/*immunology ; Histocompatibility Antigens Class I/immunology ; Hybridomas ; Immunity, Innate ; Interferon-gamma/biosynthesis ; Killer Cells, Natural/*immunology ; Lectins, C-Type ; Ligands ; Lymphocyte Activation ; Membrane Glycoproteins/chemistry/genetics/*immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Muromegalovirus/genetics/*immunology/metabolism ; NK Cell Lectin-Like Receptor Subfamily A ; Protein Binding ; Receptors, Immunologic/chemistry/genetics/*immunology/metabolism ; Receptors, NK Cell Lectin-Like ; Recombinant Fusion Proteins/metabolism ; Transfection ; Viral Proteins/chemistry/genetics/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brivanlou, Ali H -- Gage, Fred H -- Jaenisch, Rudolf -- Jessell, Thomas -- Melton, Douglas -- Rossant, Janet -- New York, N.Y. -- Science. 2003 May 9;300(5621):913-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021, USA. brvnlou@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Specimen Banks ; Cell Culture Techniques/methods ; Cell Differentiation ; Cell Division ; *Cell Line ; Culture Media ; Culture Media, Conditioned ; Databases, Factual ; *Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; Quality Control ; Registries ; Research/standards ; Signal Transduction ; Stem Cell Transplantation ; *Stem Cells/cytology/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-04-12
    Description: Rapid turnover of the tumor suppressor protein p53 requires the MDM2 ubiquitin ligase, and both interact with p300-CREB-binding protein transcriptional coactivator proteins. p53 is stabilized by the binding of p300 to the oncoprotein E1A, suggesting that p300 regulates p53 degradation. Purified p300 exhibited intrinsic ubiquitin ligase activity that was inhibited by E1A. In vitro, p300 with MDM2 catalyzed p53 polyubiquitination, whereas MDM2 catalyzed p53 monoubiquitination. E1A expression caused a decrease in polyubiquitinated but not monoubiquitinated p53 in cells. Thus, generation of the polyubiquitinated forms of p53 that are targeted for proteasome degradation requires the intrinsic ubiquitin ligase activities of MDM2 and p300.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grossman, Steven R -- Deato, Maria E -- Brignone, Chrystelle -- Chan, Ho Man -- Kung, Andrew L -- Tagami, Hideaki -- Nakatani, Yoshihiro -- Livingston, David M -- CA15751/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):342-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690203" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Animals ; Catalysis ; Cells, Cultured ; E1A-Associated p300 Protein ; Embryo, Mammalian ; Fibroblasts/metabolism ; Humans ; Ligases/antagonists & inhibitors/metabolism ; Mice ; Nuclear Proteins/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Trans-Activators/antagonists & inhibitors/*metabolism ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/*metabolism ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-09-23
    Description: Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Carman, Christopher V -- Springer, Timothy A -- CA31798/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1720-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500982" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD11a/*chemistry ; Antigens, CD18/*chemistry ; Bacterial Proteins ; Cell Adhesion ; Cell Membrane/*metabolism ; Chemokine CXCL12 ; Chemokines, CXC/metabolism ; Cytoplasm/*chemistry ; Dimerization ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Humans ; Intercellular Adhesion Molecule-1/metabolism ; Ligands ; Luminescent Proteins ; Lymphocyte Function-Associated Antigen-1/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/chemistry ; *Signal Transduction ; Talin/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-28
    Description: The metabotropic glutamate receptors (mGluRs) are widely distributed in the brain and play important roles in synaptic plasticity. Here it is shown that some types of mGluRs are activated not only by glutamate but also by extracellular Ca2+ (Ca2+o). A single amino acid residue was found to determine the sensitivity of mGluRs to Ca2+o. One of the receptors, mGluR1alpha, but not its point mutant with reduced sensitivity to Ca2+o, caused morphological changes when transfected into mammalian cells. Thus, the sensing of Ca2+o by mGluRs may be important in cells under physiological condition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Y -- Miyashita, T -- Murata, Y -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1722-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan. ykubo@tmin.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497291" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/ultrastructure ; Amino Acid Sequence ; Animals ; Binding Sites ; Brain/metabolism ; CHO Cells ; Calcium/*metabolism/pharmacology ; Cell Size ; Cricetinae ; Cyclic AMP/metabolism ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Glutamic Acid/metabolism/pharmacology ; Molecular Sequence Data ; Oocytes ; Point Mutation ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Rats ; Receptors, Metabotropic Glutamate/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: After the vertebrate lens is induced from head ectoderm, lens-specific genes are expressed. Transcriptional regulation of the lens-specific alphaA-crystallin gene is controlled by an enhancer element, alphaCE2. A gene encoding an alphaCE2-binding protein, L-maf(lens-specific maf), was isolated. L-maf expression is initiated in the lens placode and is restricted to lens cells. The gene product L-Maf regulates the expression of multiple genes expressed in the lens, and ectopic expression of this transcription factor converts chick embryonic ectodermal cells and cultured cells into lens fibers. Thus, vertebrate lens induction and differentiation can be triggered by the activation of L-Maf.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogino, H -- Yasuda, K -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic-Leucine Zipper Transcription Factors ; Cell Differentiation ; Cells, Cultured ; Chick Embryo ; Crystallins/genetics ; DNA, Complementary ; DNA-Binding Proteins/chemistry/genetics ; Ectoderm ; Enhancer Elements, Genetic ; Eye Proteins/genetics ; G-Box Binding Factors ; *Gene Expression Regulation, Developmental ; Genes, Reporter ; Intermediate Filament Proteins/genetics ; Lens, Crystalline/*cytology/*embryology/metabolism ; Maf Transcription Factors ; Molecular Sequence Data ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-02-07
    Description: The Son of Sevenless (Sos) proteins control receptor-mediated activation of Ras by catalyzing the exchange of guanosine diphosphate for guanosine triphosphate on Ras. The NH2-terminal region of Sos contains a Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. In COS-1 cells, the DH domain of Sos stimulated guanine nucleotide exchange on Rac but not Cdc42 in vitro and in vivo. The tandem DH-PH domain of Sos (DH-PH-Sos) was defective in Rac activation but regained Rac stimulating activity when it was coexpressed with activated Ras. Ras-mediated activation of DH-PH-Sos did not require activation of mitogen-activated protein kinase but it was dependent on activation of phosphoinositide 3-kinase. These results reveal a potential mechanism for coupling of Ras and Rac signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nimnual, A S -- Yatsula, B A -- Bar-Sagi, D -- CA09176/CA/NCI NIH HHS/ -- CA28146/CA/NCI NIH HHS/ -- CA55360/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 23;279(5350):560-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9438849" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; Membrane Proteins/chemistry/*metabolism ; *Mitogen-Activated Protein Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins ; Recombinant Fusion Proteins/metabolism ; Retroviridae Proteins, Oncogenic/chemistry ; Signal Transduction ; Son of Sevenless Proteins ; Transfection ; cdc42 GTP-Binding Protein ; rac GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-08-28
    Description: Control of the activation of apoptosis is important both in development and in protection against cancer. In the classic genetic model Caenorhabditis elegans, the pro-apoptotic protein CED-4 activates the CED-3 caspase and is inhibited by the Bcl-2-like protein CED-9. Both processes are mediated by protein-protein interaction. Facilitating the proximity of CED-3 zymogen molecules was found to induce caspase activation and cell death. CED-4 protein oligomerized in cells and in vitro. This oligomerization induced CED-3 proximity and competed with CED-4:CED-9 interaction. Mutations that abolished CED-4 oligomerization inactivated its ability to activate CED-3. Thus, the mechanism of control is that CED-3 in CED-3:CED-4 complexes is activated by CED-4 oligomerization, which is inhibited by binding of CED-9 to CED-4.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, X -- Chang, H Y -- Baltimore, D -- CA51462/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 28;281(5381):1355-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9721101" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Apoptosis Regulatory Proteins ; Biopolymers ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/*chemistry/genetics/*metabolism ; *Caspases ; Cell Line ; Chemistry, Physical ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Enzyme Activation ; Enzyme Precursors/metabolism ; HeLa Cells ; Helminth Proteins/*chemistry/genetics/*metabolism ; Humans ; Mutation ; Oligopeptides/pharmacology ; Physicochemical Phenomena ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Recombinant Fusion Proteins/metabolism ; Tacrolimus/pharmacology ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-12-18
    Description: CTLA-4, a negative regulator of T cell function, was found to associate with the T cell receptor (TCR) complex zeta chain in primary T cells. The association of TCRzeta with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56(lck)-induced tyrosine phosphorylation. Coexpression of the CTLA-4-associated tyrosine phosphatase, SHP-2, resulted in dephosphorylation of TCRzeta bound to CTLA-4 and abolished the p56(lck)-inducible TCRzeta-CTLA-4 interaction. Thus, CTLA-4 inhibits TCR signal transduction by binding to TCRzeta and inhibiting tyrosine phosphorylation after T cell activation. These findings have broad implications for the negative regulation of T cell function and T cell tolerance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, K M -- Chuang, E -- Griffin, M -- Khattri, R -- Hong, D K -- Zhang, W -- Straus, D -- Samelson, L E -- Thompson, C B -- Bluestone, J A -- P01 AI35294-6/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2263-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ben May Institute for Cancer Research, and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856951" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Animals ; Antigens, CD ; Antigens, Differentiation/*metabolism ; CTLA-4 Antigen ; Cell Line ; Cells, Cultured ; Humans ; *Immunoconjugates ; Intracellular Signaling Peptides and Proteins ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred BALB C ; Models, Immunological ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/genetics/metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Recombinant Fusion Proteins/metabolism ; SH2 Domain-Containing Protein Tyrosine Phosphatases ; *Signal Transduction ; T-Lymphocytes/*immunology ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singer, R H -- New York, N.Y. -- Science. 1998 May 1;280(5364):696-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Institute for Molecular Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA. rhsinger@aecom.yu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9599147" target="_blank"〉PubMed〈/a〉
    Keywords: CELF1 Protein ; Cell Nucleus/metabolism ; Exons ; Humans ; Models, Genetic ; Myotonic Dystrophy/*genetics/metabolism ; Myotonin-Protein Kinase ; Protein Binding ; Protein-Serine-Threonine Kinases/*genetics ; *RNA Splicing ; RNA, Messenger/*genetics ; RNA-Binding Proteins/genetics/*metabolism ; Ribonucleoproteins/genetics/*metabolism ; Transcription, Genetic ; Transfection ; *Trinucleotide Repeats ; Troponin/genetics ; Troponin T
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1998-06-11
    Description: Sickle cell anemia is the most common heritable hematological disease, yet no curative treatment exists for this disorder. Moreover, the intricacies of globin gene expression have made the development of treatments for hemoglobinopathies based on gene therapy difficult. An alternative genetic approach to sickle cell therapy is based on RNA repair. A trans-splicing group I ribozyme was used to alter mutant beta-globin transcripts in erythrocyte precursors derived from peripheral blood from individuals with sickle cell disease. Sickle beta-globin transcripts were converted into messenger RNAs encoding the anti-sickling protein gamma-globin. These results suggest that RNA repair may become a useful approach in the treatment of genetic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lan, N -- Howrey, R P -- Lee, S W -- Smith, C A -- Sullenger, B A -- HL57606/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1593-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genetic and Cellular Therapies, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616120" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/*blood/therapy ; Cloning, Molecular ; Erythroid Precursor Cells/*metabolism ; Exons ; Fetal Blood ; Genetic Therapy ; Globins/*genetics ; Humans ; Mutation ; Polymerase Chain Reaction ; *RNA Splicing ; RNA, Catalytic/genetics/*metabolism ; RNA, Messenger/chemistry/*genetics/metabolism ; Transfection ; Uridine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1998-06-20
    Description: An efficient system for genetic modification and large-scale cloning of cattle is of importance for agriculture, biotechnology, and human medicine. Here, actively dividing fetal fibroblasts were genetically modified with a marker gene, a clonal line was selected, and the cells were fused to enucleated mature oocytes. Out of 28 embryos transferred to 11 recipient cows, three healthy, identical, transgenic calves were generated. Furthermore, the life-span of near senescent fibroblasts could be extended by nuclear transfer, as indicated by population doublings in fibroblast lines derived from a 40-day-old fetal clone. With the ability to extend the life-span of these primary cultured cells, this system would be useful for inducing complex genetic modifications in cattle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cibelli, J B -- Stice, S L -- Golueke, P J -- Kane, J J -- Jerry, J -- Blackwell, C -- Ponce de Leon, F A -- Robl, J M -- New York, N.Y. -- Science. 1998 May 22;280(5367):1256-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9596577" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Genetically Modified ; Blastocyst ; Cattle/embryology/*genetics ; Cell Aging ; Cell Division ; Cell Nucleus/genetics ; Cells, Cultured ; Clone Cells ; *Cloning, Organism ; Embryo Transfer ; Female ; Fetus/cytology ; Fibroblasts/*cytology ; G1 Phase ; Male ; Nuclear Transfer Techniques ; Oocytes/cytology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-30
    Description: Fas ligand (CD95L) inhibits T cell function in immune-privileged organs such as the eye and testis, yet in most tissues CD95L expression induces potent inflammatory responses. With a stably transfected colon carcinoma cell line, CT26-CD95L, the molecular basis for these divergent responses was defined. When injected subcutaneously, rejection of CT26-CD95L was caused by neutrophils activated by CD95L. CT26-CD95L survived in the intraocular space because of the presence of transforming growth factor-beta (TGF-beta), which inhibited neutrophil activation. Providing TGF-beta to subcutaneous sites protected against tumor rejection. Thus, these cytokines together generate a microenvironment that promotes immunologic tolerance, which may aid in the amelioration of allograft rejection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, J J -- Sun, Y -- Nabel, G J -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1714-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical Center, Departments of Internal Medicine and Biological Chemistry, 1150 West Medical Center Drive, 4520 Medical Science Research Building I, Ann Arbor, MI 48109-0650, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anterior Chamber ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Cytotoxicity, Immunologic ; Fas Ligand Protein ; Female ; Graft Rejection ; Humans ; Immune Tolerance ; Inflammation/*immunology ; Jurkat Cells ; Membrane Glycoproteins/*physiology ; Mice ; Mice, Inbred BALB C ; *Mitogen-Activated Protein Kinases ; Neoplasm Transplantation ; Neoplasms, Experimental/*immunology/pathology ; *Neutrophil Activation ; Neutrophils/immunology ; Transfection ; Transforming Growth Factor beta/pharmacology ; Tumor Cells, Cultured ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1998-11-30
    Description: The NPH1 gene of Arabidopsis thaliana encodes a 120-kilodalton serine-threonine protein kinase hypothesized to function as a photoreceptor for phototropism. When expressed in insect cells, the NPH1 protein is phosphorylated in response to blue light irradiation. The biochemical and photochemical properties of the photosensitive protein reflect those of the native protein in microsomal membranes. Recombinant NPH1 noncovalently binds flavin mononucleotide, a likely chromophore for light-dependent autophosphorylation. The fluorescence excitation spectrum of the recombinant protein is similar to the action spectrum for phototropism, consistent with the conclusion that NPH1 is an autophosphorylating flavoprotein photoreceptor mediating phototropic responses in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christie, J M -- Reymond, P -- Powell, G K -- Bernasconi, P -- Raibekas, A A -- Liscum, E -- Briggs, W R -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1698-701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; Cell Line ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavin Mononucleotide/metabolism ; Flavoproteins/physiology ; Genes, Plant ; Light ; Mutation ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; *Photoreceptor Cells, Invertebrate ; *Phototropism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, G-Protein-Coupled ; Recombinant Proteins/metabolism ; Spectrometry, Fluorescence ; Spodoptera ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1998-05-09
    Description: Hormones and neurotransmitters may mediate common responses through receptors that couple to the same class of heterotrimeric guanine nucleotide-binding (G) protein. For example, several receptors that couple to Gq class proteins can induce cardiomyocyte hypertrophy. Class-specific inhibition of Gq-mediated signaling was produced in the hearts of transgenic mice by targeted expression of a carboxyl-terminal peptide of the alpha subunit Galphaq. When pressure overload was surgically induced, the transgenic mice developed significantly less ventricular hypertrophy than control animals. The data demonstrate the role of myocardial Gq in the initiation of myocardial hypertrophy and indicate a possible strategy for preventing pathophysiological signaling by simultaneously blocking multiple receptors coupled to Gq.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akhter, S A -- Luttrell, L M -- Rockman, H A -- Iaccarino, G -- Lefkowitz, R J -- Koch, W J -- HL-03041/HL/NHLBI NIH HHS/ -- HL-09436/HL/NHLBI NIH HHS/ -- HL-16037/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554846" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/pharmacology ; Animals ; Atrial Natriuretic Factor/genetics ; COS Cells ; Diglycerides/metabolism ; Enzyme Activation ; GTP-Binding Proteins/antagonists & inhibitors/genetics/*metabolism ; Gene Expression Regulation ; Gene Targeting ; Hypertrophy, Left Ventricular/*metabolism/prevention & control ; Inositol Phosphates/metabolism ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 1/metabolism ; Myocardium/*metabolism ; Peptide Fragments/genetics/metabolism ; Phenylephrine/pharmacology ; Receptors, Adrenergic, alpha/*metabolism ; Signal Transduction ; Transfection ; Transgenes ; Ventricular Pressure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-07-10
    Description: Recombinant proteins containing four cysteines at the i, i + 1, i + 4, and i + 5 positions of an alpha helix were fluorescently labeled in living cells by extracellular administration of 4',5'-bis(1,3, 2-dithioarsolan-2-yl)fluorescein. This designed small ligand is membrane-permeant and nonfluorescent until it binds with high affinity and specificity to the tetracysteine domain. Such in situ labeling adds much less mass than does green fluorescent protein and offers greater versatility in attachment sites as well as potential spectroscopic and chemical properties. This system provides a recipe for slightly modifying a target protein so that it can be singled out from the many other proteins inside live cells and fluorescently stained by small nonfluorescent dye molecules added from outside the cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffin, B A -- Adams, S R -- Tsien, R Y -- NS27177/NS/NINDS NIH HHS/ -- T32 CA09523/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):269-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0647, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657724" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calmodulin/chemistry/genetics/metabolism ; Cell Membrane Permeability ; Cell Survival ; Cysteine/*chemistry ; Energy Transfer ; Ethylene Glycol ; Fluoresceins/chemical synthesis/chemistry/*metabolism ; Fluorescence ; *Fluorescent Dyes ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; Jurkat Cells ; Ligands ; Luminescent Proteins/chemistry/genetics/metabolism ; Molecular Sequence Data ; Organometallic Compounds/chemical synthesis/chemistry/*metabolism ; Peptides/chemistry/*metabolism ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/*metabolism ; Spectrometry, Fluorescence ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1998-01-24
    Description: Gene expression was visualized in single living mammalian cells with beta-lactamase as a reporter that hydrolyzes a substrate loaded intracellularly as a membrane-permeant ester. Each enzyme molecule changed the fluorescence of many substrate molecules from green to blue by disrupting resonance energy transfer. This wavelength shift was detectable by eye or color film in individual cells containing less than 100 beta-lactamase molecules. The robust change in emission ratio reveals quantitative heterogeneity in real-time gene expression, enables clonal selection by flow cytometry, and forms a basis for high-throughput screening of pharmaceutical candidate drugs in living mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zlokarnik, G -- Negulescu, P A -- Knapp, T E -- Mere, L -- Burres, N -- Feng, L -- Whitney, M -- Roemer, K -- Tsien, R Y -- NS27177/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):84-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aurora Biosciences, 11010 Torreyana Road, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation/methods ; Clone Cells/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Drug Evaluation, Preclinical ; Energy Transfer ; Flow Cytometry ; Fluoresceins/metabolism ; Fluorescent Dyes/metabolism ; *Gene Expression ; *Genes, Reporter ; Half-Life ; Humans ; *Lactams ; Muscarinic Agonists/pharmacology ; Muscarinic Antagonists/pharmacology ; NFATC Transcription Factors ; *Nuclear Proteins ; Sensitivity and Specificity ; Spectrometry, Fluorescence ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Umbelliferones/metabolism ; beta-Lactamases/*genetics/metabolism ; beta-Lactams/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1999-09-25
    Description: The flow of information from calcium-mobilizing receptors to nuclear factor of activated T cells (NFAT)-dependent genes is critically dependent on interaction between the phosphatase calcineurin and the transcription factor NFAT. A high-affinity calcineurin-binding peptide was selected from combinatorial peptide libraries based on the calcineurin docking motif of NFAT. This peptide potently inhibited NFAT activation and NFAT-dependent expression of endogenous cytokine genes in T cells, without affecting the expression of other cytokines that require calcineurin but not NFAT. Substitution of the optimized peptide sequence into the natural calcineurin docking site increased the calcineurin responsiveness of NFAT. Compounds that interfere selectively with the calcineurin-NFAT interaction without affecting calcineurin phosphatase activity may be useful as therapeutic agents that are less toxic than current drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aramburu, J -- Yaffe, M B -- Lopez-Rodriguez, C -- Cantley, L C -- Hogan, P G -- Rao, A -- R01 AI 40127/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HL 03601/HL/NHLBI NIH HHS/ -- R43 AI 43726/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Sep 24;285(5436):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10497131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Nucleus/metabolism ; Cyclosporine/pharmacology ; Cytokines/biosynthesis/genetics ; DNA-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; Gene Expression Regulation ; Genes, Reporter ; HeLa Cells ; Humans ; Immunosuppressive Agents/chemistry/metabolism/*pharmacology ; Jurkat Cells ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Oligopeptides/chemistry/metabolism/*pharmacology ; Peptide Library ; Peptides/chemistry/metabolism/*pharmacology ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/*drug effects/immunology ; Transcription Factors/*antagonists & inhibitors/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-29
    Description: The protein encoded by the c-MYC proto-oncogene is a transcription factor that can both activate and repress the expression of target genes, but few of its transcriptional targets have been identified. Here, c-MYC is shown to repress the expression of the heavy subunit of the protein ferritin (H-ferritin), which sequesters intracellular iron, and to stimulate the expression of the iron regulatory protein-2 (IRP2), which increases the intracellular iron pool. Down-regulation of the expression of H-ferritin gene was required for cell transformation by c-MYC. These results indicate that c-MYC coordinately regulates genes controlling intracellular iron concentrations and that this function is essential for the control of cell proliferation and transformation by c-MYC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, K J -- Polack, A -- Dalla-Favera, R -- CA-37165/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):676-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Oncology, Department of Pathology, Columbia University, New York, NY 10032, USA. an.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Line ; Cell Line, Transformed ; Cell Transformation, Neoplastic ; DNA/biosynthesis ; Down-Regulation ; Ferritins/*genetics/metabolism ; *Gene Expression Regulation ; Genes, myc ; Homeostasis ; Iron/*metabolism ; Iron Regulatory Protein 2 ; Iron-Regulatory Proteins ; Iron-Sulfur Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-myc/*physiology ; RNA/metabolism ; RNA-Binding Proteins/*genetics/metabolism ; Receptors, Transferrin/genetics ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1999-09-18
    Description: The bacterial pathogen Yersinia uses a type III secretion system to inject several virulence factors into target cells. One of the Yersinia virulence factors, YopJ, was shown to bind directly to the superfamily of MAPK (mitogen-activated protein kinase) kinases (MKKs) blocking both phosphorylation and subsequent activation of the MKKs. These results explain the diverse activities of YopJ in inhibiting the extracellular signal-regulated kinase, c-Jun amino-terminal kinase, p38, and nuclear factor kappa B signaling pathways, preventing cytokine synthesis and promoting apoptosis. YopJ-related proteins that are found in a number of bacterial pathogens of animals and plants may function to block MKKs so that host signaling responses can be modulated upon infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orth, K -- Palmer, L E -- Bao, Z Q -- Stewart, S -- Rudolph, A E -- Bliska, J B -- Dixon, J E -- 18024/PHS HHS/ -- AI35175/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1920-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489373" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases/*antagonists & inhibitors ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/*pharmacology ; HeLa Cells ; Humans ; *MAP Kinase Kinase Kinase 1 ; NF-kappa B/metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Transfection ; Virulence ; Yersinia pseudotuberculosis/genetics/metabolism/pathogenicity/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: The Fos and Jun oncoproteins form dimeric complexes that stimulate transcription of genes containing activator protein-1 regulatory elements. We found, by representational difference analysis, that expression of DNA 5-methylcytosine transferase (dnmt1) in fos-transformed cells is three times the expression in normal fibroblasts and that fos-transformed cells contain about 20 percent more 5-methylcytosine than normal fibroblasts. Transfection of the gene encoding Dnmt1 induced morphological transformation, whereas inhibition of dnmt1 expression or activity resulted in reversion of fos transformation. Inhibition of histone deacetylase, which associates with methylated DNA, also caused reversion. These results suggest that fos may transform cells through alterations in DNA methylation and in histone deacetylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakin, A V -- Curran, T -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):387-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888853" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Acetylation ; Animals ; Cell Size ; *Cell Transformation, Neoplastic ; Cytosine/analogs & derivatives/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/*metabolism ; DNA Methylation ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation, Neoplastic ; *Genes, fos ; Histone Deacetylase Inhibitors ; Histones/metabolism ; Hydroxamic Acids/pharmacology ; Proto-Oncogene Proteins c-fos/*metabolism ; Rats ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1999-04-24
    Description: Primary effusion lymphoma (PEL) cells harbor Kaposi's sarcoma-associated herpesvirus (KSHV) episomes and express a KSHV-encoded latency-associated nuclear antigen (LANA). In PEL cells, LANA and KSHV DNA colocalized in dots in interphase nuclei and along mitotic chromosomes. In the absence of KSHV DNA, LANA was diffusely distributed in the nucleus or on mitotic chromosomes. In lymphoblasts, LANA was necessary and sufficient for the persistence of episomes containing a specific KSHV DNA fragment. Furthermore, LANA colocalized with the artificial KSHV DNA episomes in nuclei and along mitotic chromosomes. These results support a model in which LANA tethers KSHV DNA to chromosomes during mitosis to enable the efficient segregation of KSHV episomes to progeny cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ballestas, M E -- Chatis, P A -- Kaye, K M -- CA67380-04/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):641-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213686" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Viral/analysis/genetics/metabolism ; Cell Nucleus/chemistry ; Chromosomes/chemistry/*metabolism ; Cosmids ; DNA, Viral/analysis/genetics/*metabolism ; Herpesvirus 8, Human/*genetics/physiology ; Humans ; Interphase ; Lymphocytes/chemistry ; Microscopy, Confocal ; *Mitosis ; Nuclear Proteins/analysis/genetics/*metabolism ; *Plasmids ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1999-02-26
    Description: Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yanagisawa, J -- Yanagi, Y -- Masuhiro, Y -- Suzawa, M -- Watanabe, M -- Kashiwagi, K -- Toriyabe, T -- Kawabata, M -- Miyazono, K -- Kato, S -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1317-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/pharmacology ; COS Cells ; Calcitriol/*metabolism/pharmacology ; Cell Nucleus/metabolism ; DNA-Binding Proteins/*metabolism ; Histone Acetyltransferases ; Ligands ; Nuclear Receptor Coactivator 1 ; Phosphorylation ; Receptor Cross-Talk ; Receptors, Calcitriol/*metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Receptors, Retinoic Acid/metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; Signal Transduction ; Smad3 Protein ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection ; Transforming Growth Factor beta/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1999-10-16
    Description: Defensins contribute to host defense by disrupting the cytoplasmic membrane of microorganisms. This report shows that human beta-defensins are also chemotactic for immature dendritic cells and memory T cells. Human beta-defensin was selectively chemotactic for cells stably transfected to express human CCR6, a chemokine receptor preferentially expressed by immature dendritic cells and memory T cells. The beta-defensin-induced chemotaxis was sensitive to pertussis toxin and inhibited by antibodies to CCR6. The binding of iodinated LARC, the chemokine ligand for CCR6, to CCR6-transfected cells was competitively displaced by beta-defensin. Thus, beta-defensins may promote adaptive immune responses by recruiting dendritic and T cells to the site of microbial invasion through interaction with CCR6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, D -- Chertov, O -- Bykovskaia, S N -- Chen, Q -- Buffo, M J -- Shogan, J -- Anderson, M -- Schroder, J M -- Wang, J M -- Howard, O M -- Oppenheim, J J -- N01-CO-56000/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):525-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunoregulation, Division of Basic Sciences, Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521347" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies/immunology ; Binding, Competitive ; Cell Line ; Chemokine CCL20 ; Chemokines, CC/metabolism/pharmacology ; Chemotaxis ; Chemotaxis, Leukocyte ; Defensins ; Dendritic Cells/*immunology ; Humans ; *Immunity, Active ; *Immunity, Innate ; Immunologic Memory ; *Macrophage Inflammatory Proteins ; Pertussis Toxin ; Proteins/pharmacology/*physiology ; Receptors, CCR6 ; Receptors, Chemokine/genetics/*metabolism ; Recombinant Proteins/pharmacology ; T-Lymphocyte Subsets/*immunology ; Transfection ; Virulence Factors, Bordetella/pharmacology ; *beta-Defensins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1999-04-09
    Description: IkappaB [inhibitor of nuclear factor kappaB (NF-kappaB)] kinase (IKK) phosphorylates IkappaB inhibitory proteins, causing their degradation and activation of transcription factor NF-kappaB, a master activator of inflammatory responses. IKK is composed of three subunits-IKKalpha and IKKbeta, which are highly similar protein kinases, and IKKgamma, a regulatory subunit. In mammalian cells, phosphorylation of two sites at the activation loop of IKKbeta was essential for activation of IKK by tumor necrosis factor and interleukin-1. Elimination of equivalent sites in IKKalpha, however, did not interfere with IKK activation. Thus, IKKbeta, not IKKalpha, is the target for proinflammatory stimuli. Once activated, IKKbeta autophosphorylated at a carboxyl-terminal serine cluster. Such phosphorylation decreased IKK activity and may prevent prolonged activation of the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delhase, M -- Hayakawa, M -- Chen, Y -- Karin, M -- R01 AI43477/AI/NIAID NIH HHS/ -- R37 ES04151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):309-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195894" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; HeLa Cells ; Helix-Loop-Helix Motifs ; Humans ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Leucine Zippers ; *MAP Kinase Kinase Kinase 1 ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1999-05-13
    Description: To study the nuclear organization and dynamics of nucleotide excision repair (NER), the endonuclease ERCC1/XPF (for excision repair cross complementation group 1/xeroderma pigmentosum group F) was tagged with green fluorescent protein and its mobility was monitored in living Chinese hamster ovary cells. In the absence of DNA damage, the complex moved freely through the nucleus, with a diffusion coefficient (15 +/- 5 square micrometers per second) consistent with its molecular size. Ultraviolet light-induced DNA damage caused a transient dose-dependent immobilization of ERCC1/XPF, likely due to engagement of the complex in a single repair event. After 4 minutes, the complex regained mobility. These results suggest (i) that NER operates by assembly of individual NER factors at sites of DNA damage rather than by preassembly of holocomplexes and (ii) that ERCC1/XPF participates in repair of DNA damage in a distributive fashion rather than by processive scanning of large genome segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houtsmuller, A B -- Rademakers, S -- Nigg, A L -- Hoogstraten, D -- Hoeijmakers, J H -- Vermeulen, W -- New York, N.Y. -- Science. 1999 May 7;284(5416):958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology (Josephine Nefkens Institute, Erasmus University, Post Office Box 1738, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320375" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line, Transformed ; Cell Nucleus/metabolism ; Cricetinae ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/*metabolism ; Diffusion ; Endonucleases/*metabolism ; Fluorescence ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; Luminescent Proteins ; Microscopy, Confocal ; Microscopy, Fluorescence ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1999-07-03
    Description: An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV), a major cause of chronic liver disease. Despite increasing knowledge of genome structure and individual viral proteins, studies on virus replication and pathogenesis have been hampered by the lack of reliable and efficient cell culture systems. A full-length consensus genome was cloned from viral RNA isolated from an infected human liver and used to construct subgenomic selectable replicons. Upon transfection into a human hepatoma cell line, these RNAs were found to replicate to high levels, permitting metabolic radiolabeling of viral RNA and proteins. This work defines the structure of HCV replicons functional in cell culture and provides the basis for a long-sought cellular system that should allow detailed molecular studies of HCV and the development of antiviral drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohmann, V -- Korner, F -- Koch, J -- Herian, U -- Theilmann, L -- Bartenschlager, R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Virology, Johannes-Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390360" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular ; Cloning, Molecular ; Drug Resistance ; *Genome, Viral ; Gentamicins/pharmacology ; Hepacivirus/genetics/*physiology ; Hepatitis C/virology ; Humans ; Liver Neoplasms ; RNA, Viral/*biosynthesis/genetics ; *Replicon ; Transfection ; Tumor Cells, Cultured/*virology ; Viral Nonstructural Proteins/analysis/genetics ; Virus Cultivation ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1999-11-13
    Description: A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Brunet, A -- West, A E -- Datta, S R -- Takasu, M A -- Greenberg, M E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 HD 24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 12;286(5443):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10558990" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain-Derived Neurotrophic Factor/pharmacology ; Carrier Proteins/genetics/metabolism ; *Cell Survival ; Cells, Cultured ; Cerebellum/cytology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Kinase 1 ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Mutation ; Neurons/*cytology/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; *Protein-Serine-Threonine Kinases ; Rats ; Rats, Long-Evans ; Recombinant Fusion Proteins/metabolism ; Ribosomal Protein S6 Kinases/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; bcl-Associated Death Protein ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1999-01-08
    Description: Cochlear frequency selectivity in lower vertebrates arises in part from electrical tuning intrinsic to the sensory hair cells. The resonant frequency is determined largely by the gating kinetics of calcium-activated potassium (BK) channels encoded by the slo gene. Alternative splicing of slo from chick cochlea generated kinetically distinct BK channels. Combination with accessory beta subunits slowed the gating kinetics of alpha splice variants but preserved relative differences between them. In situ hybridization showed that the beta subunit is preferentially expressed by low-frequency (apical) hair cells in the avian cochlea. Interaction of beta with alpha splice variants could provide the kinetic range needed for electrical tuning of cochlear hair cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramanathan, K -- Michael, T H -- Jiang, G J -- Hiel, H -- Fuchs, P A -- DC00276/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):215-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Hearing Sciences, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880252" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Calcium/metabolism ; Cell Line ; Electrophysiology ; Gene Expression ; Hair Cells, Auditory/*physiology ; Humans ; In Situ Hybridization ; *Ion Channel Gating ; Kinetics ; Large-Conductance Calcium-Activated Potassium Channel beta Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Membrane Potentials ; Patch-Clamp Techniques ; Potassium Channels/genetics/*physiology ; *Potassium Channels, Calcium-Activated ; Quail ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-12
    Description: Erythropoietin and other cytokine receptors are thought to be activated through hormone-induced dimerization and autophosphorylation of JAK kinases associated with the receptor intracellular domains. An in vivo protein fragment complementation assay was used to obtain evidence for an alternative mechanism in which unliganded erythropoietin receptor dimers exist in a conformation that prevents activation of JAK2 but then undergo a ligand-induced conformation change that allows JAK2 to be activated. These results are consistent with crystallographic evidence of distinct dimeric configurations for unliganded and ligand-bound forms of the erythropoietin receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Remy, I -- Wilson, I A -- Michnick, S W -- GM49497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Feb 12;283(5404):990-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biochimie, Universite de Montreal, Casier Postal 6128, succursale Centre-ville, Montreal, Quebec, H3C 3J7, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9974393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; COS Cells ; Cricetinae ; Dimerization ; Erythropoietin/metabolism ; Flow Cytometry ; Fluoresceins/metabolism ; Janus Kinase 2 ; Ligands ; Methotrexate/analogs & derivatives/metabolism ; Microscopy, Fluorescence ; Peptides, Cyclic/metabolism ; *Protein Conformation ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Erythropoietin/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Tetrahydrofolate Dehydrogenase/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2000-10-20
    Description: Ectodysplasin, a member of the tumor necrosis factor family, is encoded by the anhidrotic ectodermal dysplasia (EDA) gene. Mutations in EDA give rise to a clinical syndrome characterized by loss of hair, sweat glands, and teeth. EDA-A1 and EDA-A2 are two isoforms of ectodysplasin that differ only by an insertion of two amino acids. This insertion functions to determine receptor binding specificity, such that EDA-A1 binds only the receptor EDAR, whereas EDA-A2 binds only the related, but distinct, X-linked ectodysplasin-A2 receptor (XEDAR). In situ binding and organ culture studies indicate that EDA-A1 and EDA-A2 are differentially expressed and play a role in epidermal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, M -- Wang, L C -- Hymowitz, S G -- Schilbach, S -- Lee, J -- Goddard, A -- de Vos, A M -- Gao, W Q -- Dixit, V M -- New York, N.Y. -- Science. 2000 Oct 20;290(5491):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11039935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; Cell Line ; DNA-Binding Proteins/metabolism ; Ectodermal Dysplasia/genetics ; Ectodysplasins ; Epidermis/embryology/*metabolism ; Humans ; *I-kappa B Proteins ; In Situ Hybridization ; Ligands ; Membrane Proteins/*chemistry/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Morphogenesis ; NF-kappa B/metabolism ; Phosphorylation ; Point Mutation ; Protein Conformation ; Proteins/metabolism ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2000-03-04
    Description: The coupling mechanism between endoplasmic reticulum (ER) calcium ion (Ca2+) stores and plasma membrane (PM) store-operated channels (SOCs) is crucial to Ca2+ signaling but has eluded detection. SOCs may be functionally related to the TRP family of receptor-operated channels. Direct comparison of endogenous SOCs with stably expressed TRP3 channels in human embryonic kidney (HEK293) cells revealed that TRP3 channels differ in being store independent. However, condensed cortical F-actin prevented activation of both SOC and TRP3 channels, which suggests that ER-PM interactions underlie coupling of both channels. A cell-permeant inhibitor of inositol trisphosphate receptor (InsP3R) function, 2-aminoethoxydiphenyl borate, prevented both receptor-induced TRP3 activation and store-induced SOC activation. It is concluded that InsP3Rs mediate both SOC and TRP channel opening and that the InsP3R is essential for maintaining coupling between store emptying and physiological activation of SOCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, H T -- Patterson, R L -- van Rossum, D B -- Birnbaumer, L -- Mikoshiba, K -- Gill, D L -- AR07592/AR/NIAMS NIH HHS/ -- HL55426/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1647-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10698739" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Boron Compounds/pharmacology ; Calcium/*metabolism ; Calcium Channels/chemistry/*metabolism ; *Calcium Signaling ; Carbachol/pharmacology ; Cell Line ; Cell Membrane/metabolism ; Diglycerides/metabolism/pharmacology ; Endoplasmic Reticulum/*metabolism ; Enzyme Inhibitors/pharmacology ; Humans ; Inositol 1,4,5-Trisphosphate Receptors ; Ionomycin/pharmacology ; Macrocyclic Compounds ; Oxazoles/pharmacology ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism ; Strontium/metabolism ; TRPC Cation Channels ; Thapsigargin/pharmacology ; Transfection ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2000-02-11
    Description: The nonclassical major histocompatibility complex (MHC) class I molecule HLA-E inhibits natural killer (NK) cell-mediated lysis by interacting with CD94/NKG2A receptors. Surface expression of HLA-E depends on binding of conserved peptides derived from MHC class I molecules. The same peptide is present in the leader sequence of the human cytomegalovirus (HCMV) glycoprotein UL40 (gpUL40). It is shown that, independently of the transporter associated with antigen processing, gpUL40 can up-regulate expression of HLA-E, which protects targets from NK cell lysis. While classical MHC class I molecules are down-regulated, HLA-E is up-regulated by HCMV. Induction of HLA-E surface expression by gpUL40 may represent an escape route for HCMV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasec, P -- Braud, V M -- Rickards, C -- Powell, M B -- McSharry, B P -- Gadola, S -- Cerundolo, V -- Borysiewicz, L K -- McMichael, A J -- Wilkinson, G W -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Wales College of Medicine, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669413" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; *Antigens, CD ; Cell Line ; Cell Membrane/immunology ; Cells, Cultured ; Conserved Sequence ; Cytomegalovirus/genetics/immunology/*metabolism ; Cytotoxicity, Immunologic ; Down-Regulation ; HLA Antigens/immunology/*metabolism ; Histocompatibility Antigens Class I/immunology/*metabolism ; Humans ; Killer Cells, Natural/*immunology ; Molecular Sequence Data ; Open Reading Frames ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Immunologic/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Up-Regulation ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2000-05-29
    Description: To protect genome integrity and ensure survival, eukaryotic cells exposed to genotoxic stress cease proliferating to provide time for DNA repair. Human cells responded to ultraviolet light or ionizing radiation by rapid, ubiquitin- and proteasome-dependent protein degradation of Cdc25A, a phosphatase that is required for progression from G1 to S phase of the cell cycle. This response involved activated Chk1 protein kinase but not the p53 pathway, and the persisting inhibitory tyrosine phosphorylation of Cdk2 blocked entry into S phase and DNA replication. Overexpression of Cdc25A bypassed this mechanism, leading to enhanced DNA damage and decreased cell survival. These results identify specific degradation of Cdc25A as part of the DNA damage checkpoint mechanism and suggest how Cdc25A overexpression in human cancers might contribute to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mailand, N -- Falck, J -- Lukas, C -- Syljuasen, R G -- Welcker, M -- Bartek, J -- Lukas, J -- New York, N.Y. -- Science. 2000 May 26;288(5470):1425-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827953" target="_blank"〉PubMed〈/a〉
    Keywords: *CDC2-CDC28 Kinases ; Cell Line ; Cell Survival ; Cyclin E/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/antagonists & inhibitors/metabolism ; Cysteine Endopeptidases/metabolism ; *DNA Damage ; DNA Repair ; DNA Replication ; G1 Phase ; Humans ; Multienzyme Complexes/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Proteasome Endopeptidase Complex ; Protein Kinase Inhibitors ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; S Phase ; Transfection ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays ; cdc25 Phosphatases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2000-09-29
    Description: MyoD regulates skeletal muscle differentiation (SMD) and is essential for repair of damaged tissue. The transcription factor nuclear factor kappa B (NF-kappaB) is activated by the cytokine tumor necrosis factor (TNF), a mediator of skeletal muscle wasting in cachexia. Here, the role of NF-kappaB in cytokine-induced muscle degeneration was explored. In differentiating C2C12 myocytes, TNF-induced activation of NF-kappaB inhibited SMD by suppressing MyoD mRNA at the posttranscriptional level. In contrast, in differentiated myotubes, TNF plus interferon-gamma (IFN-gamma) signaling was required for NF-kappaB-dependent down-regulation of MyoD and dysfunction of skeletal myofibers. MyoD mRNA was also down-regulated by TNF and IFN-gamma expression in mouse muscle in vivo. These data elucidate a possible mechanism that may underlie the skeletal muscle decay in cachexia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guttridge, D C -- Mayo, M W -- Madrid, L V -- Wang, C Y -- Baldwin, A S Jr -- AI35098/AI/NIAID NIH HHS/ -- CA72771/CA/NCI NIH HHS/ -- K01 CA78595/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2363-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, Department of Biology, University of North Carolina, Chapel Hill, Mason Farm Road, Campus Box 7295, Chapel Hill, NC, 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009425" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cachexia/*etiology/metabolism/pathology ; Cell Differentiation ; Cell Line ; Cricetinae ; DNA-Binding Proteins/genetics/metabolism ; Down-Regulation ; *I-kappa B Proteins ; Interferon-gamma/pharmacology ; Interleukins/pharmacology ; Mice ; Mice, Inbred Strains ; Mice, Nude ; Muscle, Skeletal/*cytology/*metabolism/pathology ; MyoD Protein/*genetics/metabolism ; NF-kappa B/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Transcription Factor RelA ; Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2001-10-06
    Description: The definition of centromeres of human chromosomes requires a complete genomic understanding of these regions. Toward this end, we report integration of physical mapping, genetic, and functional approaches, together with sequencing of selected regions, to define the centromere of the human X chromosome and to explore the evolution of sequences responsible for chromosome segregation. The transitional region between expressed sequences on the short arm of the X and the chromosome-specific alpha satellite array DXZ1 spans about 450 kilobases and is satellite-rich. At the junction between this satellite region and canonical DXZ1 repeats, diverged repeat units provide direct evidence of unequal crossover as the homogenizing force of these arrays. Results from deletion analysis of mitotically stable chromosome rearrangements and from a human artificial chromosome assay demonstrate that DXZ1 DNA is sufficient for centromere function. Evolutionary studies indicate that, while alpha satellite DNA present throughout the pericentromeric region of the X chromosome appears to be a descendant of an ancestral primate centromere, the current functional centromere based on DXZ1 sequences is the product of the much more recent concerted evolution of this satellite DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schueler, M G -- Higgins, A W -- Rudd, M K -- Gustashaw, K -- Willard, H F -- HD07518/HD/NICHD NIH HHS/ -- HD32111/HD/NICHD NIH HHS/ -- HG00107/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):109-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics, and, Research Institute, University Hospitals of Cleveland, Cleveland, OH 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11588252" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Centromere/chemistry/genetics/*physiology ; Chromosome Segregation ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Human ; Computer Simulation ; Contig Mapping ; Crossing Over, Genetic ; *DNA, Satellite/chemistry/genetics/physiology ; Evolution, Molecular ; Humans ; Interspersed Repetitive Sequences ; Models, Genetic ; Phylogeny ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Sequence Analysis, DNA ; Sequence Deletion ; Sequence Tagged Sites ; Transfection ; Turner Syndrome/genetics ; X Chromosome/genetics/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2001-11-10
    Description: We describe a molecular switch based on the controlled methylation of nucleosome and the transcriptional cofactors, the CREB-binding proteins (CBP)/p300. The CBP/p300 methylation site is localized to an arginine residue that is essential for stabilizing the structure of the KIX domain, which mediates CREB recruitment. Methylation of KIX by coactivator-associated arginine methyltransferase 1 (CARM1) blocks CREB activation by disabling the interaction between KIX and the kinase inducible domain (KID) of CREB. Thus, CARM1 functions as a corepressor in cyclic adenosine monophosphate signaling pathway via its methyltransferase activity while acting as a coactivator for nuclear hormones. These results provide strong in vivo and in vitro evidence that histone methylation plays a key role in hormone-induced gene activation and define cofactor methylation as a new regulatory mechanism in hormone signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, W -- Chen, H -- Du, K -- Asahara, H -- Tini, M -- Emerson, B M -- Montminy, M -- Evans, R M -- 9R01DK57978/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Department of Biological Chemistry, University of California Davis Cancer Center/Basic Science, Sacramento, CA 95817, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701890" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Apoptosis ; Cell Line ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dimerization ; E1A-Associated p300 Protein ; *Gene Expression Regulation ; Genes, Reporter ; Histone Acetyltransferases ; Histones/metabolism ; Methylation ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology ; Nuclear Proteins/chemistry/*metabolism ; PC12 Cells ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Rats ; Receptors, Retinoic Acid/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Somatostatin/genetics ; Trans-Activators/chemistry/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection ; Tretinoin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: In yeast, telomere position effect (TPE) results in the reversible silencing of genes near telomeres. Here we demonstrate the presence of TPE in human cells. HeLa clones containing a luciferase reporter adjacent to a newly formed telomere express 10 times less luciferase than do control clones generated by random integration. Luciferase expression is restored by trichostatin A, a histone deacetylase inhibitor. Overexpression of a human telomerase reverse transcriptase complementary DNA results in telomere elongation and an additional 2- to 10-fold decrease in expression in telomeric clones but not control clones. The dependence of TPE on telomere length provides a mechanism for the modification of gene expression throughout the replicative life-span of human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baur, J A -- Zou, Y -- Shay, J W -- Wright, W E -- AG07792/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2075-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408657" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging ; Cell Division ; DNA-Binding Proteins ; *Gene Expression Regulation ; *Gene Silencing ; Genes, Reporter ; Genetic Vectors ; HeLa Cells ; Humans ; Hydroxamic Acids/pharmacology ; Luciferases/genetics/metabolism ; *Rna ; Retroviridae/genetics ; Telomerase/genetics/*metabolism ; Telomere/drug effects/*physiology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2001-06-16
    Description: Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuccato, C -- Ciammola, A -- Rigamonti, D -- Leavitt, B R -- Goffredo, D -- Conti, L -- MacDonald, M E -- Friedlander, R M -- Silani, V -- Hayden, M R -- Timmusk, T -- Sipione, S -- Cattaneo, E -- E.0840/Telethon/Italy -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):493-8. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacological Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408619" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor/biosynthesis/*genetics/metabolism ; Cell Survival ; Cells, Cultured ; Cerebral Cortex/cytology/*metabolism ; Corpus Striatum/cytology/*metabolism/pathology ; Exons ; Hippocampus/cytology/metabolism/pathology ; Humans ; Huntington Disease/*genetics/metabolism/pathology ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Nerve Growth Factors/genetics/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Neurons/*metabolism/pathology ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2001-08-18
    Description: B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, J S -- Bixler, S A -- Qian, F -- Vora, K -- Scott, M L -- Cachero, T G -- Hession, C -- Schneider, P -- Sizing, I D -- Mullen, C -- Strauch, K -- Zafari, M -- Benjamin, C D -- Tschopp, J -- Browning, J L -- Ambrose, C -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2108-11. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogen, 12 Cambridge Center, Cambridge, MA 02142, USA., The Institute of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Cell Maturation Antigen ; B-Lymphocytes/immunology/metabolism/*physiology ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; Homeostasis ; Humans ; Ligands ; Lymphoid Tissue/metabolism ; Male ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred A ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/chemistry/genetics/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transmembrane Activator and CAML Interactor Protein ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2001-11-03
    Description: Human immunodeficiency virus-1 (HIV-1) Vpr expression halts the proliferation of human cells at or near the G2 cell-cycle checkpoint. The transition from G2 to mitosis is normally controlled by changes in the state of phosphorylation and subcellular compartmentalization of key cell-cycle regulatory proteins. In studies of the intracellular trafficking of these regulators, we unexpectedly found that wild-type Vpr, but not Vpr mutants impaired for G2 arrest, induced transient, localized herniations in the nuclear envelope (NE). These herniations were associated with defects in the nuclear lamina. Intermittently, these herniations ruptured, resulting in the mixing of nuclear and cytoplasmic components. These Vpr-induced NE changes probably contribute to the observed cell-cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Noronha, C M -- Sherman, M P -- Lin, H W -- Cavrois, M V -- Moir, R D -- Goldman, R D -- Greene, W C -- KO8 AI01866/AI/NIAID NIH HHS/ -- P30 MH59037/MH/NIMH NIH HHS/ -- R01 AI145234/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1105-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, Department of Medicine, University of California, San Francisco, CA 94103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691994" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Cycle Proteins/metabolism ; Cell Nucleus/*metabolism/virology ; Cyclin B/metabolism ; Cyclin B1 ; Cytoplasm/metabolism ; *G2 Phase ; Gene Products, vpr/genetics/*physiology ; HIV-1/*physiology ; HeLa Cells ; Humans ; *Lamin Type B ; Lamins ; Macrophages/virology ; Microscopy, Fluorescence ; Microscopy, Video ; Mitosis ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Pore Complex Proteins/metabolism ; Nuclear Proteins/metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Virus Integration ; cdc25 Phosphatases/metabolism ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2001-09-05
    Description: The developmental signaling functions of cell surface heparan sulfate proteoglycans (HSPGs) are dependent on their sulfation states. Here, we report the identification of QSulf1, the avian ortholog of an evolutionarily conserved protein family related to heparan-specific N-acetyl glucosamine sulfatases. QSulf1 expression is induced by Sonic hedgehog in myogenic somite progenitors in quail embryos and is required for the activation of MyoD, a Wnt-induced regulator of muscle specification. QSulf1 is localized on the cell surface and regulates heparan-dependent Wnt signaling in C2C12 myogenic progenitor cells through a mechanism that requires its catalytic activity, providing evidence that QSulf1 regulates Wnt signaling through desulfation of cell surface HSPGs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dhoot, G K -- Gustafsson, M K -- Ai, X -- Sun, W -- Standiford, D M -- Emerson , C P Jr -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Veterinary Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533491" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; CHO Cells ; Cell Membrane/metabolism ; Cells, Cultured ; Cloning, Molecular ; Coculture Techniques ; Cricetinae ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Hedgehog Proteins ; Heparan Sulfate Proteoglycans/*metabolism ; Heparin/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Muscles/cytology/*embryology/metabolism ; Mutation ; MyoD Protein/genetics/metabolism ; Oligonucleotides, Antisense ; Proto-Oncogene Proteins/*metabolism ; Quail/*embryology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; *Signal Transduction ; Somites/metabolism ; Stem Cells/*metabolism ; Sulfatases/chemistry/genetics/*metabolism ; Trans-Activators/genetics/metabolism ; Transfection ; Wnt Proteins ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2001-08-18
    Description: Cell division depends on the separation of sister chromatids in anaphase. In yeast, sister separation is initiated by cleavage of cohesin by the protease separase. In vertebrates, most cohesin is removed from chromosome arms by a cleavage-independent mechanism. Only residual amounts of cohesin are cleaved at the onset of anaphase, coinciding with its disappearance from centromeres. We have identified two separase cleavage sites in the human cohesin subunit SCC1 and have conditionally expressed noncleavable SCC1 mutants in human cells. Our results indicate that cohesin cleavage by separase is essential for sister chromatid separation and for the completion of cytokinesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hauf, S -- Waizenegger, I C -- Peters, J M -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1320-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Dr.-Bohr Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509732" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Aneuploidy ; Aurora Kinases ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; *Cell Division ; Cell Nucleus/ultrastructure ; Centromere/metabolism ; Chromatids/metabolism ; Chromosomal Proteins, Non-Histone ; Chromosomes/*metabolism ; Cyclin B/metabolism ; DNA Replication ; Endopeptidases/*metabolism ; HeLa Cells ; Humans ; Karyotyping ; Microscopy, Fluorescence ; Microscopy, Video ; Mutation ; Nuclear Proteins ; Phosphoproteins ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae Proteins ; Separase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2001-10-13
    Description: Poly-alpha2,8-sialic acid (PSA) has been implicated in numerous normal and pathological processes, including development, neuronal plasticity, and tumor metastasis. We report that cell surface PSA expression can be reversibly inhibited by a small molecule, N-butanoylmannosamine (ManBut). Inhibition occurs through a metabolic mechanism in which ManBut is converted to unnatural sialic acid derivatives that effectively act as chain terminators during cellular PSA biosynthesis. N-Propanoylmannosamine (ManProp), which differs from ManBut by a single methylene group, did not inhibit PSA biosynthesis. Modulation of PSA expression by chemical means has a role complementary to genetic and biochemical approaches in the study of complex PSA-mediated events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahal, L K -- Charter, N W -- Angata, K -- Fukuda, M -- Koshland, D E Jr -- Bertozzi, C R -- CA33895/CA/NCI NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- GM58867-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):380-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598302" target="_blank"〉PubMed〈/a〉
    Keywords: Carbohydrate Conformation ; Cell Membrane/*metabolism ; HeLa Cells ; Hexosamines/metabolism/*pharmacology ; Humans ; Microscopy, Fluorescence ; Neural Cell Adhesion Molecules/genetics/metabolism ; Neurons/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sialic Acids/*biosynthesis/chemistry ; Sialyltransferases/genetics/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1638-42.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biolistics ; Blood Pressure ; Clinical Trials as Topic ; Coronary Artery Disease/genetics/therapy ; DNA/administration & dosage/genetics ; Electroporation ; Gene Expression ; Gene Transfer Techniques/*trends ; Genetic Therapy/*methods/trends ; Genetic Vectors/*administration & dosage/*adverse effects/genetics ; Hemophilia A/genetics/therapy ; Humans ; Injections, Intra-Arterial ; Melanoma/genetics/therapy ; Microinjections ; Muscular Dystrophies/genetics/therapy ; Organ Specificity ; Plasmids/administration & dosage/genetics ; RNA/administration & dosage/genetics ; Time Factors ; Transfection ; Transgenes/genetics ; Viruses/genetics/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2001-09-05
    Description: Cyclin E binds and activates the cyclin-dependent kinase Cdk2 and catalyzes the transition from the G1 phase to the S phase of the cell cycle. The amount of cyclin E protein present in the cell is tightly controlled by ubiquitin-mediated proteolysis. Here we identify the ubiquitin ligase responsible for cyclin E ubiquitination as SCFFbw7 and demonstrate that it is functionally conserved in yeast, flies, and mammals. Fbw7 associates specifically with phosphorylated cyclin E, and SCFFbw7 catalyzes cyclin E ubiquitination in vitro. Depletion of Fbw7 leads to accumulation and stabilization of cyclin E in vivo in human and Drosophila melanogaster cells. Multiple F-box proteins contribute to cyclin E stability in yeast, suggesting an overlap in SCF E3 ligase specificity that allows combinatorial control of cyclin E degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koepp, D M -- Schaefer, L K -- Ye, X -- Keyomarsi, K -- Chu, C -- Harper, J W -- Elledge, S J -- R01 AG011085/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):173-7. Epub 2001 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Breast Neoplasms/genetics/metabolism ; *CDC2-CDC28 Kinases ; *Cell Cycle ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cyclin E/*metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; Drosophila Proteins ; Drosophila melanogaster ; *F-Box Proteins ; Humans ; Mice ; Molecular Sequence Data ; Peptide Synthases/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Double-Stranded ; Recombinant Fusion Proteins/metabolism ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transfection ; Tumor Cells, Cultured ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2002-07-06
    Description: The enzymatic conjugation of arginine to the N-termini of proteins is a part of the ubiquitin-dependent N-end rule pathway of protein degradation. In mammals, three N-terminal residues-aspartate, glutamate, and cysteine-are substrates for arginylation. The mouse ATE1 gene encodes a family of Arg-tRNA-protein transferases (R-transferases) that mediate N-terminal arginylation. We constructed ATE1-lacking mouse strains and found that ATE1-/- embryos die with defects in heart development and in angiogenic remodeling of the early vascular plexus. Through biochemical analyses, we show that N-terminal cysteine, in contrast to N-terminal aspartate and glutamate, is oxidized before its arginylation by R-transferase, suggesting that the arginylation branch of the N-end rule pathway functions as an oxygen sensor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Yong Tae -- Kashina, Anna S -- Davydov, Ilia V -- Hu, Rong-Gui -- An, Jee Young -- Seo, Jai Wha -- Du, Fangyong -- Varshavsky, Alexander -- GM31530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 5;297(5578):96-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, 147-75, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12098698" target="_blank"〉PubMed〈/a〉
    Keywords: Alkylation ; Aminoacyltransferases/*genetics/*metabolism ; Animals ; Aorta/embryology ; Arginine/*metabolism ; Aspartic Acid/metabolism ; Blood Vessels/*embryology ; Cell Line ; Cysteic Acid/metabolism ; Cysteine/metabolism ; Female ; Glutamic Acid/metabolism ; Heart/*embryology ; Heart Defects, Congenital/embryology ; Heart Septal Defects/embryology ; Hypoxia-Inducible Factor 1, alpha Subunit ; Male ; Mice ; Mice, Inbred C57BL ; Neovascularization, Physiologic ; Oxidation-Reduction ; Proteins/*metabolism ; Pulmonary Artery/embryology ; RGS Proteins/metabolism ; Recombinant Proteins/metabolism ; Sulfinic Acids/metabolism ; Transcription Factors/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2002-08-24
    Description: A current view is that cytotoxic stress, such as DNA damage, induces apoptosis by regulating the permeability of mitochondria. Mitochondria sequester several proteins that, if released, kill by activating caspases, the proteases that disassemble the cell. Cytokines activate caspases in a different way, by assembling receptor complexes that activate caspases directly; in this case, the subsequent mitochondrial permeabilization accelerates cell disassembly by amplifying caspase activity. We found that cytotoxic stress causes activation of caspase-2, and that this caspase is required for the permeabilization of mitochondria. Therefore, we argue that cytokine-induced and stress-induced apoptosis act through conceptually similar pathways in which mitochondria are amplifiers of caspase activity rather than initiators of caspase activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lassus, Patrice -- Opitz-Araya, Ximena -- Lazebnik, Yuri -- CA-13106-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 23;297(5585):1352-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12193789" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 2 ; Caspases/genetics/*metabolism ; Cell Line, Transformed ; Cytochrome c Group/metabolism ; *DNA Damage ; Enzyme Activation ; Enzyme Repression ; Etoposide/pharmacology ; Humans ; Mitochondria/metabolism/*physiology ; Permeability ; Protein Transport ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; RNA, Small Interfering ; RNA, Untranslated ; Signal Transduction ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2002-11-02
    Description: beta-Defensins are small antimicrobial peptides of the innate immune system produced in response to microbial infection of mucosal tissue and skin. We demonstrate that murine beta-defensin 2 (mDF2beta) acts directly on immature dendritic cells as an endogenous ligand for Toll-like receptor 4 (TLR-4), inducing up-regulation of costimulatory molecules and dendritic cell maturation. These events, in turn, trigger robust, type 1 polarized adaptive immune responses in vivo, suggesting that mDF2beta may play an important role in immunosurveillance against pathogens and, possibly, self antigens or tumor antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biragyn, Arya -- Ruffini, Pier Adelchi -- Leifer, Cynthia A -- Klyushnenkova, Elena -- Shakhov, Alexander -- Chertov, Oleg -- Shirakawa, Aiko K -- Farber, Joshua M -- Segal, David M -- Oppenheim, Joost J -- Kwak, Larry W -- N0L-CO-12400/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1025-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA. arya@mail.ncifcrf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/immunology ; Cancer Vaccines/immunology ; Cell Line ; Cytokines/biosynthesis ; Dendritic Cells/*immunology ; *Drosophila Proteins ; Female ; Humans ; Interferon-alpha/physiology ; Ligands ; Lipopolysaccharides/immunology/pharmacology ; Lymphocyte Culture Test, Mixed ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Neoplasms/immunology/therapy ; Receptors, CCR6 ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Chemokine/metabolism ; Recombinant Fusion Proteins/pharmacology ; Signal Transduction ; Toll-Like Receptor 4 ; Toll-Like Receptors ; Transfection ; beta-Defensins/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2002-03-02
    Description: The second messenger cyclic adenosine monophosphate (cAMP) is the most important modulator of sympathetic control over cardiac contractility. In cardiac myocytes and many other cell types, however, cAMP transduces the signal generated upon stimulation of various receptors and activates different cellular functions, raising the issue of how specificity can be achieved. In the general field of signal transduction, the view is emerging that specificity is guaranteed by tight localization of signaling events. Here, we show that in neonatal rat cardiac myocytes, beta-adrenergic stimulation generates multiple microdomains with increased concentration of cAMP in correspondence with the region of the transverse tubule/junctional sarcoplasmic reticulum membrane. The restricted pools of cAMP show a range of action as small as approximately 1 micrometer, and free diffusion of the second messenger is limited by the activity of phosphodiesterases. Furthermore, we demonstrate that such gradients of cAMP specifically activate a subset of protein kinase A molecules anchored in proximity to the T tubule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaccolo, Manuela -- Pozzan, Tullio -- TCP00089/Telethon/Italy -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1711-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Sciences and Venetian Institute for Molecular Medicine, University of Padua, Via Orus 2, 35129 Padua, Italy. manuela.zaccolo@unipd.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872839" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Methyl-3-isobutylxanthine/pharmacology ; A Kinase Anchor Proteins ; Adaptor Proteins, Signal Transducing ; Animals ; Animals, Newborn ; Cells, Cultured ; Colforsin/pharmacology ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Fluorescence ; Green Fluorescent Proteins ; Intracellular Membranes/metabolism ; Kinetics ; Luminescent Proteins ; Myocardium/*cytology/*metabolism/ultrastructure ; Norepinephrine/pharmacology ; Phosphodiesterase Inhibitors/pharmacology ; Proto-Oncogene Proteins/pharmacology ; Rats ; Receptors, Adrenergic, beta/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sarcoplasmic Reticulum/*metabolism ; Second Messenger Systems ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubes, Gary -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2118-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481117" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/genetics ; Animals ; Genetic Therapy/*methods ; Globins/genetics ; Humans ; Oligonucleotides/*genetics ; Plasmids ; Point Mutation ; *Publishing ; Reproducibility of Results ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to cellular and viral transcriptional repressors is regulated by the nicotinamide adenine dinucleotides NAD+ and NADH, with NADH being two to three orders of magnitude more effective. Levels of free nuclear nicotinamide adenine dinucleotides, determined using two-photon microscopy, correspond to the levels required for half-maximal CtBP binding and are considerably lower than those previously reported. Agents capable of increasing NADH levels stimulate CtBP binding to its partners in vivo and potentiate CtBP-mediated repression. We propose that this ability to detect changes in nuclear NAD+/NADH ratio allows CtBP to serve as a redox sensor for transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qinghong -- Piston, David W -- Goodman, Richard H -- K01 CA096561/CA/NCI NIH HHS/ -- R01 CA115468/CA/NCI NIH HHS/ -- R01 CA115468-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1895-7. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847309" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Binding Sites ; Cadherins/genetics ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; HeLa Cells ; Homeodomain Proteins/metabolism ; Humans ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; NAD/*metabolism ; Oxidation-Reduction ; Phosphoproteins/chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2002-03-09
    Description: Time courses of translocation of fluorescently conjugated proteins to the plasma membrane were simultaneously measured in thousands of individual rat basophilic leukemia cells. We found that the C2 domain---a calcium-sensing, lipid-binding protein module that is an essential regulator of protein kinase C and numerous other proteins---targeted proteins to the plasma membrane transiently if calcium was released from internal stores, and persistently in response to entry of extracellular calcium across the plasma membrane. The C2 domain translocation time courses of stimulated cells clustered into only two primary modes. Hence, the reversible recruitment of families of signaling proteins from one cellular compartment to another is a rapid bifurcation mechanism for inducing discrete states of cellular signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teruel, Mary N -- Meyer, Tobias -- CA83229/CA/NCI NIH HHS/ -- GM062144/GM/NIGMS NIH HHS/ -- HG00057/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1910-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University Medical School, 269 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Calcium/*metabolism ; *Calcium Signaling ; Cell Membrane/*metabolism ; Cytosol/metabolism ; Fluorescence ; Fluorescent Dyes ; Isoenzymes/chemistry/*metabolism ; Kinetics ; Luminescent Proteins ; Platelet Activating Factor/pharmacology ; Protein Binding ; Protein Kinase C/chemistry/*metabolism ; Protein Structure, Tertiary ; *Protein Transport ; Rats ; Receptors, Cell Surface/*metabolism ; Recombinant Fusion Proteins/metabolism ; Software ; Thapsigargin/pharmacology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2002-10-12
    Description: Recent observations indicating that promoter identity influences alternative RNA-processing decisions have created interest in the regulatory interactions between RNA polymerase II transcription and precursor messenger RNA (pre-mRNA) processing. We examined the impact of steroid receptor-mediated transcription on RNA processing with reporter genes subject to alternative splicing driven by steroid-sensitive promoters. Steroid hormones affected the processing of pre-mRNA synthesized from steroid-sensitive promoters, but not from steroid-unresponsive promoters, in a steroid receptor-dependent and receptor-selective manner. Several nuclear receptor coregulators showed differential splicing effects, suggesting that steroid hormone receptors may simultaneously control gene transcription activity and exon content of the product mRNA by recruiting coregulators involved in both processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Auboeuf, Didier -- Honig, Arnd -- Berget, Susan M -- O'Malley, Bert W -- GM 38526/GM/NIGMS NIH HHS/ -- HD-08818/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376702" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, CD44/genetics ; COS Cells ; Calcitonin/genetics ; Calcitonin Gene-Related Peptide/genetics ; Carrier Proteins/*metabolism ; Dexamethasone/metabolism/pharmacology ; Estradiol/metabolism/pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Exons ; Genes, Reporter ; HeLa Cells ; Humans ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Progesterone/metabolism/pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Helicases/*metabolism ; RNA-Binding Protein FUS/*metabolism ; Receptors, Estrogen/genetics/metabolism ; Receptors, Glucocorticoid/metabolism ; Receptors, Progesterone/metabolism ; Response Elements ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2002-12-21
    Description: The immunoglobulin G (IgG)-containing B lymphocyte antigen receptor (IgG-BCR) transmits a signal distinct from that of IgM-BCR or IgD-BCR, although all three use the same signal-transducing component, Igalpha/Igbeta. Here we demonstrate that the inhibitory coreceptor CD22 down-modulates signaling through IgM-BCR and IgD-BCR, but not that through IgG-BCR, because of the IgG cytoplasmic tail, which prevents CD22 phosphorylation. These results suggest that the cytoplasmic tail of IgG specifically enhances IgG-BCR signaling by preventing CD22-mediated signal inhibition. Enhanced signaling through IgG-BCR may be involved in efficient IgG production, which is crucial for immunity to pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wakabayashi, Chisato -- Adachi, Takahiro -- Wienands, Jurgen -- Tsubata, Takeshi -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2392-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510 Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493916" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Antigens, Differentiation, B-Lymphocyte/metabolism ; B-Lymphocytes/immunology/metabolism ; Calcium/metabolism ; Calcium Signaling ; *Cell Adhesion Molecules ; Cells, Cultured ; Immunoglobulin D/immunology/metabolism ; Immunoglobulin G/chemistry/immunology/*metabolism ; Intracellular Signaling Peptides and Proteins ; Lectins/metabolism ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases/metabolism ; Receptors, Antigen, B-Cell/chemistry/immunology/*metabolism ; Sialic Acid Binding Ig-like Lectin 2 ; *Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1998-08-14
    Description: Transcription factors of the nuclear factor-kappaB/rel (NF-kappaB) family may be important in cell survival by regulating unidentified, anti-apoptotic genes. One such gene that protects cells from apoptosis induced by Fas or tumor necrosis factor type alpha (TNF), IEX-1L, is described here. Its transcription induced by TNF was decreased in cells with defective NF-kappaB activation, rendering them sensitive to TNF-induced apoptosis, which was abolished by transfection with IEX-1L. In support, overexpression of antisense IEX-1L partially blocked TNF-induced expression of IEX-1L and sensitized normal cells to killing. This study demonstrates a key role of IEX-1L in cellular resistance to TNF-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, M X -- Ao, Z -- Prasad, K V -- Wu, R -- Schlossman, S F -- AI12069/AI/NIAID NIH HHS/ -- P30AI28691/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Aug 14;281(5379):998-1001.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Immunology, Dana-Farber Cancer Institute, and the Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9703517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/physiology ; Apoptosis/genetics/*physiology ; Apoptosis Regulatory Proteins ; Cell Line ; Cell Survival ; Cloning, Molecular ; DNA, Antisense/genetics ; Gene Expression Regulation ; Genetic Vectors ; Humans ; Immediate-Early Proteins/genetics/*physiology ; Jurkat Cells ; Membrane Glycoproteins/genetics/*physiology ; Membrane Proteins ; Mice ; NF-kappa B/*physiology ; *Neoplasm Proteins ; Transfection ; Tumor Necrosis Factor-alpha/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1998-09-11
    Description: The p53 tumor suppressor protein is activated and phosphorylated on serine-15 in response to various DNA damaging agents. The gene product mutated in ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction pathway initiated by ionizing radiation. Immunoprecipitated ATM had intrinsic protein kinase activity and phosphorylated p53 on serine-15 in a manganese-dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly enhanced this p53-directed kinase activity of endogenous ATM. These observations, along with the fact that phosphorylation of p53 on serine-15 in response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest that ATM is a protein kinase that phosphorylates p53 in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canman, C E -- Lim, D S -- Cimprich, K A -- Taya, Y -- Tamai, K -- Sakaguchi, K -- Appella, E -- Kastan, M B -- Siliciano, J D -- CA71387/CA/NCI NIH HHS/ -- ES05777/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins School of Medicine, Oncology Center, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733515" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA-Activated Protein Kinase ; *DNA-Binding Proteins ; Enzyme Activation ; Humans ; Lymphocytes/metabolism/radiation effects ; Mutation ; Nuclear Proteins ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/genetics/*metabolism ; *Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/*metabolism ; Tumor Suppressor Proteins ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1998-07-17
    Description: Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell receptor (TCR) responsiveness; however, the function of individual PTK substrates is often uncertain. A mutant T cell line was isolated that lacked expression of SLP-76 (SH2 domain-containing leukocyte protein of 76 kilodaltons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 was not required for TCR-induced tyrosine phosphorylation of most proteins, but was required for optimal tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), as well as Ras pathway activation. TCR-inducible gene expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs to downstream signaling pathways requires SLP-76.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yablonski, D -- Kuhne, M R -- Kadlecek, T -- Weiss, A -- CA72531/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 17;281(5375):413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Howard Hughes Medical Institute, Box 0795, University of California, San Francisco, San Francisco, CA 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9665884" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/metabolism ; Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation ; Humans ; Inositol Phosphates/metabolism ; Interleukin-2/genetics ; Isoenzymes/*metabolism ; Jurkat Cells ; *Membrane Proteins ; Mitogen-Activated Protein Kinase 1 ; NFATC Transcription Factors ; *Nuclear Proteins ; Phospholipase C gamma ; Phosphoproteins/metabolism/*physiology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; T-Lymphocytes/enzymology/*metabolism ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection ; Type C Phospholipases/*metabolism ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1998-12-04
    Description: Targeted disruption of the gene encoding MEK kinase 1 (MEKK1), a mitogen-activated protein kinase (MAPK) kinase kinase, defined its function in the regulation of MAPK pathways and cell survival. MEKK1(-/-) embryonic stem cells from mice had lost or altered responses of the c-Jun amino-terminal kinase (JNK) to microtubule disruption and cold stress but activated JNK normally in response to heat shock, anisomycin, and ultraviolet irradiation. Activation of JNK was lost and that of extracellular signal-regulated protein kinase (ERK) was diminished in response to hyperosmolarity and serum factors in MEKK1(-/-) cells. Loss of MEKK1 expression resulted in a greater apoptotic response of cells to hyperosmolarity and microtubule disruption. When activated by specific stresses that alter cell shape and the cytoskeleton, MEKK1 signals to protect cells from apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yujiri, T -- Sather, S -- Fanger, G R -- Johnson, G L -- DK37871/DK/NIDDK NIH HHS/ -- GM30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1911-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, Denver, CO 80206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836645" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anisomycin/pharmacology ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Line ; Cell Size ; *Cell Survival ; Enzyme Activation ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; Lysophospholipids/pharmacology ; *MAP Kinase Kinase 4 ; *MAP Kinase Kinase Kinase 1 ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Nocodazole/pharmacology ; Osmolar Concentration ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Stem Cells ; Temperature ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1998-03-21
    Description: The sphingolipid metabolite sphingosine-1-phosphate (SPP) has been implicated as a second messenger in cell proliferation and survival. However, many of its biological effects are due to binding to unidentified receptors on the cell surface. SPP activated the heterotrimeric guanine nucleotide binding protein (G protein)-coupled orphan receptor EDG-1, originally cloned as Endothelial Differentiation Gene-1. EDG-1 bound SPP with high affinity (dissociation constant = 8.1 nM) and high specificity. Overexpression of EDG-1 induced exaggerated cell-cell aggregation, enhanced expression of cadherins, and formation of well-developed adherens junctions in a manner dependent on SPP and the small guanine nucleotide binding protein Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M J -- Van Brocklyn, J R -- Thangada, S -- Liu, C H -- Hand, A R -- Menzeleev, R -- Spiegel, S -- Hla, T -- DK45659/DK/NIDDK NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL49094/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488656" target="_blank"〉PubMed〈/a〉
    Keywords: Cadherins/*biosynthesis ; *Cell Aggregation ; Cell Differentiation ; Cell Line ; Cloning, Molecular ; GTP-Binding Proteins/metabolism ; Gene Expression ; Genes, Immediate-Early ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; Intercellular Junctions/*ultrastructure ; Ligands ; *Lysophospholipids ; Mitogen-Activated Protein Kinase 1/metabolism ; Morphogenesis ; Receptors, Cell Surface/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Signal Transduction ; Sphingosine/*analogs & derivatives/metabolism ; Transfection ; rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1998-03-28
    Description: T cells with variable region Vdelta1 gammadelta T cell receptors (TCRs) are distributed throughout the human intestinal epithelium and may function as sentinels that respond to self antigens. The expression of a major histocompatibility complex (MHC) class I-related molecule, MICA, matches this localization. MICA and the closely related MICB were recognized by intestinal epithelial T cells expressing diverse Vdelta1 gammadelta TCRs. These interactions involved the alpha1alpha2 domains of MICA and MICB but were independent of antigen processing. With intestinal epithelial cell lines, the expression and recognition of MICA and MICB could be stress-induced. Thus, these molecules may broadly regulate protective responses by the Vdelta1 gammadelta T cells in the epithelium of the intestinal tract.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groh, V -- Steinle, A -- Bauer, S -- Spies, T -- P01 CA18221/CA/NCI NIH HHS/ -- R01 AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 13;279(5357):1737-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Avenue North, Seattle, WA 98109, USA. vgroh@fred.fhcrc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9497295" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen Presentation ; Carrier Proteins/analysis/*immunology ; Cell Line ; Cytotoxicity, Immunologic ; Heat-Shock Response ; Histocompatibility Antigens Class I/analysis/*immunology ; Hot Temperature ; Humans ; Immunophenotyping ; Intestinal Mucosa/cytology/*immunology ; Ligands ; Receptors, Antigen, T-Cell, gamma-delta/*immunology ; T-Lymphocyte Subsets/*immunology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, G B -- Seidel, G E -- New York, N.Y. -- Science. 1998 May 29;280(5368):1400-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science, University of California at Davis, Davis, CA 95616-8521, USA. gbanderson@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9634416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Genetically Modified ; Cell Cycle ; *Cloning, Organism ; Embryo, Mammalian/cytology ; Embryo, Nonmammalian ; Fetus/cytology ; Fibroblasts/cytology ; Genetic Engineering ; *Nuclear Transfer Techniques ; Plants/genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1998-06-11
    Description: The tumor suppressor PTEN is a phosphatase with sequence similarity to the cytoskeletal protein tensin. Here the cellular roles of PTEN were investigated. Overexpression of PTEN inhibited cell migration, whereas antisense PTEN enhanced migration. Integrin-mediated cell spreading and the formation of focal adhesions were down-regulated by wild-type PTEN but not by PTEN with an inactive phosphatase domain. PTEN interacted with the focal adhesion kinase FAK and reduced its tyrosine phosphorylation. Overexpression of FAK partially antagonized the effects of PTEN. Thus, PTEN phosphatase may function as a tumor suppressor by negatively regulating cell interactions with the extracellular matrix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tamura, M -- Gu, J -- Matsumoto, K -- Aota, S -- Parsons, R -- Yamada, K M -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1614-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. mtamura@yoda.nidr.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616126" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; *Cell Adhesion ; Cell Adhesion Molecules/metabolism ; Cell Line ; *Cell Movement ; Cell Size ; Concanavalin A ; Down-Regulation ; Ecdysone/pharmacology ; Fibronectins ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Genes, Tumor Suppressor ; Humans ; Integrins/physiology ; Mice ; Mutation ; PTEN Phosphohydrolase ; *Phosphoric Monoester Hydrolases ; Phosphorylation ; Polylysine ; Protein Tyrosine Phosphatases/genetics/metabolism/pharmacology/*physiology ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Transfection ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1999-05-21
    Description: Mutations of the breast cancer susceptibility gene BRCA1 confer increased risk for breast, ovarian, and prostatic cancers, but it is not clear why the mutations are associated with these particular tumor types. In transient transfection assays, BRCA1 was found to inhibit signaling by the ligand-activated estrogen receptor (ER-alpha) through the estrogen-responsive enhancer element and to block the transcriptional activation function AF-2 of ER-alpha. These results raise the possibility that wild-type BRCA1 suppresses estrogen-dependent transcriptional pathways related to mammary epithelial cell proliferation and that loss of this ability contributes to tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, S -- Wang, J -- Yuan, R -- Ma, Y -- Meng, Q -- Erdos, M R -- Pestell, R G -- Yuan, F -- Auborn, K J -- Goldberg, I D -- Rosen, E M -- R01-CA75503/CA/NCI NIH HHS/ -- R01-ES09169/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1354-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Long Island Jewish Medical Center, The Long Island Campus for the Albert Einstein College of Medicine, 270-05 76th Avenue, New Hyde Park, NY 11040, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334989" target="_blank"〉PubMed〈/a〉
    Keywords: BRCA1 Protein/*physiology ; Breast/cytology ; Breast Neoplasms/etiology ; Cell Division ; Enhancer Elements, Genetic ; Epithelial Cells/cytology ; Estradiol/metabolism ; Estrogen Receptor alpha ; Female ; Genes, BRCA1 ; Genes, Reporter ; Humans ; Ligands ; Male ; Receptors, Estrogen/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; *Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1999-11-24
    Description: Contraction and relaxation of smooth muscle are regulated by myosin light-chain kinase and myosin phosphatase through phosphorylation and dephosphorylation of myosin light chains. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase Ialpha (cGKIalpha) mediates physiologic relaxation of vascular smooth muscle in response to nitric oxide and cGMP. It is shown here that cGKIalpha is targeted to the smooth muscle cell contractile apparatus by a leucine zipper interaction with the myosin-binding subunit (MBS) of myosin phosphatase. Uncoupling of the cGKIalpha-MBS interaction prevents cGMP-dependent dephosphorylation of myosin light chain, demonstrating that this interaction is essential to the regulation of vascular smooth muscle cell tone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surks, H K -- Mochizuki, N -- Kasai, Y -- Georgescu, S P -- Tang, K M -- Ito, M -- Lincoln, T M -- Mendelsohn, M E -- HL09330/HL/NHLBI NIH HHS/ -- HL55309/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 19;286(5444):1583-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cardiology Research Institute and Cardiology Division, Department of Medicine, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10567269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Cyclic GMP-Dependent Protein Kinase Type I ; Cyclic GMP-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Histones/metabolism ; Humans ; Isoenzymes/chemistry/metabolism ; Leucine Zippers ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular/*enzymology/physiology ; Mutagenesis, Site-Directed ; Myosin Light Chains/*metabolism ; Myosin-Light-Chain Phosphatase ; Phosphoprotein Phosphatases/chemistry/*metabolism ; Phosphorylation ; Precipitin Tests ; Rats ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1999-12-11
    Description: Subsets of murine CD4+ T cells localize to different areas of the spleen after adoptive transfer. Naive and T helper 1 (TH1) cells, which express the chemokine receptor CCR7, are home to the periarteriolar lymphoid sheath, whereas activated TH2 cells, which lack CCR7, form rings at the periphery of the T cell zones near B cell follicles. Retroviral transduction of TH2 cells with CCR7 forces them to localize in a TH1-like pattern and inhibits their participation in B cell help in vivo but not in vitro. Thus, differential expression of chemokine receptors results in unique cellular migration patterns that are important for effective immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randolph, D A -- Huang, G -- Carruthers, C J -- Bromley, L E -- Chaplin, D D -- AI34580/AI/NIAID NIH HHS/ -- T32 GM07200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2159-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Allergy and Immunology, Department of Internal Medicine, Center for Immunology, Washington University School of Medicine. Howard Hughes Medical Institute, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591648" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; B-Lymphocytes/*immunology ; Calcium/metabolism ; Cell Movement ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Ovalbumin/immunology ; Receptors, CCR7 ; Receptors, Chemokine/*immunology/metabolism ; Signal Transduction ; Spleen/*immunology ; Th1 Cells/*immunology/metabolism ; Th2 Cells/*immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1999-07-03
    Description: Most isolates of hepatitis C virus (HCV) infections are resistant to interferon, the only available therapy, but the mechanism underlying this resistance has not been defined. Here it is shown that the HCV envelope protein E2 contains a sequence identical with phosphorylation sites of the interferon-inducible protein kinase PKR and the translation initiation factor eIF2alpha, a target of PKR. E2 inhibited the kinase activity of PKR and blocked its inhibitory effect on protein synthesis and cell growth. This interaction of E2 and PKR may be one mechanism by which HCV circumvents the antiviral effect of interferon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, D R -- Shi, S T -- Romano, P R -- Barber, G N -- Lai, M M -- AI 40038/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Immunology and Howard Hughes Medical Institute, University of Southern California, School of Medicine, Los Angeles, CA 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390359" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chloramphenicol O-Acetyltransferase/biosynthesis ; Drug Resistance, Microbial ; Endoplasmic Reticulum/metabolism ; Enzyme Induction ; Eukaryotic Initiation Factor-2/chemistry/metabolism ; HeLa Cells ; *Hepacivirus/drug effects ; Humans ; Interferon-alpha/*pharmacology ; Phosphorylation ; Protein Biosynthesis ; Recombinant Fusion Proteins/metabolism/pharmacology ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; Transfection ; Transformation, Genetic ; Viral Envelope Proteins/chemistry/metabolism/pharmacology/*physiology ; eIF-2 Kinase/*antagonists & inhibitors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1999-01-23
    Description: Tumor necrosis factor receptor type 1 (TNF-R1) contains a cytoplasmic death domain that is required for the signaling of TNF activities such as apoptosis and nuclear factor kappa B (NF-kappaB) activation. Normally, these signals are generated only after TNF-induced receptor aggregation. However, TNF-R1 self-associates and signals independently of ligand when overexpressed. This apparent paradox may be explained by silencer of death domains (SODD), a widely expressed approximately 60-kilodalton protein that was found to be associated with the death domain of TNF-R1. TNF treatment released SODD from TNF-R1, permitting the recruitment of proteins such as TRADD and TRAF2 to the active TNF-R1 signaling complex. SODD also interacted with death receptor-3 (DR3), another member of the TNF receptor superfamily. Thus, SODD association may be representative of a general mechanism for preventing spontaneous signaling by death domain-containing receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Y -- Woronicz, J D -- Liu, W -- Goeddel, D V -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):543-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915703" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Antigens, CD/chemistry/genetics/*metabolism ; Apoptosis ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Protein Binding ; Proteins/metabolism ; Receptor Aggregation ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Member 25 ; Receptors, Tumor Necrosis Factor, Type I ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; U937 Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1999-01-29
    Description: The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the receptor. Src recruitment was mediated by beta-arrestin, which functions as an adapter protein, binding both c-Src and the agonist-occupied receptor. beta-Arrestin 1 mutants, impaired either in c-Src binding or in the ability to target receptors to clathrin-coated pits, acted as dominant negative inhibitors of beta2 adrenergic receptor-mediated activation of the MAP kinases Erk1 and Erk2. These data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luttrell, L M -- Ferguson, S S -- Daaka, Y -- Miller, W E -- Maudsley, S -- Della Rocca, G J -- Lin, F -- Kawakatsu, H -- Owada, K -- Luttrell, D K -- Caron, M G -- Lefkowitz, R J -- DK02352/DK/NIDDK NIH HHS/ -- DK55524/DK/NIDDK NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):655-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924018" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/metabolism/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cell Membrane/metabolism ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; Humans ; Isoproterenol/metabolism/pharmacology ; Mitogen-Activated Protein Kinase 1 ; Mitogen-Activated Protein Kinase 3 ; *Mitogen-Activated Protein Kinases ; Models, Biological ; Phosphorylation ; Point Mutation ; Precipitin Tests ; Proto-Oncogene Proteins pp60(c-src)/*metabolism ; Receptor Cross-Talk ; Receptors, Adrenergic, beta-2/*metabolism ; Receptors, Cell Surface/metabolism ; *Signal Transduction ; Transfection ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1999-07-31
    Description: BRCA1 encodes a tumor suppressor that is mutated in familial breast and ovarian cancers. Here, it is shown that BRCA1 interacts in vitro and in vivo with hRad50, which forms a complex with hMre11 and p95/nibrin. Upon irradiation, BRCA1 was detected in discrete foci in the nucleus, which colocalize with hRad50. Formation of irradiation-induced foci positive for BRCA1, hRad50, hMre11, or p95 was dramatically reduced in HCC/1937 breast cancer cells carrying a homozygous mutation in BRCA1 but was restored by transfection of wild-type BRCA1. Ectopic expression of wild-type, but not mutated, BRCA1 in these cells rendered them less sensitive to the DNA damage agent, methyl methanesulfonate. These data suggest that BRCA1 is important for the cellular responses to DNA damage that are mediated by the hRad50-hMre11-p95 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhong, Q -- Chen, C F -- Li, S -- Chen, Y -- Wang, C C -- Xiao, J -- Chen, P L -- Sharp, Z D -- Lee, W H -- CA 30195/CA/NCI NIH HHS/ -- CA 58183/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):747-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426999" target="_blank"〉PubMed〈/a〉
    Keywords: BRCA1 Protein/*metabolism ; Cell Cycle Proteins/*metabolism ; Cell Nucleus/*metabolism ; Cell Survival ; *DNA Damage ; *DNA Repair Enzymes ; DNA-Binding Proteins/*metabolism ; Gamma Rays ; Genes, BRCA1 ; Humans ; Methyl Methanesulfonate/pharmacology ; Mutagens/pharmacology ; Mutation ; *Nuclear Proteins ; Rad51 Recombinase ; Recombination, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1999-05-21
    Description: Bile acids are essential for the solubilization and transport of dietary lipids and are the major products of cholesterol catabolism. Results presented here show that bile acids are physiological ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. When bound to bile acids, FXR repressed transcription of the gene encoding cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding intestinal bile acid-binding protein, which is a candidate bile acid transporter. These results demonstrate a mechanism by which bile acids transcriptionally regulate their biosynthesis and enterohepatic transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, M -- Okamoto, A Y -- Repa, J J -- Tu, H -- Learned, R M -- Luk, A -- Hull, M V -- Lustig, K D -- Mangelsdorf, D J -- Shan, B -- New York, N.Y. -- Science. 1999 May 21;284(5418):1362-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334992" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/biosynthesis/*metabolism ; Biological Transport ; Carrier Proteins/*genetics/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism ; Cholesterol/metabolism ; Cholesterol 7-alpha-Hydroxylase/*genetics ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Histone Acetyltransferases ; Homeostasis ; Humans ; *Hydroxysteroid Dehydrogenases ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1999-11-27
    Description: Extracellular signals often result in simultaneous activation of both the Raf-MEK-ERK and PI3K-Akt pathways (where ERK is extracellular-regulated kinase, MEK is mitogen-activated protein kinase or ERK kinase, and PI3K is phosphatidylinositol 3-kinase). However, these two signaling pathways were shown to exert opposing effects on muscle cell hypertrophy. Furthermore, the PI3K-Akt pathway was shown to inhibit the Raf-MEK-ERK pathway; this cross-regulation depended on the differentiation state of the cell: Akt activation inhibited the Raf-MEK-ERK pathway in differentiated myotubes, but not in their myoblast precursors. The stage-specific inhibitory action of Akt correlated with its stage-specific ability to form a complex with Raf, suggesting the existence of differentially expressed mediators of an inhibitory Akt-Raf complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rommel, C -- Clarke, B A -- Zimmermann, S -- Nunez, L -- Rossman, R -- Reid, K -- Moelling, K -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1738-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576741" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/genetics ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavonoids/pharmacology ; Insulin-Like Growth Factor I/pharmacology ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinases/*antagonists & inhibitors/metabolism ; Muscle, Skeletal/*cytology/*metabolism ; Myogenin/genetics ; Phenotype ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-raf/*antagonists & inhibitors/metabolism ; Signal Transduction ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 1999-08-07
    Description: Calcium-permeable, stretch-activated nonselective cation (SA Cat) channels mediate cellular responses to mechanical stimuli. However, genes encoding such channels have not been identified in eukaryotes. The yeast MID1 gene product (Mid1) is required for calcium influx in the yeast Saccharomyces cerevisiae. Functional expression of Mid1 in Chinese hamster ovary cells conferred sensitivity to mechanical stress that resulted in increases in both calcium conductance and the concentration of cytosolic free calcium. These increases were dependent on the presence of extracellular calcium and were reduced by gadolinium, a blocker of SA Cat channels. Single-channel analyses with cell-attached patches revealed that Mid1 acts as a calcium-permeable, cation-selective stretch-activated channel with a conductance of 32 picosiemens at 150 millimolar cesium chloride in the pipette. Thus, Mid1 appears to be a eukaryotic, SA Cat channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzaki, M -- Nagasawa, M -- Kojima, I -- Sato, C -- Naruse, K -- Sokabe, M -- Iida, H -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):882-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8510, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Calcium Channels/chemistry/genetics/*metabolism ; Cations/*metabolism ; Cell Membrane/metabolism ; Cell Membrane Permeability ; Cesium/metabolism ; Chlorides/pharmacology ; Cricetinae ; Fungal Proteins/chemistry/genetics/*metabolism ; Gadolinium/pharmacology ; Ion Channels/chemistry/genetics/*metabolism ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Membrane Potentials ; Molecular Sequence Data ; Patch-Clamp Techniques ; Pressure ; Saccharomyces cerevisiae/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Stress, Mechanical ; Transfection ; Zinc Compounds/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1999-05-21
    Description: Modification of cell surface molecules with sialic acid is crucial for their function in many biological processes, including cell adhesion and signal transduction. Uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase) is an enzyme that catalyzes an early, rate-limiting step in the sialic acid biosynthetic pathway. UDP-GlcNAc 2-epimerase was found to be a major determinant of cell surface sialylation in human hematopoietic cell lines and a critical regulator of the function of specific cell surface adhesion molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keppler, O T -- Hinderlich, S -- Langner, J -- Schwartz-Albiez, R -- Reutter, W -- Pawlita, M -- New York, N.Y. -- Science. 1999 May 21;284(5418):1372-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Tumor Virology Program, Tumor Immunology Program, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Antigens, CD14/biosynthesis ; Antigens, CD15/biosynthesis ; Antigens, Differentiation, B-Lymphocyte/metabolism ; Carbohydrate Epimerases/genetics/metabolism ; Cell Adhesion Molecules/metabolism ; Cell Membrane/*metabolism ; Culture Media ; *Escherichia coli Proteins ; Glycoconjugates/*metabolism ; HL-60 Cells ; Histocompatibility Antigens Class I/biosynthesis ; Humans ; Lectins/metabolism ; Oligosaccharides/biosynthesis ; Rats ; Sialic Acid Binding Ig-like Lectin 2 ; Sialic Acids/*biosynthesis ; Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1999-07-27
    Description: Most organisms have circadian clocks consisting of negative feedback loops of gene regulation that facilitate adaptation to cycles of light and darkness. In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion. TIM degradation does not occur under these conditions; thus, TIM degradation is uncoupled from abrogation of its function by light. CRY and TIM are part of the same complex and directly interact in yeast in a light-dependent fashion. PER/TIM and CRY influence the subcellular distribution of these protein complexes, which reside primarily in the nucleus after the perception of a light signal. Thus, CRY acts as a circadian photoreceptor by directly interacting with core components of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceriani, M F -- Darlington, T K -- Staknis, D -- Mas, P -- Petti, A A -- Weitz, C J -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Line ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Cytoplasm/metabolism ; Darkness ; Dimerization ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Green Fluorescent Proteins ; Insect Proteins/genetics/*metabolism ; *Light ; Luminescent Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Transfection ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1999-01-29
    Description: Efficient gene transfer into human hematopoietic stem cells (HSCs) is an important goal in the study of the hematopoietic system as well as for gene therapy of hematopoietic disorders. A lentiviral vector based on the human immunodeficiency virus (HIV) was able to transduce human CD34+ cells capable of stable, long-term reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. High-efficiency transduction occurred in the absence of cytokine stimulation and resulted in transgene expression in multiple lineages of human hematopoietic cells for up to 22 weeks after transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, H -- Smith, K A -- Mosier, D E -- Verma, I M -- Torbett, B E -- CA44360/CA/NCI NIH HHS/ -- DK49886/DK/NIDDK NIH HHS/ -- HL53670/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):682-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924027" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/*analysis ; Bone Marrow Cells/cytology ; Cell Division ; Cell Survival ; Colony-Forming Units Assay ; Gene Expression ; *Gene Transfer Techniques ; *Genetic Vectors ; Green Fluorescent Proteins ; HIV/*genetics ; Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; *Hematopoietic Stem Cells/cytology/immunology ; Humans ; Leukemia Virus, Murine/genetics ; Luminescent Proteins/genetics ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Promoter Regions, Genetic ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montefiori, D -- Moore, J P -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):336-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for AIDS Research, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA. monte005@mc.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9925493" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Animals ; COS Cells ; Cell Fusion ; Coculture Techniques ; Epitopes/immunology ; HIV Antibodies/biosynthesis/*immunology ; HIV Antigens/*immunology ; HIV Envelope Protein gp120/immunology ; HIV Envelope Protein gp41/immunology ; HIV-1/*immunology/physiology ; Mice ; Neutralization Tests ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-26
    Description: Cryptochrome (CRY), a photoreceptor for the circadian clock in Drosophila, binds to the clock component TIM in a light-dependent fashion and blocks its function. In mammals, genetic evidence suggests a role for CRYs within the clock, distinct from hypothetical photoreceptor functions. Mammalian CRY1 and CRY2 are here shown to act as light-independent inhibitors of CLOCK-BMAL1, the activator driving Per1 transcription. CRY1 or CRY2 (or both) showed light-independent interactions with CLOCK and BMAL1, as well as with PER1, PER2, and TIM. Thus, mammalian CRYs act as light-independent components of the circadian clock and probably regulate Per1 transcriptional cycling by contacting both the activator and its feedback inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffin, E A Jr -- Staknis, D -- Weitz, C J -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Oct 22;286(5440):768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10531061" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; *Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Cells, Cultured ; *Circadian Rhythm ; Cryptochromes ; Dimerization ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/metabolism/*physiology ; *Gene Expression Regulation ; Genes, Reporter ; Helix-Loop-Helix Motifs ; Humans ; Intracellular Signaling Peptides and Proteins ; *Light ; Mice ; Nuclear Proteins/antagonists & inhibitors/*genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Trans-Activators/antagonists & inhibitors/metabolism ; Transcription Factors/antagonists & inhibitors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1999-04-09
    Description: The Ca2+-activated protein phosphatase calcineurin induces apoptosis, but the mechanism is unknown. Calcineurin was found to dephosphorylate BAD, a pro-apoptotic member of the Bcl-2 family, thus enhancing BAD heterodimerization with Bcl-xL and promoting apoptosis. The Ca2+-induced dephosphorylation of BAD correlated with its dissociation from 14-3-3 in the cytosol and translocation to mitochondria where Bcl-xL resides. In hippocampal neurons, L-glutamate, an inducer of Ca2+ influx and calcineurin activation, triggered mitochondrial targeting of BAD and apoptosis, which were both suppressible by coexpression of a dominant-inhibitory mutant of calcineurin or pharmacological inhibitors of this phosphatase. Thus, a Ca2+-inducible mechanism for apoptosis induction operates by regulating BAD phosphorylation and localization in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H G -- Pathan, N -- Ethell, I M -- Krajewski, S -- Yamaguchi, Y -- Shibasaki, F -- McKeon, F -- Bobo, T -- Franke, T F -- Reed, J C -- AG-1593/AG/NIA NIH HHS/ -- CA-69381/CA/NCI NIH HHS/ -- HD25938/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195903" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Animals ; *Apoptosis ; Calcineurin/genetics/*metabolism ; Calcineurin Inhibitors ; Calcium/*metabolism/pharmacology ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Cells, Cultured ; Dimerization ; Enzyme Inhibitors/pharmacology ; Glutamic Acid/pharmacology ; Hippocampus/cytology ; Humans ; Mitochondria/metabolism ; Neurons/cytology/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Transfection ; *Tyrosine 3-Monooxygenase ; bcl-Associated Death Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1999-05-21
    Description: In an effort to identify tumor-specific antigens recognized by CD4(+) T cells, an approach was developed that allows the screening of an invariant chain-complementary DNA fusion library in a genetically engineered cell line expressing the essential components of the major histocompatibility complex (MHC) class II processing and presentation pathway. This led to the identification of a mutated form of human CDC27, which gave rise to an HLA-DR4-restricted melanoma antigen. A mutated form of triosephosphate isomerase, isolated by a biochemical method, was also identified as an HLA-DR1-restricted antigen. Thus, this approach may be generally applicable to the identification of antigens recognized by CD4(+) T cells, which could aid the development of strategies for the treatment of patients with cancer, autoimmune diseases, or infectious diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, R F -- Wang, X -- Atwood, A C -- Topalian, S L -- Rosenberg, S A -- New York, N.Y. -- Science. 1999 May 21;284(5418):1351-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10/2B42, 9000 Rockville Pike, Bethesda, MD 20892, USA. rongfu@pop.nci.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334988" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen Presentation ; Antigens, Differentiation, B-Lymphocyte/genetics/immunology ; Antigens, Neoplasm/*immunology ; Apc3 Subunit, Anaphase-Promoting Complex-Cyclosome ; CD4-Positive T-Lymphocytes/immunology ; Cell Cycle Proteins/*genetics/*immunology ; Cell Line, Transformed ; *Cloning, Molecular ; Epitopes/immunology ; HLA-DR1 Antigen/immunology ; HLA-DR4 Antigen/immunology ; Histocompatibility Antigens Class II/genetics/*immunology ; Humans ; Lymphocytes, Tumor-Infiltrating/*immunology ; Melanoma/immunology ; Point Mutation ; Recombinant Fusion Proteins ; Transfection ; Triose-Phosphate Isomerase/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1999-12-03
    Description: Osteoporosis and other diseases of bone loss are a major public health problem. Here it is shown that the statins, drugs widely used for lowering serum cholesterol, also enhance new bone formation in vitro and in rodents. This effect was associated with increased expression of the bone morphogenetic protein-2 (BMP-2) gene in bone cells. Lovastatin and simvastatin increased bone formation when injected subcutaneously over the calvaria of mice and increased cancellous bone volume when orally administered to rats. Thus, in appropriate doses, statins may have therapeutic applications for the treatment of osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mundy, G -- Garrett, R -- Harris, S -- Chan, J -- Chen, D -- Rossini, G -- Boyce, B -- Zhao, M -- Gutierrez, G -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1946-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉OsteoScreen, 2040 Babcock Road, San Antonio, TX 78229, USA. mundy@uthscsa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Density/*drug effects ; Bone Morphogenetic Protein 2 ; Bone Morphogenetic Proteins/biosynthesis/genetics/pharmacology ; Cell Line ; Female ; Fibroblast Growth Factor 1 ; Fibroblast Growth Factor 2/pharmacology ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology ; Lovastatin/*pharmacology ; Male ; Mice ; Mice, Inbred ICR ; Organ Culture Techniques ; Osteoblasts/*drug effects/metabolism ; Osteoclasts/drug effects ; Osteogenesis/*drug effects ; Osteoporosis/drug therapy ; Ovariectomy ; Promoter Regions, Genetic/drug effects ; Rats ; Recombinant Proteins/pharmacology ; Simvastatin/*pharmacology ; Skull ; Transfection ; *Transforming Growth Factor beta
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1999-03-26
    Description: Dysregulation of Wnt-beta-catenin signaling disrupts axis formation in vertebrate embryos and underlies multiple human malignancies. The adenomatous polyposis coli (APC) protein, axin, and glycogen synthase kinase 3beta form a Wnt-regulated signaling complex that mediates the phosphorylation-dependent degradation of beta-catenin. A protein phosphatase 2A (PP2A) regulatory subunit, B56, interacted with APC in the yeast two-hybrid system. Expression of B56 reduced the abundance of beta-catenin and inhibited transcription of beta-catenin target genes in mammalian cells and Xenopus embryo explants. The B56-dependent decrease in beta-catenin was blocked by oncogenic mutations in beta-catenin or APC, and by proteasome inhibitors. B56 may direct PP2A to dephosphorylate specific components of the APC-dependent signaling complex and thereby inhibit Wnt signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seeling, J M -- Miller, J R -- Gil, R -- Moon, R T -- White, R -- Virshup, D M -- 3P30CA42014/CA/NCI NIH HHS/ -- R01 CA71074/CA/NCI NIH HHS/ -- T32CA09602/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Mar 26;283(5410):2089-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10092233" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Line ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeletal Proteins/genetics/*metabolism ; Down-Regulation ; Genes, Reporter ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Leupeptins/pharmacology ; Multienzyme Complexes/metabolism ; Mutation ; Phosphoprotein Phosphatases/chemistry/genetics/*metabolism ; Phosphorylation ; Proteasome Endopeptidase Complex ; Protein Phosphatase 2 ; Proto-Oncogene Proteins/*metabolism ; *Signal Transduction ; *Trans-Activators ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; Wnt Proteins ; Xenopus ; Xenopus Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1999-07-31
    Description: Apoptosis is implicated in the generation and resolution of inflammation in response to bacterial pathogens. All bacterial pathogens produce lipoproteins (BLPs), which trigger the innate immune response. BLPs were found to induce apoptosis in THP-1 monocytic cells through human Toll-like receptor-2 (hTLR2). BLPs also initiated apoptosis in an epithelial cell line transfected with hTLR2. In addition, BLPs stimulated nuclear factor-kappaB, a transcriptional activator of multiple host defense genes, and activated the respiratory burst through hTLR2. Thus, hTLR2 is a molecular link between microbial products, apoptosis, and host defense mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aliprantis, A O -- Yang, R B -- Mark, M R -- Suggett, S -- Devaux, B -- Radolf, J D -- Klimpel, G R -- Godowski, P -- Zychlinsky, A -- AI 37720-04/AI/NIAID NIH HHS/ -- AI-38894/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426996" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD14/analysis ; *Apoptosis ; Bacterial Proteins/metabolism/*pharmacology ; Cell Line/metabolism ; Cycloheximide/pharmacology ; Cytotoxicity, Immunologic ; *Drosophila Proteins ; Genes, Reporter ; Humans ; Lipopolysaccharides/immunology ; Lipoproteins/metabolism/*pharmacology ; Membrane Glycoproteins/immunology/*metabolism ; Monocytes/*cytology/immunology/metabolism ; NF-kappa B/metabolism ; Protein Synthesis Inhibitors/pharmacology ; Reactive Oxygen Species/metabolism ; Receptors, Cell Surface/immunology/*metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Toll-Like Receptor 2 ; Toll-Like Receptors ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1999-01-08
    Description: The role of STAT (signal transducer and activator of transcription) proteins in T cell receptor (TCR) signaling was analyzed. STAT5 became immediately and transiently phosphorylated on tyrosine 694 in response to TCR stimulation. Expression of the protein tyrosine kinase Lck, a key signaling protein in the TCR complex, activated DNA binding of transfected STAT5A and STAT5B to specific STAT inducible elements. The role of Lck in STAT5 activation was confirmed in a Lck-deficient T cell line in which the activation of STAT5 by TCR stimulation was abolished. Expression of Lck induced specific interaction of STAT5 with the subunits of the TCR, indicating that STAT5 may be directly involved in TCR signaling. Stimulation of T cell clones and primary T cell lines also induced the association of STAT5 with the TCR complex. Inhibition of STAT5 function by expression of a dominant negative mutant STAT5 reduced antigen-stimulated proliferation of T cells. Thus, TCR stimulation appears to directly activate STAT5, which may participate in the regulation of gene transcription and T cell proliferation during immunological responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welte, T -- Leitenberg, D -- Dittel, B N -- al-Ramadi, B K -- Xie, B -- Chin, Y E -- Janeway, C A Jr -- Bothwell, A L -- Bottomly, K -- Fu, X Y -- AI34522/AI/NIAID NIH HHS/ -- GM46367/GM/NIGMS NIH HHS/ -- GM55590/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):222-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Antigen-Presenting Cells/immunology ; Antigens/immunology ; Cell Division ; Cell Line ; DNA-Binding Proteins/genetics/*metabolism ; Interferon-gamma/pharmacology ; Interleukin-2/pharmacology ; *Lymphocyte Activation ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics/metabolism ; Membrane Proteins/genetics/immunology/metabolism ; Mice ; Mice, Transgenic ; *Milk Proteins ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Antigen, T-Cell/genetics/immunology/*metabolism ; STAT5 Transcription Factor ; Signal Transduction ; T-Lymphocytes, Helper-Inducer/cytology/*immunology/metabolism ; Th2 Cells/immunology/metabolism ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2000-02-26
    Description: Because of a critical shortage in suitable organs, many patients with terminal liver disease die each year before liver transplantation can be performed. Transplantation of isolated hepatocytes has been proposed for the temporary metabolic support of patients awaiting liver transplantation or spontaneous reversion of their liver disease. A major limitation of this form of therapy is the present inability to isolate an adequate number of transplantable hepatocytes. A highly differentiated cell line, NKNT-3, was generated by retroviral transfer in normal primary adult human hepatocytes of an immortalizing gene that can be subsequently and completely excised by Cre/Lox site-specific recombination. When transplanted into the spleen of rats under transient immunosuppression, reversibly immortalized NKNT-3 cells provided life-saving metabolic support during acute liver failure induced by 90% hepatectomy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kobayashi, N -- Fujiwara, T -- Westerman, K A -- Inoue, Y -- Sakaguchi, M -- Noguchi, H -- Miyazaki, M -- Cai, J -- Tanaka, N -- Fox, I J -- Leboulch, P -- DK48794/DK/NIDDK NIH HHS/ -- HL55435/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1258-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉First Department of Surgery and Department of Cell Biology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678831" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Antigens, Polyomavirus Transforming/genetics ; Cell Culture Techniques/*methods ; Cell Differentiation ; Cell Line ; *Cell Transplantation ; Gene Expression ; Genetic Vectors ; Hepatectomy ; Humans ; Integrases/metabolism ; Liver/*cytology/metabolism/pathology ; Liver Failure, Acute/metabolism/pathology/*prevention & control/therapy ; Liver Regeneration ; Mice ; Mice, SCID ; Rats ; Retroviridae/genetics ; Spleen/cytology ; Transfection ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1999-12-30
    Description: Dorsal and ventral aspects of the eye are distinct from the early stages of development. The developing eye cup grows dorsally, and the choroidal fissure is formed on its ventral side. Retinal axons from the dorsal and ventral retina project to the ventral and dorsal tectum, respectively. Misexpression of the Tbx5 gene induced dorsalization of the ventral side of the eye and altered projections of retinal ganglion cell axons. Thus, Tbx5 is involved in eye morphogenesis and is a topographic determinant of the visual projections between retina and tectum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koshiba-Takeuchi, K -- Takeuchi, J K -- Matsumoto, K -- Momose, T -- Uno, K -- Hoepker, V -- Ogura, K -- Takahashi, N -- Nakamura, H -- Yasuda, K -- Ogura, T -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, Japan 630-0101.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615048" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Avian Proteins ; Axons/*ultrastructure ; Body Patterning ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/genetics/physiology ; Chick Embryo ; DNA-Binding Proteins/genetics ; Electroporation ; Ephrin-B1 ; Ephrin-B2 ; Eye/*embryology ; Gene Expression ; Homeodomain Proteins/genetics ; Membrane Proteins/genetics/physiology ; Morphogenesis ; PAX2 Transcription Factor ; Pigment Epithelium of Eye/embryology/metabolism ; Retina/*embryology/metabolism ; Retinal Ganglion Cells/ultrastructure ; Superior Colliculi/*embryology ; T-Box Domain Proteins/genetics/*physiology ; Transcription Factors/genetics ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2000-08-26
    Description: Whereas T helper cells recognize peptide-major histocompatibility complex (MHC) class II complexes through their T cell receptors (TCRs), CD4 binds to an antigen-independent region of the MHC. Using green fluorescent protein-tagged chimeras and three-dimensional video microscopy, we show that CD4 and TCR-associated CD3zeta cluster in the interface coincident with increases in intracellular calcium. Signaling-, costimulation-, and cytoskeleton-dependent processes then stabilize CD3zeta in a single cluster at the center of the interface, while CD4 moves to the periphery. Thus, the CD4 coreceptor may serve primarily to "boost" recognition of ligand by the TCR and may not be required once activation has been initiated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krummel, M F -- Sjaastad, M D -- Wulfing, C -- Davis, M M -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, and the Howard Hughes Medical Institute, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958781" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD3/*metabolism ; Antigens, CD4/*metabolism ; Calcium Signaling ; Cell Line ; Cytoskeleton/physiology ; Histocompatibility Antigens Class II/immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Microscopy, Video ; Phosphorylation ; Receptors, Antigen, T-Cell/immunology/metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes, Helper-Inducer/*immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2000-10-06
    Description: The signal transducers and activators of transcription (STAT) transcription factors become phosphorylated on tyrosine and translocate to the nucleus after stimulation of cells with growth factors or cytokines. We show that the Rac1 guanosine triphosphatase can bind to and regulate STAT3 activity. Dominant negative Rac1 inhibited STAT3 activation by growth factors, whereas activated Rac1 stimulated STAT3 phosphorylation on both tyrosine and serine residues. Moreover, activated Rac1 formed a complex with STAT3 in mammalian cells. Yeast two-hybrid analysis indicated that STAT3 binds directly to active but not inactive Rac1 and that the interaction occurs via the effector domain. Rac1 may serve as an alternate mechanism for targeting STAT3 to tyrosine kinase signaling complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simon, A R -- Vikis, H G -- Stewart, S -- Fanburg, B L -- Cochran, B H -- Guan, K L -- GM-54304/GM/NIGMS NIH HHS/ -- K08-HL-03547/HL/NHLBI NIH HHS/ -- P30-DK34928/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pulmonary and Critical Care Division, Tupper Research Institute, New England Medical Center, Boston, MA 02111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021801" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; COS Cells ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; Enzyme Activation ; Epidermal Growth Factor/pharmacology ; Gene Expression Regulation ; Genes, Reporter ; Genetic Vectors ; Guanine Nucleotide Exchange Factors/genetics/metabolism ; Humans ; Janus Kinase 2 ; Mutation ; Neoplasm Proteins ; Phosphorylation ; Phosphoserine/metabolism ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/genetics/metabolism ; *Proto-Oncogene Proteins ; Rats ; STAT3 Transcription Factor ; Signal Transduction ; Trans-Activators/genetics/*metabolism ; Transfection ; Two-Hybrid System Techniques ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2000-05-08
    Description: To determine why proteasome inhibitors prevent thymocyte death, we examined whether proteasomes degrade anti-apoptotic molecules in cells induced to undergo apoptosis. The c-IAP1 and XIAP inhibitors of apoptosis were selectively lost in glucocorticoid- or etoposide-treated thymocytes in a proteasome-dependent manner before death. IAPs catalyzed their own ubiquitination in vitro, an activity requiring the RING domain. Overexpressed wild-type c-IAP1, but not a RING domain mutant, was spontaneously ubiquitinated and degraded, and stably expressed XIAP lacking the RING domain was relatively resistant to apoptosis-induced degradation and, correspondingly, more effective at preventing apoptosis than wild-type XIAP. Autoubiquitination and degradation of IAPs may be a key event in the apoptotic program.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Y -- Fang, S -- Jensen, J P -- Weissman, A M -- Ashwell, J D -- New York, N.Y. -- Science. 2000 May 5;288(5467):874-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cells, Cultured ; Cysteine Endopeptidases/*metabolism ; Dexamethasone/pharmacology ; Etoposide/pharmacology ; Hybridomas ; Inhibitor of Apoptosis Proteins ; Ligases/*metabolism ; Mice ; Mice, Inbred C57BL ; Multienzyme Complexes/*metabolism ; Proteasome Endopeptidase Complex ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/cytology/drug effects/*metabolism ; Thymus Gland/cytology ; Transfection ; Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; X-Linked Inhibitor of Apoptosis Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2001-02-07
    Description: Somatostatin and dopamine are two major neurotransmitter systems that share a number of structural and functional characteristics. Somatostatin receptors and dopamine receptors are colocalized in neuronal subgroups, and somatostatin is involved in modulating dopamine-mediated control of motor activity. However, the molecular basis for such interaction between the two systems is unclear. Here, we show that dopamine receptor D2R and somatostatin receptor SSTR5 interact physically through hetero-oligomerization to create a novel receptor with enhanced functional activity. Our results provide evidence that receptors from different G protein (heterotrimeric guanine nucleotide binding protein)-coupled receptor families interact through oligomerization. Such direct intramembrane association defines a new level of molecular crosstalk between related G protein-coupled receptor subfamilies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rocheville, M -- Lange, D C -- Kumar, U -- Patel, S C -- Patel, R C -- Patel, Y C -- NS32160-05/NS/NINDS NIH HHS/ -- NS34339/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):154-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fraser Laboratories, Department of Medicine, McGill University and Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753124" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Membrane/metabolism ; Cerebral Cortex/metabolism ; Colforsin/pharmacology ; Corpus Striatum/metabolism ; Cricetinae ; Cyclic AMP/metabolism ; Dimerization ; Dopamine D2 Receptor Antagonists ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Heterotrimeric GTP-Binding Proteins/metabolism ; Humans ; Ligands ; Male ; Neurons/metabolism ; Pyramidal Cells/metabolism ; Quinpirole/pharmacology ; Rats ; *Receptor Cross-Talk ; Receptors, Dopamine D2/agonists/genetics/*metabolism ; Receptors, Somatostatin/agonists/antagonists & inhibitors/genetics/*metabolism ; Somatostatin/metabolism/pharmacology ; Spiperone/pharmacology ; Sulpiride/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2000-06-24
    Description: T helper 1 (TH1) cells mediate cellular immunity, whereas TH2 cells potentiate antiparasite and humoral immunity. We used a complementary DNA subtraction method, representational display analysis, to show that the small guanosine triphosphatase Rac2 is expressed selectively in murine TH1 cells. Rac induces the interferon-gamma (IFN-gamma) promoter through cooperative activation of the nuclear factor kappa B and p38 mitogen-activated protein kinase pathways. Tetracycline-regulated transgenic mice expressing constitutively active Rac2 in T cells exhibited enhanced IFN-gamma production. Dominant-negative Rac inhibited IFN-gamma production in murine T cells. Moreover, T cells from Rac2-/- mice showed decreased IFN-gamma production under TH1 conditions in vitro. Thus, Rac2 activates TH1-specific signaling and IFN-gamma gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, B -- Yu, H -- Zheng, W -- Voll, R -- Na, S -- Roberts, A W -- Williams, D A -- Davis, R J -- Ghosh, S -- Flavell, R A -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; Cytokines/biosynthesis/genetics ; Gene Expression Regulation ; Humans ; Interferon-gamma/biosynthesis/*genetics ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinases/metabolism ; NF-kappa B/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; Th1 Cells/cytology/*immunology/*metabolism ; Transfection ; p38 Mitogen-Activated Protein Kinases ; rac GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2000-06-24
    Description: Neuronal PAS domain protein 2 (NPAS2) is a basic helix-loop-helix (bHLH) PAS domain transcription factor expressed in multiple regions of the vertebrate brain. Targeted insertion of a beta-galactosidase reporter gene (lacZ) resulted in the production of an NPAS2-lacZ fusion protein and an altered form of NPAS2 lacking the bHLH domain. The neuroanatomical expression pattern of NPAS2-lacZ was temporally and spatially coincident with formation of the mature frontal association/limbic forebrain pathway. NPAS2-deficient mice were subjected to a series of behavioral tests and were found to exhibit deficits in the long-term memory arm of the cued and contextual fear task. Thus, NPAS2 may serve a dedicated regulatory role in the acquisition of specific types of memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, J A -- Zhang, D -- Estill, S J -- Michnoff, C -- Rutter, J -- Reick, M -- Scott, K -- Diaz-Arrastia, R -- McKnight, S L -- AG12297/AG/NIA NIH HHS/ -- AG16450/AG/NIA NIH HHS/ -- NS01763/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2226-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning ; Basic Helix-Loop-Helix Transcription Factors ; Behavior, Animal ; Brain/metabolism/*physiology ; Conditioning (Psychology) ; Cues ; Fear ; Gene Targeting ; Helix-Loop-Helix Motifs ; Learning/*physiology ; Limbic System/metabolism/physiology ; Male ; Memory/*physiology ; Mice ; Nerve Tissue Proteins/chemistry/genetics/*physiology ; Prosencephalon/metabolism/physiology ; Recombinant Fusion Proteins/chemistry/metabolism ; Touch ; Transcription Factors/chemistry/genetics/*physiology ; Transcriptional Activation ; Transfection ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2000-08-19
    Description: The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. Here the APC gene product is shown to bind through its armadillo repeat domain to a Rac-specific guanine nucleotide exchange factor (GEF), termed Asef. Endogenous APC colocalized with Asef in mouse colon epithelial cells and neuronal cells. Furthermore, APC enhanced the GEF activity of Asef and stimulated Asef-mediated cell flattening, membrane ruffling, and lamellipodia formation in MDCK cells. These results suggest that the APC-Asef complex may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, Y -- Senda, T -- Ishidate, T -- Koyama, R -- Morishita, T -- Iwayama, Y -- Higuchi, O -- Akiyama, T -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1194-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947987" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Cell Size ; Colon/cytology/metabolism ; Cytoplasm/metabolism ; Cytoskeletal Proteins/*metabolism ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Guanosine Diphosphate/metabolism ; Humans ; Immunoblotting ; Intestinal Mucosa/cytology/metabolism ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/metabolism ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; *Trans-Activators ; Transfection ; Two-Hybrid System Techniques ; beta Catenin ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1999-12-30
    Description: Voltage-gated proton (H+) channels are found in many human and animal tissues and play an important role in cellular defense against acidic stress. However, a molecular identification of these unique ion conductances has so far not been achieved. A 191-amino acid protein is described that, upon heterologous expression, has properties indistinguishable from those of native H+ channels. This protein is generated through alternative splicing of messenger RNA derived from the gene NOH-1 (NADPH oxidase homolog 1, where NADPH is the reduced form of nicotinamide adenine dinucleotide phosphate).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banfi, B -- Maturana, A -- Jaconi, S -- Arnaudeau, S -- Laforge, T -- Sinha, B -- Ligeti, E -- Demaurex, N -- Krause, K H -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):138-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology of Aging Laboratory, Department of Geriatrics, Geneva University Hospitals, Geneva Medical School, CH-1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615049" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Cell Line ; Cytosol/metabolism ; Electric Conductivity ; Electron Transport ; Expressed Sequence Tags ; Humans ; Hydrogen/*metabolism ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Ion Channels/chemistry/*genetics/metabolism ; Membrane Glycoproteins/chemistry/*genetics ; Molecular Sequence Data ; NADPH Oxidase/chemistry/*genetics ; Patch-Clamp Techniques ; Protons ; Transfection ; Tumor Cells, Cultured ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2000-07-21
    Description: Mobile group II intron RNAs insert directly into DNA target sites and are then reverse-transcribed into genomic DNA by the associated intron-encoded protein. Target site recognition involves modifiable base-pairing interactions between the intron RNA and a 〉14-nucleotide region of the DNA target site, as well as fixed interactions between the protein and flanking regions. Here, we developed a highly efficient Escherichia coli genetic assay to determine detailed target site recognition rules for the Lactococcus lactis group II intron Ll.LtrB and to select introns that insert into desired target sites. Using human immunodeficiency virus-type 1 (HIV-1) proviral DNA and the human CCR5 gene as examples, we show that group II introns can be retargeted to insert efficiently into virtually any target DNA and that the retargeted introns retain activity in human cells. This work provides the practical basis for potential applications of targeted group II introns in genetic engineering, functional genomics, and gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, H -- Karberg, M -- Long, M -- Jones, J P 3rd -- Sullenger, B -- Lambowitz, A M -- AI40981/AI/NIAID NIH HHS/ -- GM37949/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):452-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas, Austin, TX 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903206" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Cell Line ; DNA/*genetics ; DNA, Viral/genetics ; Escherichia coli/genetics ; *Gene Targeting ; Genes, pol ; Genetic Therapy ; HIV-1/genetics ; Humans ; *Introns ; Lactococcus lactis/genetics ; Molecular Sequence Data ; Proviruses/genetics ; RNA, Catalytic/*genetics ; Receptors, CCR5/genetics ; Recombination, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Mutations introduced into human growth hormone (hGH) (Thr175 --〉 Gly-hGH) and the extracellular domain of the hGH receptor (Trp104 --〉 Gly-hGHbp) created a cavity at the protein-protein interface that resulted in binding affinity being reduced by a factor of 10(6). A small library of indole analogs was screened for small molecules that bind the cavity created by the mutations and restore binding affinity. The ligand 5-chloro-2-trichloromethylimidazole was found to increase the affinity of the mutant hormone for its receptor more than 1000-fold. Cell proliferation and JAK2 phosphorylation assays showed that the mutant hGH activates growth hormone signaling in the presence of added ligand. This approach may allow other protein-protein and protein-nucleic acid interactions to be switched on or off by the addition or depletion of exogenous small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Z -- Zhou, D -- Schultz, P G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line ; Human Growth Hormone/chemistry/genetics/*metabolism ; Imidazoles/*chemistry/metabolism ; Janus Kinase 2 ; Ligands ; Mice ; Molecular Sequence Data ; Peptide Library ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Somatotropin/chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...