ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-28
    Description: Author(s): Jonathan H. Tu, Murat Arcak, and Michel M. Maharbiz The locomotion of swimming microorganisms often relies on synchronized motions; examples include the bundling of flagella and metachronal coordination of cilia. It is now generally accepted that such behavior can result from hydrodynamic interactions alone. In this paper we consider the interactions... [Phys. Rev. E 91, 023018] Published Fri Feb 27, 2015
    Keywords: Fluid Dynamics
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-21
    Description: Bile acids are essential for the solubilization and transport of dietary lipids and are the major products of cholesterol catabolism. Results presented here show that bile acids are physiological ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. When bound to bile acids, FXR repressed transcription of the gene encoding cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding intestinal bile acid-binding protein, which is a candidate bile acid transporter. These results demonstrate a mechanism by which bile acids transcriptionally regulate their biosynthesis and enterohepatic transport.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, M -- Okamoto, A Y -- Repa, J J -- Tu, H -- Learned, R M -- Luk, A -- Hull, M V -- Lustig, K D -- Mangelsdorf, D J -- Shan, B -- New York, N.Y. -- Science. 1999 May 21;284(5418):1362-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334992" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/biosynthesis/*metabolism ; Biological Transport ; Carrier Proteins/*genetics/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism ; Cholesterol/metabolism ; Cholesterol 7-alpha-Hydroxylase/*genetics ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation ; Histone Acetyltransferases ; Homeostasis ; Humans ; *Hydroxysteroid Dehydrogenases ; Ligands ; Liver/metabolism ; *Membrane Glycoproteins ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007
    Description: We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rensing, Stefan A -- Lang, Daniel -- Zimmer, Andreas D -- Terry, Astrid -- Salamov, Asaf -- Shapiro, Harris -- Nishiyama, Tomoaki -- Perroud, Pierre-Francois -- Lindquist, Erika A -- Kamisugi, Yasuko -- Tanahashi, Takako -- Sakakibara, Keiko -- Fujita, Tomomichi -- Oishi, Kazuko -- Shin-I, Tadasu -- Kuroki, Yoko -- Toyoda, Atsushi -- Suzuki, Yutaka -- Hashimoto, Shin-Ichi -- Yamaguchi, Kazuo -- Sugano, Sumio -- Kohara, Yuji -- Fujiyama, Asao -- Anterola, Aldwin -- Aoki, Setsuyuki -- Ashton, Neil -- Barbazuk, W Brad -- Barker, Elizabeth -- Bennetzen, Jeffrey L -- Blankenship, Robert -- Cho, Sung Hyun -- Dutcher, Susan K -- Estelle, Mark -- Fawcett, Jeffrey A -- Gundlach, Heidrun -- Hanada, Kousuke -- Heyl, Alexander -- Hicks, Karen A -- Hughes, Jon -- Lohr, Martin -- Mayer, Klaus -- Melkozernov, Alexander -- Murata, Takashi -- Nelson, David R -- Pils, Birgit -- Prigge, Michael -- Reiss, Bernd -- Renner, Tanya -- Rombauts, Stephane -- Rushton, Paul J -- Sanderfoot, Anton -- Schween, Gabriele -- Shiu, Shin-Han -- Stueber, Kurt -- Theodoulou, Frederica L -- Tu, Hank -- Van de Peer, Yves -- Verrier, Paul J -- Waters, Elizabeth -- Wood, Andrew -- Yang, Lixing -- Cove, David -- Cuming, Andrew C -- Hasebe, Mitsuyasu -- Lucas, Susan -- Mishler, Brent D -- Reski, Ralf -- Grigoriev, Igor V -- Quatrano, Ralph S -- Boore, Jeffrey L -- BBS/E/C/00004948/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Jan 4;319(5859):64-9. Epub 2007 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079367" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Angiosperms/genetics/physiology ; Animals ; Arabidopsis/genetics/physiology ; *Biological Evolution ; Bryopsida/*genetics/physiology ; Chlamydomonas reinhardtii/genetics/physiology ; Computational Biology ; DNA Repair ; Dehydration ; Gene Duplication ; Genes, Plant ; *Genome, Plant ; Metabolic Networks and Pathways/genetics ; Multigene Family ; Oryza/genetics/physiology ; Phylogeny ; Plant Proteins/genetics/physiology ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Sequence Analysis, DNA ; Signal Transduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-05
    Description: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colbourne, John K -- Pfrender, Michael E -- Gilbert, Donald -- Thomas, W Kelley -- Tucker, Abraham -- Oakley, Todd H -- Tokishita, Shinichi -- Aerts, Andrea -- Arnold, Georg J -- Basu, Malay Kumar -- Bauer, Darren J -- Caceres, Carla E -- Carmel, Liran -- Casola, Claudio -- Choi, Jeong-Hyeon -- Detter, John C -- Dong, Qunfeng -- Dusheyko, Serge -- Eads, Brian D -- Frohlich, Thomas -- Geiler-Samerotte, Kerry A -- Gerlach, Daniel -- Hatcher, Phil -- Jogdeo, Sanjuro -- Krijgsveld, Jeroen -- Kriventseva, Evgenia V -- Kultz, Dietmar -- Laforsch, Christian -- Lindquist, Erika -- Lopez, Jacqueline -- Manak, J Robert -- Muller, Jean -- Pangilinan, Jasmyn -- Patwardhan, Rupali P -- Pitluck, Samuel -- Pritham, Ellen J -- Rechtsteiner, Andreas -- Rho, Mina -- Rogozin, Igor B -- Sakarya, Onur -- Salamov, Asaf -- Schaack, Sarah -- Shapiro, Harris -- Shiga, Yasuhiro -- Skalitzky, Courtney -- Smith, Zachary -- Souvorov, Alexander -- Sung, Way -- Tang, Zuojian -- Tsuchiya, Dai -- Tu, Hank -- Vos, Harmjan -- Wang, Mei -- Wolf, Yuri I -- Yamagata, Hideo -- Yamada, Takuji -- Ye, Yuzhen -- Shaw, Joseph R -- Andrews, Justen -- Crease, Teresa J -- Tang, Haixu -- Lucas, Susan M -- Robertson, Hugh M -- Bork, Peer -- Koonin, Eugene V -- Zdobnov, Evgeny M -- Grigoriev, Igor V -- Lynch, Michael -- Boore, Jeffrey L -- P42 ES004699/ES/NIEHS NIH HHS/ -- P42 ES004699-25/ES/NIEHS NIH HHS/ -- P42ES004699/ES/NIEHS NIH HHS/ -- R01 ES019324/ES/NIEHS NIH HHS/ -- R24 GM078274/GM/NIGMS NIH HHS/ -- R24 GM078274-01A1/GM/NIGMS NIH HHS/ -- R24GM07827401/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):555-61. doi: 10.1126/science.1197761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA. jcolbour@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292972" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosome Mapping ; Daphnia/*genetics/physiology ; *Ecosystem ; Environment ; Evolution, Molecular ; Gene Conversion ; Gene Duplication ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes ; Genes, Duplicate ; *Genome ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-13
    Description: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-gamma co-activator-1 alpha (PGC1-alpha). Here we show in mouse that PGC1-alpha expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bostrom, Pontus -- Wu, Jun -- Jedrychowski, Mark P -- Korde, Anisha -- Ye, Li -- Lo, James C -- Rasbach, Kyle A -- Bostrom, Elisabeth Almer -- Choi, Jang Hyun -- Long, Jonathan Z -- Kajimura, Shingo -- Zingaretti, Maria Cristina -- Vind, Birgitte F -- Tu, Hua -- Cinti, Saverio -- Hojlund, Kurt -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK54477/DK/NIDDK NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R01 DK054477/DK/NIDDK NIH HHS/ -- R01 DK061562/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7382):463-8. doi: 10.1038/nature10777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237023" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/metabolism ; Adipose Tissue, Brown/*cytology/drug effects/metabolism ; Adipose Tissue, White/*cytology/drug effects/metabolism ; Animals ; Cell Respiration/drug effects ; Cells, Cultured ; Culture Media, Conditioned/pharmacology ; Energy Metabolism/drug effects/genetics/physiology ; Exercise/physiology ; Gene Expression Regulation/drug effects/genetics ; Hormones/metabolism/secretion ; Humans ; Insulin Resistance/physiology ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Ion Channels/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Mitochondrial Proteins/metabolism ; Models, Animal ; Muscle Cells/metabolism ; Obesity/blood/chemically induced/prevention & control ; Physical Conditioning, Animal/physiology ; Plasma/chemistry ; Subcutaneous Fat/cytology/drug effects/metabolism ; *Thermogenesis/drug effects/genetics ; Trans-Activators/deficiency/genetics/*metabolism/secretion ; Transcription Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-07
    Description: Author(s): T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac We show that projected entangled-pair states (PEPS) in two spatial dimensions can describe chiral topological states by explicitly constructing a family of such states with a nontrivial Chern number. They are ground states of two different kinds of free-fermion Hamiltonians: (i) local and gapless; (... [Phys. Rev. Lett. 111, 236805] Published Fri Dec 06, 2013
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-23
    Description: SPAG5 upregulation predicts poor prognosis in cervical cancer patients and alters sensitivity to taxol treatment via the mTOR signaling pathway Cell Death and Disease 5, e1247 (May 2014). doi:10.1038/cddis.2014.222 Authors: L-J Yuan, J-D Li, L Zhang, J-H Wang, T Wan, Y Zhou, H Tu, J-P Yun, R-Z Luo, W-H Jia & M Zheng
    Keywords: SPAG5cervical cancermTOR
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-27
    Description: Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-02
    Description: β-Glucans derived from various sources such as yeast cell walls and medicinal mushrooms are considered as valuable biological response modifiers for their ability to enhance the activity of immune cells, aid in wound healing and help prevent infections. We herein characterize the structure of a novel water-soluble polysaccharide ( Zhuling polysaccharide, ZPS) from the fruit bodies of medicinal mushroom Polyporus umbellatus and investigate its immunobiological function. ZPS has a molecular mass of 2.27 10 3  kDa and contains 〉90% d -glucose as its monosaccharide constituent. On the basis of partial acid hydrolysis, methylation analysis, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy and the ideal repeating unit of ZPS is established: (1 -〉 6, 1 -〉 4)-linked β- d -glucopyranosyl backbone, substituted at O-3 position of (1 -〉 6)-linked β- d -glucopyranosyl by (1 -〉 3)-linked β- d -glucopyranosyl branches. ZPS consists of approximately 2930 repeating units, each contains a side chain of no more than three residues in length. Functionally, ZPS is a potent activator of B cells, macrophages and dendritic cells. Depletion of ZPS branches causes a substantial reduction in its ability not only to activate B cells in vitro but also to elicit specific IgM production in vivo. Virtually all healthy human subjects possess high-titer circulating antibodies against ZPS backbone, suggesting that ZPS epitope is shared by environmental antigens capable of eliciting adaptive humoral responses in the population.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-08-22
    Description: The rs1061170T/C variant encoding the Y402H change in complement factor H (CFH) has been identified by genome-wide association studies as being significantly associated with age-related macular degeneration (AMD). However, the precise mechanism by which this CFH variant impacts the risk of AMD remains largely unknown. Oxidative stress plays an important...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...