ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-29
    Description: Multipath propagation is one of the major sources of error in GPS measurements. In this research, a ray-tracing technique is proposed to study the frequency domain characteristics of multipath propagation. The Doppler frequency difference, also known as multipath phase rate and fading frequency, between direct (line-of-sight, LOS) and reflected (non-line-of-sight, NLOS) signals is studied as a function of satellite elevation and azimuth, as well as distance between the reflector and the static receiver. The accuracy of the method is verified with measured Doppler differences from real data collected in a downtown environment. The use of ray-tracing derived predicted Doppler differences in a receiver, as a means of alleviating the multipath induced errors in the measurement, is presented and discussed.
    Print ISSN: 1687-5990
    Electronic ISSN: 1687-6008
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-01-30
    Print ISSN: 0031-9228
    Electronic ISSN: 1945-0699
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-24
    Description: Examining the performance of the GNSS PLL, this paper presents novel results describing the statistical properties of four popular phase estimators under both strong- and weak-signal conditions when subject to thermal noise, deterministic dynamics, and typical pedestrian motion. Design routines are developed which employ these results to enhance weak-signal performance of the PLL in terms of transient response, steady-state errors, and cycle-slips. By examining both single and data-pilot signals, it is shown that appropriate design and tuning of the PLL can significantly enhance tracking performance, in particular when used for pedestrian applications.
    Print ISSN: 1687-5990
    Electronic ISSN: 1687-6008
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-15
    Description: The Fos and Jun oncoproteins form dimeric complexes that stimulate transcription of genes containing activator protein-1 regulatory elements. We found, by representational difference analysis, that expression of DNA 5-methylcytosine transferase (dnmt1) in fos-transformed cells is three times the expression in normal fibroblasts and that fos-transformed cells contain about 20 percent more 5-methylcytosine than normal fibroblasts. Transfection of the gene encoding Dnmt1 induced morphological transformation, whereas inhibition of dnmt1 expression or activity resulted in reversion of fos transformation. Inhibition of histone deacetylase, which associates with methylated DNA, also caused reversion. These results suggest that fos may transform cells through alterations in DNA methylation and in histone deacetylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bakin, A V -- Curran, T -- P30 CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 15;283(5400):387-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9888853" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Acetylation ; Animals ; Cell Size ; *Cell Transformation, Neoplastic ; Cytosine/analogs & derivatives/metabolism ; DNA (Cytosine-5-)-Methyltransferase/genetics/*metabolism ; DNA Methylation ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation, Neoplastic ; *Genes, fos ; Histone Deacetylase Inhibitors ; Histones/metabolism ; Hydroxamic Acids/pharmacology ; Proto-Oncogene Proteins c-fos/*metabolism ; Rats ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-06-03
    Description: The proto-oncogene c-fos is expressed in neurons in response to direct stimulation by growth factors and neurotransmitters. In order to determine whether the c-fos protein (Fos) and Fos-related proteins can be induced in response to polysynaptic activation, rat hindlimb motor/sensory cortex was stimulated electrically and Fos expression examined immunohistochemically. Three hours after the onset of stimulation, focal nuclear Fos staining was seen in motor and sensory thalamus, pontine nuclei, globus pallidus, and cerebellum. Moreover, 24-hour water deprivation resulted in Fos expression in paraventricular and supraoptic nuclei. Fos immunohistochemistry therefore provides a cellular method to label polysynaptically activated neurons and thereby map functional pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sagar, S M -- Sharp, F R -- Curran, T -- EY05721/EY/NEI NIH HHS/ -- NS24666/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 3;240(4857):1328-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, San Francisco.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3131879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cell Nucleus/metabolism ; Cerebellum/metabolism ; Cerebral Cortex/metabolism ; Electric Stimulation ; *Gene Expression Regulation ; Globus Pallidus/metabolism ; Hippocampus/metabolism ; Hypothalamus/metabolism ; Immunohistochemistry ; Motor Cortex/physiology ; Neurons/metabolism ; Pons/metabolism ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-fos ; Rats ; Thalamus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2008-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Curran, Tom -- Ng, Jessica M Y -- England -- Nature. 2008 Sep 18;455(7211):293-4. doi: 10.1038/455293a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18800119" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hedgehog Proteins/*metabolism ; Humans ; Mice ; Neoplasm Transplantation ; Neoplasms/*metabolism/pathology ; Paracrine Communication/*physiology ; Receptors, G-Protein-Coupled/antagonists & inhibitors/metabolism ; Stromal Cells/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: Fos and Jun form a heterodimeric complex that associates with the nucleotide sequence motif known as the AP-1 binding site. Although this complex has been proposed to function as a transcriptional regulator in neurons, no specific target gene has yet been identified. Proenkephalin mRNA increased in the hippocampus during seizure just after an increase in c-fos and c-jun expression was detected. Fos-Jun complexes bound specifically to a regulatory sequence in the 5' control region of the proenkephalin gene. Furthermore, c-fos and c-jun stimulated transcription from this control region synergistically in transactivation assays. These data suggest that the proenkephalin gene may be a physiological target for Fos and Jun in the hippocampus and indicate that these proto-oncogene transcription factors may play a role in neuronal responses to stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonnenberg, J L -- Rauscher, F J 3rd -- Morgan, J I -- Curran, T -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Molecular Biology, Roche Research Center, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2512642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/*metabolism ; Cell Line ; DNA-Binding Proteins/*genetics/metabolism ; Enhancer Elements, Genetic ; Enkephalins/*genetics ; *Gene Expression Regulation ; *Genes ; Hippocampus/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Precursors/*genetics ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Proto-Oncogenes ; RNA, Messenger/genetics ; Teratoma ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1989-03-31
    Description: The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gentz, R -- Rauscher, F J 3rd -- Abate, C -- Curran, T -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1695-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cross-Linking Reagents ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glutaral ; Immunosorbent Techniques ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-11-30
    Description: The Wilms' tumor locus (WTL) at 11p13 contains a gene that encodes a zinc finger-containing protein that has characteristics of a DNA-binding protein. However, binding of this protein to DNA in a sequence-specific manner has not been demonstrated. A synthetic gene was constructed that contained the zinc finger region, and the protein was expressed in Escherichia coli. The recombinant protein was used to identify a specific DNA binding site from a pool of degenerate oligonucleotides. The binding sites obtained were similar to the sequence recognized by the early growth response-1 (EGR-1) gene product, a zinc finger-containing protein that is induced by mitogenic stimuli. A mutation in the zinc finger region of the protein originally identified in a Wilms' tumor patient abolished its DNA-binding activity. These results suggest that the WTL protein may act at the DNA binding site of a growth factor-inducible gene and that loss of DNA-binding activity contributes to the tumorigenic process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rauscher, F J 3rd -- Morris, J F -- Tournay, O E -- Cook, D M -- Curran, T -- CA0917-15/CA/NCI NIH HHS/ -- CA10817/CA/NCI NIH HHS/ -- CA23413/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1259-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, Philadelphia, PA 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2244209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Binding, Competitive ; Chromosomes, Human, Pair 11 ; Consensus Sequence ; DNA/genetics/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Early Growth Response Protein 1 ; Escherichia coli/genetics ; *Genes, Wilms Tumor ; Humans ; *Immediate-Early Proteins ; Molecular Sequence Data ; Mutation ; Oligonucleotides/metabolism ; Polymerase Chain Reaction ; Recombinant Proteins/metabolism ; Restriction Mapping ; Transcription Factors/genetics/*metabolism ; *Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-07
    Description: The proto-oncogenes c-fos and c-jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a heterodimeric complex that interacts with the DNA regulatory element known as the activator protein-1 (AP-1) binding site. Dimerization occurs via interaction between leucine zipper domains and serves to bring into proper juxtaposition a region in each protein that is rich in basic amino acids and that forms a DNA-binding domain. DNA binding of the Fos-Jun heterodimer was modulated by reduction-oxidation (redox) of a single conserved cysteine residue in the DNA-binding domains of the two proteins. Furthermore, a nuclear protein was identified that reduced Fos and Jun and stimulated DNA-binding activity in vitro. These results suggest that transcriptional activity mediated by AP-1 binding factors may be regulated by a redox mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abate, C -- Patel, L -- Rauscher, F J 3rd -- Curran, T -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1157-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology and Virology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2118682" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell-Free System ; Cysteine/physiology ; DNA Mutational Analysis ; DNA-Binding Proteins/drug effects/*physiology ; Diamide/pharmacology ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Oxidation-Reduction ; Proto-Oncogene Proteins/*physiology ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Recombinant Proteins ; Signal Transduction ; Structure-Activity Relationship ; Sulfhydryl Reagents/pharmacology ; Transcription Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...