ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Predatory fish introduction can cause cascading changes within recipient freshwater ecosystems. Linkages to avian and terrestrial food webs may occur, but effects are thought to attenuate across ecosystem boundaries. Using data spanning more than four decades (1972–2017), we demonstrate that lake trout invasion of Yellowstone Lake added a novel, piscivorous trophic level resulting in a precipitous decline of prey fish, including Yellowstone cutthroat trout. Plankton assemblages within the lake were altered, and nutrient transport to tributary streams was reduced. Effects across the aquatic-terrestrial ecosystem boundary remained strong (log response ratio ≤ 1.07) as grizzly bears and black bears necessarily sought alternative foods. Nest density and success of ospreys greatly declined. Bald eagles shifted their diet to compensate for the cutthroat trout loss. These interactions across multiple trophic levels both within and outside of the invaded lake highlight the potential substantial influence of an introduced predatory fish on otherwise pristine ecosystems.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-10
    Description: Genetic forms of polycystic kidney diseases (PKDs), including nephronophthisis, are characterized by formation of fluid-filled cysts in the kidneys and progression to end-stage renal disease. No therapies are currently available to treat cystic diseases, making it imperative to dissect molecular mechanisms in search of therapeutic targets. Accumulating evidence suggests a pathogenic role for glucosylceramide (GlcCer) in multiple forms of PKD. It is not known, however, whether other structural glycosphingolipids (GSLs) or bioactive signaling sphingolipids (SLs) modulate cystogenesis. Therefore, we set out to address the role of a specific GSL (ganglioside GM3) and signaling SL (sphingosine-1-phosphate, S1P) in PKD progression, using the jck mouse model of nephronopthisis. To define the role of GM3 accumulation in cystogenesis, we crossed jck mice with mice carrying a targeted mutation in the GM3 synthase ( St3gal5 ) gene. GM3-deficient jck mice displayed milder PKD, revealing a pivotal role for ganglioside GM3. Mechanistic changes in regulation of the cell-cycle machinery and Akt-mTOR signaling were consistent with reduced cystogenesis. Dramatic overexpression of sphingosine kinase 1 ( Sphk1 ) mRNA in jck kidneys suggested a pathogenic role for S1P. Surprisingly, genetic loss of Sphk1 exacerbated cystogenesis and was associated with increased levels of GlcCer and GM3. On the other hand, increasing S1P accumulation through pharmacologic inhibition of S1P lyase had no effect on the progression of cystogenesis or kidney GSL levels. Together, these data suggest that genes involved in the SL metabolism may be modifiers of cystogenesis, and suggest GM3 synthase as a new anti-cystic therapeutic target.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-01-29
    Description: Efficient gene transfer into human hematopoietic stem cells (HSCs) is an important goal in the study of the hematopoietic system as well as for gene therapy of hematopoietic disorders. A lentiviral vector based on the human immunodeficiency virus (HIV) was able to transduce human CD34+ cells capable of stable, long-term reconstitution of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. High-efficiency transduction occurred in the absence of cytokine stimulation and resulted in transgene expression in multiple lineages of human hematopoietic cells for up to 22 weeks after transplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, H -- Smith, K A -- Mosier, D E -- Verma, I M -- Torbett, B E -- CA44360/CA/NCI NIH HHS/ -- DK49886/DK/NIDDK NIH HHS/ -- HL53670/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):682-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924027" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/*analysis ; Bone Marrow Cells/cytology ; Cell Division ; Cell Survival ; Colony-Forming Units Assay ; Gene Expression ; *Gene Transfer Techniques ; *Genetic Vectors ; Green Fluorescent Proteins ; HIV/*genetics ; Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; *Hematopoietic Stem Cells/cytology/immunology ; Humans ; Leukemia Virus, Murine/genetics ; Luminescent Proteins/genetics ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Promoter Regions, Genetic ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-05-27
    Description: Interleukin-2 (IL-2), the first of a series of lymphocytotrophic hormones to be recognized and completely characterized, is pivotal for the generation and regulation of the immune response. A T lymphocyte product, IL-2 also stimulates T cells to undergo cell cycle progression via a finite number of interactions with its specific membrane receptors. Because T cell clonal proliferation after antigen challenge is obligatory for immune responsiveness and immune memory, the IL-2-T cell system has opened the way to a molecular understanding of phenomena that are fundamental to biology, immunology, and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, K A -- CA17643/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 May 27;240(4856):1169-76.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dartmouth Medical School, Hanover, NH 03756.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3131876" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Interleukin-2/*physiology ; Lymphocyte Activation ; Receptors, Immunologic/physiology ; Receptors, Interleukin-2 ; T-Lymphocytes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-22
    Description: Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of approximately 900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography-the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawrylycz, Michael J -- Lein, Ed S -- Guillozet-Bongaarts, Angela L -- Shen, Elaine H -- Ng, Lydia -- Miller, Jeremy A -- van de Lagemaat, Louie N -- Smith, Kimberly A -- Ebbert, Amanda -- Riley, Zackery L -- Abajian, Chris -- Beckmann, Christian F -- Bernard, Amy -- Bertagnolli, Darren -- Boe, Andrew F -- Cartagena, Preston M -- Chakravarty, M Mallar -- Chapin, Mike -- Chong, Jimmy -- Dalley, Rachel A -- Daly, Barry David -- Dang, Chinh -- Datta, Suvro -- Dee, Nick -- Dolbeare, Tim A -- Faber, Vance -- Feng, David -- Fowler, David R -- Goldy, Jeff -- Gregor, Benjamin W -- Haradon, Zeb -- Haynor, David R -- Hohmann, John G -- Horvath, Steve -- Howard, Robert E -- Jeromin, Andreas -- Jochim, Jayson M -- Kinnunen, Marty -- Lau, Christopher -- Lazarz, Evan T -- Lee, Changkyu -- Lemon, Tracy A -- Li, Ling -- Li, Yang -- Morris, John A -- Overly, Caroline C -- Parker, Patrick D -- Parry, Sheana E -- Reding, Melissa -- Royall, Joshua J -- Schulkin, Jay -- Sequeira, Pedro Adolfo -- Slaughterbeck, Clifford R -- Smith, Simon C -- Sodt, Andy J -- Sunkin, Susan M -- Swanson, Beryl E -- Vawter, Marquis P -- Williams, Derric -- Wohnoutka, Paul -- Zielke, H Ronald -- Geschwind, Daniel H -- Hof, Patrick R -- Smith, Stephen M -- Koch, Christof -- Grant, Seth G N -- Jones, Allan R -- 066717/Wellcome Trust/United Kingdom -- 077155/Wellcome Trust/United Kingdom -- 1C76HF15069-01-00/PHS HHS/ -- 1C76HF19619-01-00/PHS HHS/ -- G0700399/Medical Research Council/United Kingdom -- G0802238/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Sep 20;489(7416):391-9. doi: 10.1038/nature11405.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Allen Institute for Brain Science, Seattle, Washington 98103, USA. mikeh@alleninstitute.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22996553" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; *Anatomy, Artistic ; Animals ; *Atlases as Topic ; Brain/*anatomy & histology/cytology/*metabolism ; Calbindins ; Databases, Genetic ; Dopamine/metabolism ; *Gene Expression Profiling ; Health ; Hippocampus/cytology/metabolism ; Humans ; In Situ Hybridization ; Internet ; Macaca mulatta/anatomy & histology/genetics ; Male ; Mice ; Neocortex/anatomy & histology/cytology/metabolism ; Oligonucleotide Array Sequence Analysis ; Post-Synaptic Density/genetics ; RNA, Messenger/analysis/genetics ; S100 Calcium Binding Protein G/genetics ; Species Specificity ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-04
    Description: The anatomical and functional architecture of the human brain is mainly determined by prenatal transcriptional processes. We describe an anatomically comprehensive atlas of the mid-gestational human brain, including de novo reference atlases, in situ hybridization, ultra-high-resolution magnetic resonance imaging (MRI) and microarray analysis on highly discrete laser-microdissected brain regions. In developing cerebral cortex, transcriptional differences are found between different proliferative and post-mitotic layers, wherein laminar signatures reflect cellular composition and developmental processes. Cytoarchitectural differences between human and mouse have molecular correlates, including species differences in gene expression in subplate, although surprisingly we find minimal differences between the inner and outer subventricular zones even though the outer zone is expanded in humans. Both germinal and post-mitotic cortical layers exhibit fronto-temporal gradients, with particular enrichment in the frontal lobe. Finally, many neurodevelopmental disorder and human-evolution-related genes show patterned expression, potentially underlying unique features of human cortical formation. These data provide a rich, freely-accessible resource for understanding human brain development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105188/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105188/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Jeremy A -- Ding, Song-Lin -- Sunkin, Susan M -- Smith, Kimberly A -- Ng, Lydia -- Szafer, Aaron -- Ebbert, Amanda -- Riley, Zackery L -- Royall, Joshua J -- Aiona, Kaylynn -- Arnold, James M -- Bennet, Crissa -- Bertagnolli, Darren -- Brouner, Krissy -- Butler, Stephanie -- Caldejon, Shiella -- Carey, Anita -- Cuhaciyan, Christine -- Dalley, Rachel A -- Dee, Nick -- Dolbeare, Tim A -- Facer, Benjamin A C -- Feng, David -- Fliss, Tim P -- Gee, Garrett -- Goldy, Jeff -- Gourley, Lindsey -- Gregor, Benjamin W -- Gu, Guangyu -- Howard, Robert E -- Jochim, Jayson M -- Kuan, Chihchau L -- Lau, Christopher -- Lee, Chang-Kyu -- Lee, Felix -- Lemon, Tracy A -- Lesnar, Phil -- McMurray, Bergen -- Mastan, Naveed -- Mosqueda, Nerick -- Naluai-Cecchini, Theresa -- Ngo, Nhan-Kiet -- Nyhus, Julie -- Oldre, Aaron -- Olson, Eric -- Parente, Jody -- Parker, Patrick D -- Parry, Sheana E -- Stevens, Allison -- Pletikos, Mihovil -- Reding, Melissa -- Roll, Kate -- Sandman, David -- Sarreal, Melaine -- Shapouri, Sheila -- Shapovalova, Nadiya V -- Shen, Elaine H -- Sjoquist, Nathan -- Slaughterbeck, Clifford R -- Smith, Michael -- Sodt, Andy J -- Williams, Derric -- Zollei, Lilla -- Fischl, Bruce -- Gerstein, Mark B -- Geschwind, Daniel H -- Glass, Ian A -- Hawrylycz, Michael J -- Hevner, Robert F -- Huang, Hao -- Jones, Allan R -- Knowles, James A -- Levitt, Pat -- Phillips, John W -- Sestan, Nenad -- Wohnoutka, Paul -- Dang, Chinh -- Bernard, Amy -- Hohmann, John G -- Lein, Ed S -- 5R24HD0008836/HD/NICHD NIH HHS/ -- R00 HD061485/HD/NICHD NIH HHS/ -- R01 MH092535/MH/NIMH NIH HHS/ -- R24 HD000836/HD/NICHD NIH HHS/ -- RC2 MH089921/MH/NIMH NIH HHS/ -- RC2MH089921/MH/NIMH NIH HHS/ -- England -- Nature. 2014 Apr 10;508(7495):199-206. doi: 10.1038/nature13185. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; Division of Genetic Medicine, Department of Pediatrics, University of Washington, 1959 North East Pacific Street, Box 356320, Seattle, Washington 98195, USA. ; 1] Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA [2] Computer Science and AI Lab, MIT, Cambridge, Massachusetts 02139, USA. ; Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut 06510, USA. ; Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. ; 1] Program in Computational Biology and Bioinformatics, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA [2] Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA. ; Program in Neurogenetics, Department of Neurology and Semel Institute David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA. ; 1] Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, USA [2] Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98105, USA. ; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA. ; Zilkha Neurogenetic Institute, and Department of Psychiatry, University of Southern California, Los Angeles, California 90033, USA. ; 1] Department of Pediatrics, Children's Hospital, Los Angeles, California 90027, USA [2] Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695229" target="_blank"〉PubMed〈/a〉
    Keywords: Anatomy, Artistic ; Animals ; Atlases as Topic ; Brain/embryology/*metabolism ; Conserved Sequence/genetics ; Fetus/cytology/embryology/*metabolism ; Gene Expression Regulation, Developmental/*genetics ; Gene Regulatory Networks/genetics ; Humans ; Mice ; Neocortex/embryology/metabolism ; Species Specificity ; *Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-05-13
    Description: The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cota, Daniela -- Proulx, Karine -- Smith, Kathi A Blake -- Kozma, Sara C -- Thomas, George -- Woods, Stephen C -- Seeley, Randy J -- DK 17844/DK/NIDDK NIH HHS/ -- DK 54080/DK/NIDDK NIH HHS/ -- DK 54890/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2006 May 12;312(5775):927-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 East Galbraith Road, Cincinnati, OH 45237, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arcuate Nucleus of Hypothalamus/cytology/enzymology/metabolism ; *Eating ; *Energy Intake ; *Energy Metabolism ; Fasting ; Hypothalamus/enzymology/*metabolism ; Injections, Intraventricular ; Leptin/pharmacology ; Leucine/*administration & dosage/pharmacology ; Neurons/enzymology/*metabolism ; Neuropeptide Y/genetics/metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Rats ; Rats, Long-Evans ; Ribosomal Protein S6/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; STAT3 Transcription Factor/metabolism ; *Signal Transduction ; Sirolimus/administration & dosage/pharmacology ; TOR Serine-Threonine Kinases ; Valine/administration & dosage/pharmacology ; Weight Loss
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1984-06-22
    Description: Synchronized interleukin-2 receptor-positive T cells, homogeneous immunoaffinity-purified interleukin-2, and a monoclonal antibody to interleukin-2 receptors were used to show that only three factors are critical for T-cell cycle progression: interleukin-2 concentration, interleukin-2 receptor density, and the duration of the interleukin-2 receptor interaction. Since the proliferative characteristics of T cells are identical to those of both prokaryotic and all other eukaryotic cells, these findings provide a new model that accounts fully for the variables that determine cell cycle progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cantrell, D A -- Smith, K A -- CA-17323/CA/NCI NIH HHS/ -- CA-17643/CA/NCI NIH HHS/ -- CA-23108/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1984 Jun 22;224(4655):1312-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6427923" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/physiology ; Cell Cycle/drug effects ; *Cell Division/drug effects ; DNA/biosynthesis ; Humans ; Interleukin-2/pharmacology/*physiology ; Mitosis/drug effects ; Models, Biological ; Receptors, Immunologic/physiology ; Receptors, Interleukin-2 ; T-Lymphocytes/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1986-07-11
    Description: In studies to determine the biochemical mechanisms responsible for cell proliferation, synchronized T cells were used as a model for cellular growth control. By metabolic and morphologic criteria, it was found that activation of the T-cell antigen receptor rendered the cells responsive to interleukin-2 (IL-2), but did not move them through the cell cycle. Instead, IL-2 stimulated G1 progression to S phase, or lymphocyte "blastic transformation." During IL-2-promoted G1 progression, expression of the cellular proto-oncogene c-myb was induced transiently at six to seven times basal levels, maximal levels occurring at the midpoint of G1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stern, J B -- Smith, K A -- CA 09367/CA/NCI NIH HHS/ -- CA-17643/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1986 Jul 11;233(4760):203-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3523754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/drug effects ; Cell Division/*drug effects ; Gene Expression Regulation/drug effects ; Humans ; Interleukin-2/*pharmacology ; Mice ; Proto-Oncogene Proteins/biosynthesis ; *Proto-Oncogenes/drug effects ; Receptors, Antigen, T-Cell/drug effects ; T-Lymphocytes/drug effects/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1986-10-17
    Description: The critical role of interleukin-2 (IL-2) in immune response heightens the need to know its structure in order to understand its activity. New computer-assisted predictive methods for the assignment of secondary structure together with a method to predict the tertiary structure of a protein from data on its primary sequence and secondary structure were applied to IL-2. This method generated four topological families of structures, of which the most plausible is a right-handed fourfold alpha-helical bundle. Members of this family were shown to be compatible with existing structural data on disulfide bridges and monoclonal antibody binding for IL-2. Experimental estimates of secondary structure from circular dichroism and site-directed mutagenesis data support the model. A region likely to be important in IL-2 binding to its receptor was identified as residues Leu36, Met38, Leu40, Phe42, Phe44, and Met46.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, F E -- Kosen, P A -- Kuntz, I D -- Epstein, L B -- Ciardelli, T L -- Smith, K A -- CA27903/CA/NCI NIH HHS/ -- GM34197/GM/NIGMS NIH HHS/ -- MOJ JD17001/PHS HHS/ -- etc. -- New York, N.Y. -- Science. 1986 Oct 17;234(4774):349-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3489989" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Computer Simulation ; Humans ; *Interleukin-2/genetics/physiology ; Mice ; Models, Molecular ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...