ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-08
    Description: Photoperiodic responses in plants include flowering that is day-length-dependent. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing six putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCA1, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-1 mutation also affects light signaling to the clock, which suggests that GI participates in a feedback loop of the plant circadian system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, D H -- Somers, D E -- Kim, Y S -- Choy, Y H -- Lim, H K -- Soh, M S -- Kim, H J -- Kay, S A -- Nam, H G -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1579-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477524" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/*physiology ; *Arabidopsis Proteins ; *Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; DNA-Binding Proteins/genetics ; Darkness ; Feedback ; Gene Expression Regulation, Plant ; *Genes, Plant ; Light ; Molecular Sequence Data ; Mutation ; Photoperiod ; Plant Leaves/physiology ; Plant Proteins/chemistry/*genetics/physiology ; Plant Structures/physiology ; Sequence Deletion ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-04
    Description: The interactive regulation between clock genes is central for oscillator function. Here, we show interactions between the Arabidopsis clock genes LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and TIMING OF CAB EXPRESSION 1 (TOC1). The MYB transcription factors LHY and CCA1 negatively regulate TOC1 expression. We show that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation. Conversely, TOC1 appears to participate in the positive regulation of LHY and CCA1 expression. Our results indicate that these interactions form a loop critical for clock function in Arabidopsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alabadi, D -- Oyama, T -- Yanovsky, M J -- Harmon, F G -- Mas, P -- Kay, S A -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):880-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486091" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/physiology ; *Arabidopsis Proteins ; Biological Clocks/genetics ; Circadian Rhythm/*genetics ; DNA-Binding Proteins/*genetics/metabolism ; *Gene Expression Regulation, Plant ; Genes, Plant ; Models, Genetic ; Plant Proteins/*genetics/metabolism ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-11-20
    Description: Circadian clocks are synchronized by environmental cues such as light. Photoreceptor-deficient Arabidopsis thaliana mutants were used to measure the effect of light fluence rate on circadian period in plants. Phytochrome B is the primary high-intensity red light photoreceptor for circadian control, and phytochrome A acts under low-intensity red light. Cryptochrome 1 and phytochrome A both act to transmit low-fluence blue light to the clock. Cryptochrome 1 mediates high-intensity blue light signals for period length control. The presence of cryptochromes in both plants and animals suggests that circadian input pathways have been conserved throughout evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Somers, D E -- Devlin, P F -- Kay, S A -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1488-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822379" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; Arabidopsis Proteins ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Cryptochromes ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*physiology ; Light ; Mutation ; *Photoreceptor Cells ; *Photoreceptor Cells, Invertebrate ; Phytochrome/genetics/*physiology ; Phytochrome A ; Phytochrome B ; Plants, Genetically Modified ; Receptors, G-Protein-Coupled ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-27
    Description: Most organisms have circadian clocks consisting of negative feedback loops of gene regulation that facilitate adaptation to cycles of light and darkness. In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion. TIM degradation does not occur under these conditions; thus, TIM degradation is uncoupled from abrogation of its function by light. CRY and TIM are part of the same complex and directly interact in yeast in a light-dependent fashion. PER/TIM and CRY influence the subcellular distribution of these protein complexes, which reside primarily in the nucleus after the perception of a light signal. Thus, CRY acts as a circadian photoreceptor by directly interacting with core components of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceriani, M F -- Darlington, T K -- Staknis, D -- Mas, P -- Petti, A A -- Weitz, C J -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Line ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Cytoplasm/metabolism ; Darkness ; Dimerization ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Green Fluorescent Proteins ; Insect Proteins/genetics/*metabolism ; *Light ; Luminescent Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Transfection ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-12-14
    Description: The master circadian oscillator in the hypothalamic suprachiasmatic nucleus is entrained to the day/night cycle by retinal photoreceptors. Melanopsin (Opn4), an opsin-based photopigment, is a primary candidate for photoreceptor-mediated entrainment. To investigate the functional role of melanopsin in light resetting of the oscillator, we generated melanopsin-null mice (Opn4-/-). These mice entrain to a light/dark cycle and do not exhibit any overt defect in circadian activity rhythms under constant darkness. However, they display severely attenuated phase resetting in response to brief pulses of monochromatic light, highlighting the critical role of melanopsin in circadian photoentrainment in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Panda, Satchidananda -- Sato, Trey K -- Castrucci, Ana Maria -- Rollag, Mark D -- DeGrip, Willem J -- Hogenesch, John B -- Provencio, Ignacio -- Kay, Steve A -- MH 62405/MH/NIMH NIH HHS/ -- MH51573/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2213-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/*physiology ; Darkness ; Female ; Gene Targeting ; *Light ; Light Signal Transduction ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity ; Retinal Ganglion Cells/physiology ; Rod Opsins/genetics/*physiology ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-08-05
    Description: The toc1 mutation causes shortened circadian rhythms in light-grown Arabidopsis plants. Here, we report the same toc1 effect in the absence of light input to the clock. We also show that TOC1 controls photoperiodic flowering response through clock function. The TOC1 gene was isolated and found to encode a nuclear protein containing an atypical response regulator receiver domain and two motifs that suggest a role in transcriptional regulation: a basic motif conserved within the CONSTANS family of transcription factors and an acidic domain. TOC1 is itself circadianly regulated and participates in a feedback loop to control its own expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strayer, C -- Oyama, T -- Schultz, T F -- Raman, R -- Somers, D E -- Mas, P -- Panda, S -- Kreps, J A -- Kay, S A -- GM 56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 4;289(5480):768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10926537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/*genetics/physiology ; *Arabidopsis Proteins ; Biological Clocks/*genetics ; Circadian Rhythm/*genetics ; Cloning, Molecular ; DNA-Binding Proteins/chemistry/genetics/physiology ; Feedback ; Gene Expression Regulation, Plant ; Genes, Plant ; Molecular Sequence Data ; Mutation, Missense ; Phenotype ; Photoperiod ; Plant Proteins/chemistry/*genetics/physiology ; Plants, Genetically Modified ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Repetitive Sequences, Amino Acid ; Transcription Factors/chemistry/genetics/physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-12-16
    Description: Like most organisms, plants have endogenous biological clocks that coordinate internal events with the external environment. We used high-density oligonucleotide microarrays to examine gene expression in Arabidopsis and found that 6% of the more than 8000 genes on the array exhibited circadian changes in steady-state messenger RNA levels. Clusters of circadian-regulated genes were found in pathways involved in plant responses to light and other key metabolic pathways. Computational analysis of cycling genes allowed the identification of a highly conserved promoter motif that we found to be required for circadian control of gene expression. Our study presents a comprehensive view of the temporal compartmentalization of physiological pathways by the circadian clock in a eukaryote.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harmer, S L -- Hogenesch, J B -- Straume, M -- Chang, H S -- Han, B -- Zhu, T -- Wang, X -- Kreps, J A -- Kay, S A -- 5F32GM20118-02/GM/NIGMS NIH HHS/ -- R01 DK51562/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2110-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118138" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*physiology ; Biological Clocks/*genetics ; Carbohydrate Metabolism ; *Circadian Rhythm ; Gene Expression Profiling ; *Gene Expression Regulation, Plant ; Genes, Plant ; Light ; Nitrogen/metabolism ; Oligonucleotide Array Sequence Analysis ; Photosynthesis/genetics ; Photosynthetic Reaction Center Complex Proteins/genetics ; Plants, Genetically Modified ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Sulfur/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Devlin, P F -- Kay, S A -- New York, N.Y. -- Science. 2000 Jun 2;288(5471):1600-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and National Science Foundation for Biological Timing, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. pdevlin@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10858139" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; DNA-Binding Proteins/*genetics/physiology ; *Gene Expression Regulation, Plant ; Genes, Plant ; MADS Domain Proteins ; Mutation ; Photoperiod ; Plant Proteins/genetics/physiology ; Plant Shoots/genetics/physiology ; Promoter Regions, Genetic ; RNA-Binding Proteins/genetics/physiology ; Seasons ; Signal Transduction ; Temperature ; Transcription Factors/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-12-31
    Description: Transgenic Drosophila that expressed either luciferase or green fluorescent protein driven from the promoter of the clock gene period were used to monitor the circadian clock in explanted head, thorax, and abdominal tissues. The tissues (including sensory bristles in the leg and wing) showed rhythmic bioluminescence, and the rhythms could be reset by light. The photoreceptive properties of the explanted tissues indicate that unidentified photoreceptors are likely to contribute to photic signal transduction to the clock. These results show that autonomous circadian oscillators are present throughout the body, and they suggest that individual cells in Drosophila are capable of supporting their own independent clocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plautz, J D -- Kaneko, M -- Hall, J C -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1632-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and National Science Foundation Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374465" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Biological Clocks/*physiology ; Brain/physiology ; Chemoreceptor Cells/physiology ; Circadian Rhythm/*physiology ; Darkness ; Drosophila/genetics/*physiology ; Drosophila Proteins ; Gene Expression Regulation ; Genes, Insect ; Green Fluorescent Proteins ; Light ; Light Signal Transduction ; Luciferases/genetics ; Luminescence ; Luminescent Proteins/genetics ; Nuclear Proteins/genetics/*physiology ; Period Circadian Proteins ; Photoreceptor Cells, Invertebrate/*physiology ; Promoter Regions, Genetic ; Receptors, Cell Surface ; Recombinant Fusion Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, S A -- New York, N.Y. -- Science. 1997 May 2;276(5313):753-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation Center for Biological Timing, Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. stevek@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; *Circadian Rhythm ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Drosophila/genetics/physiology ; Drosophila Proteins ; Fungal Proteins/genetics/physiology ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Light ; Neurospora/chemistry/genetics/*physiology ; Nuclear Proteins/chemistry/genetics/physiology ; Period Circadian Proteins ; Signal Transduction ; Transcription Factors/chemistry/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...