ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-07-27
    Description: Most organisms have circadian clocks consisting of negative feedback loops of gene regulation that facilitate adaptation to cycles of light and darkness. In this study, CRYPTOCHROME (CRY), a protein involved in circadian photoperception in Drosophila, is shown to block the function of PERIOD/TIMELESS (PER/TIM) heterodimeric complexes in a light-dependent fashion. TIM degradation does not occur under these conditions; thus, TIM degradation is uncoupled from abrogation of its function by light. CRY and TIM are part of the same complex and directly interact in yeast in a light-dependent fashion. PER/TIM and CRY influence the subcellular distribution of these protein complexes, which reside primarily in the nucleus after the perception of a light signal. Thus, CRY acts as a circadian photoreceptor by directly interacting with core components of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ceriani, M F -- Darlington, T K -- Staknis, D -- Mas, P -- Petti, A A -- Weitz, C J -- Kay, S A -- MH-51573/MH/NIMH NIH HHS/ -- MH-59943/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):553-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and NSF Center for Biological Timing, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Clocks ; Cell Line ; Cell Nucleus/metabolism ; *Circadian Rhythm ; Cryptochromes ; Cytoplasm/metabolism ; Darkness ; Dimerization ; Drosophila ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Green Fluorescent Proteins ; Insect Proteins/genetics/*metabolism ; *Light ; Luminescent Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; *Photoreceptor Cells, Invertebrate ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Transfection ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-12-14
    Description: The master circadian oscillator in the hypothalamic suprachiasmatic nucleus is entrained to the day/night cycle by retinal photoreceptors. Melanopsin (Opn4), an opsin-based photopigment, is a primary candidate for photoreceptor-mediated entrainment. To investigate the functional role of melanopsin in light resetting of the oscillator, we generated melanopsin-null mice (Opn4-/-). These mice entrain to a light/dark cycle and do not exhibit any overt defect in circadian activity rhythms under constant darkness. However, they display severely attenuated phase resetting in response to brief pulses of monochromatic light, highlighting the critical role of melanopsin in circadian photoentrainment in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Panda, Satchidananda -- Sato, Trey K -- Castrucci, Ana Maria -- Rollag, Mark D -- DeGrip, Willem J -- Hogenesch, John B -- Provencio, Ignacio -- Kay, Steve A -- MH 62405/MH/NIMH NIH HHS/ -- MH51573/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2213-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/*physiology ; Darkness ; Female ; Gene Targeting ; *Light ; Light Signal Transduction ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity ; Retinal Ganglion Cells/physiology ; Rod Opsins/genetics/*physiology ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-06-28
    Description: Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Panda, Satchidananda -- Provencio, Ignacio -- Tu, Daniel C -- Pires, Susana S -- Rollag, Mark D -- Castrucci, Ana Maria -- Pletcher, Mathew T -- Sato, Trey K -- Wiltshire, Tim -- Andahazy, Mary -- Kay, Steve A -- Van Gelder, Russell N -- Hogenesch, John B -- K08-EY00403/EY/NEI NIH HHS/ -- MH 62405/MH/NIMH NIH HHS/ -- MH51573/MH/NIMH NIH HHS/ -- R01-EY14988/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):525-7. Epub 2003 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arylamine N-Acetyltransferase/genetics/metabolism ; Blindness/genetics/*physiopathology ; Circadian Rhythm ; *Light ; *Light Signal Transduction ; Mice ; Mice, Inbred C3H ; Motor Activity ; Photoreceptor Cells, Vertebrate/*physiology ; Reflex, Pupillary ; Retinal Degeneration/genetics/physiopathology ; Retinal Ganglion Cells/physiology ; Rod Opsins/deficiency/genetics/*physiology ; Signal Transduction ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-02-24
    Description: Transgenic Arabidopsis plants expressing a luciferase gene fused to a circadian-regulated promoter exhibited robust rhythms in bioluminescence. The cyclic luminescence has a 24.7-hour period in white light but 30- to 36-hour periods under constant darkness. Either red or blue light shortened the period of the wild type to 25 hours. A phytochrome-deficient mutation lengthened the period in continuous red light but had little effect in continuous blue light, whereas seedlings carrying mutations that activate light-dependent pathways in darkness maintained shorter periods in constant darkness. These results suggest that both phytochrome- and blue light-responsive photoreceptor pathways control the period of the circadian clock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, A J -- Straume, M -- Chory, J -- Chua, N H -- Kay, S A -- GM44640/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Feb 24;267(5201):1163-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation (NSF) Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7855596" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; *Arabidopsis Proteins ; *Biological Clocks/genetics ; Carrier Proteins/genetics ; *Circadian Rhythm/genetics ; Darkness ; Gene Expression Regulation, Plant ; *Genes, Plant ; *Light ; Light-Harvesting Protein Complexes ; Luciferases/genetics ; Luminescence ; *Photosynthetic Reaction Center Complex Proteins ; *Photosystem II Protein Complex ; *Plant Proteins ; Plants, Genetically Modified ; Recombinant Fusion Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-11-01
    Description: Photoperiodic responses, such as the daylength-dependent control of reproductive development, are associated with a circadian biological clock. The photoperiod-insensitive early-flowering 3 (elf3) mutant of Arabidopsis thaliana lacks rhythmicity in two distinct circadian-regulated processes. This defect was apparent only when plants were assayed under constant light conditions. elf3 mutants retain rhythmicity in constant dark and anticipate light/dark transitions under most light/dark regimes. The conditional arrhythmic phenotype suggests that the circadian pacemaker is intact in darkness in elf3 mutant plants, but the transduction of light signals to the circadian clock is impaired.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hicks, K A -- Millar, A J -- Carre, I A -- Somers, D E -- Straume, M -- Meeks-Wagner, D R -- Kay, S A -- 1R01GM46006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 1;274(5288):790-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8864121" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/*physiology ; *Circadian Rhythm ; Darkness ; Gene Expression Regulation, Plant ; Genes, Plant ; *Light ; Movement ; Mutation ; Phenotype ; *Photoperiod ; Photosynthetic Reaction Center Complex Proteins/genetics ; Plant Leaves/physiology ; Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-09-18
    Description: Precise timing of CONSTANS (CO) gene expression is necessary for day-length discrimination for photoperiodic flowering. The FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and GIGANTEA (GI) proteins regulate CO transcription in Arabidopsis. We demonstrate that FKF1 and GI proteins form a complex in a blue-light-dependent manner. The timing of this interaction regulates the timing of daytime CO expression. FKF1 function is dependent on GI, which interacts with a CO repressor, CYCLING DOF FACTOR 1 (CDF1), and controls CDF1 stability. GI, FKF1, and CDF1 proteins associate with CO chromatin. Thus, the FKF1-GI complex forms on the CO promoter in late afternoon to regulate CO expression, providing a mechanistic view of how the coincidence of light with circadian timing regulates photoperiodic flowering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawa, Mariko -- Nusinow, Dmitri A -- Kay, Steve A -- Imaizumi, Takato -- GM056006/GM/NIGMS NIH HHS/ -- GM067837/GM/NIGMS NIH HHS/ -- GM079712/GM/NIGMS NIH HHS/ -- R01 GM079712/GM/NIGMS NIH HHS/ -- R01 GM079712-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):261-5. Epub 2007 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872410" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Chromatin Immunoprecipitation ; *Circadian Rhythm ; DNA-Binding Proteins/*genetics ; Flowers/genetics/*growth & development ; Gene Expression Regulation, Plant ; *Light ; Mutation ; Photoperiod ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...