ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-04-16
    Description: FADD (also known as Mort-1) is a signal transducer downstream of cell death receptor CD95 (also called Fas). CD95, tumor necrosis factor receptor type 1 (TNFR-1), and death receptor 3 (DR3) did not induce apoptosis in FADD-deficient embryonic fibroblasts, whereas DR4, oncogenes E1A and c-myc, and chemotherapeutic agent adriamycin did. Mice with a deletion in the FADD gene did not survive beyond day 11.5 of embryogenesis; these mice showed signs of cardiac failure and abdominal hemorrhage. Chimeric embryos showing a high contribution of FADD null mutant cells to the heart reproduce the phenotype of FADD-deficient mutants. Thus, not only death receptors, but also receptors that couple to developmental programs, may use FADD for signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeh, W C -- de la Pompa, J L -- McCurrach, M E -- Shu, H B -- Elia, A J -- Shahinian, A -- Ng, M -- Wakeham, A -- Khoo, W -- Mitchell, K -- El-Deiry, W S -- Lowe, S W -- Goeddel, D V -- Mak, T W -- CA13106/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amgen Institute, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506948" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD95/genetics/physiology ; *Apoptosis ; Carrier Proteins/genetics/*physiology ; Cell Transformation, Neoplastic ; Cells, Cultured ; Doxorubicin/pharmacology ; *Embryonic and Fetal Development ; Endothelium, Vascular/embryology ; Fas-Associated Death Domain Protein ; Female ; Gene Expression ; Gene Targeting ; Heart/*embryology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Oncogenes ; Receptors, Tumor Necrosis Factor/genetics/physiology ; Signal Transduction ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henner, D -- Goeddel, D V -- Heyneker, H -- Itakura, K -- Tansura, D -- New York, N.Y. -- Science. 1999 May 28;284(5419):1465.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ross M Miozzari G〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10383322" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology/*legislation & jurisprudence ; California ; *Human Growth Hormone ; Humans ; Patents as Topic/*legislation & jurisprudence ; Periodicals as Topic ; *Publishing ; Universities/*legislation & jurisprudence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-03-17
    Description: The role of NF-kappaB-inducing kinase (NIK) in cytokine signaling remains controversial. To identify the physiologic functions of NIK, we disrupted the NIK locus by gene targeting. Although NIK-/- mice displayed abnormalities in both lymphoid tissue development and antibody responses, NIK-/- cells manifested normal NF-kappaB DNA binding activity when treated with a variety of cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and lymphotoxin-beta (LTbeta). However, NIK was selectively required for gene transcription induced through ligation of LTbeta receptor but not TNF receptors. These results reveal that NIK regulates the transcriptional activity of NF-kappaB in a receptor-restricted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, L -- Wu, L -- Wesche, H -- Arthur, C D -- White, J M -- Goeddel, D V -- Schreiber, R D -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2162-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251123" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/metabolism ; Cells, Cultured ; DNA/metabolism ; Fibroblasts/metabolism ; Gene Targeting ; Genes, Reporter ; Interleukin-1/metabolism/pharmacology ; Ligands ; Lymphoid Tissue/abnormalities ; Lymphotoxin beta Receptor ; Mice ; Mice, Inbred C57BL ; NF-kappa B/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/immunology/*metabolism ; Signal Transduction ; *Transcription, Genetic ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-01
    Description: Tumor necrosis factor (TNF) is a major mediator of apoptosis as well as inflammation and immunity, and it has been implicated in the pathogenesis of a wide spectrum of human diseases, including sepsis, diabetes, cancer, osteoporosis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel diseases. The interaction of TNF with TNF receptor-1 (TNF-R1) activates several signal transduction pathways. A common feature of each pathway is the TNF-induced formation of a multiprotein signaling complex at the cell membrane. Over the past decade, many of the components and mechanisms of these signaling pathways have been elucidated. We provide an overview of current knowledge of TNF signaling and introduce an STKE Connections Map that depicts a canonical view of this process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Guoqing -- Goeddel, David V -- New York, N.Y. -- Science. 2002 May 31;296(5573):1634-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik Inc., Two Corporate Drive, South San Francisco, CA 94080, USA. goeddel@tularik.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Apoptosis ; Cell Membrane/metabolism ; Humans ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinases/metabolism ; Models, Biological ; Multiprotein Complexes ; NF-kappa B/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Tumor Necrosis Factor/*metabolism ; Receptors, Tumor Necrosis Factor, Type I ; *Signal Transduction ; Tumor Necrosis Factor-alpha/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-01-23
    Description: Tumor necrosis factor receptor type 1 (TNF-R1) contains a cytoplasmic death domain that is required for the signaling of TNF activities such as apoptosis and nuclear factor kappa B (NF-kappaB) activation. Normally, these signals are generated only after TNF-induced receptor aggregation. However, TNF-R1 self-associates and signals independently of ligand when overexpressed. This apparent paradox may be explained by silencer of death domains (SODD), a widely expressed approximately 60-kilodalton protein that was found to be associated with the death domain of TNF-R1. TNF treatment released SODD from TNF-R1, permitting the recruitment of proteins such as TRADD and TRAF2 to the active TNF-R1 signaling complex. SODD also interacted with death receptor-3 (DR3), another member of the TNF receptor superfamily. Thus, SODD association may be representative of a general mechanism for preventing spontaneous signaling by death domain-containing receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Y -- Woronicz, J D -- Liu, W -- Goeddel, D V -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):543-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915703" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Antigens, CD/chemistry/genetics/*metabolism ; Apoptosis ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Protein Binding ; Proteins/metabolism ; Receptor Aggregation ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Receptors, Tumor Necrosis Factor, Member 25 ; Receptors, Tumor Necrosis Factor, Type I ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; U937 Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-12-08
    Description: Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, D W -- Cachianes, G -- Kuang, W J -- Goeddel, D V -- Ferrara, N -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1306-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genetech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479986" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cattle ; Cell Division ; Cloning, Molecular ; Endothelium, Vascular/*cytology ; Gene Library ; Humans ; Lymphokines/genetics/*physiology/secretion ; Molecular Sequence Data ; Neovascularization, Pathologic/*physiopathology ; Sequence Homology, Nucleic Acid ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-09-11
    Description: Tumor necrosis factor alpha (TNF-alpha) binding to the TNF receptor (TNFR) potentially initiates apoptosis and activates the transcription factor nuclear factor kappa B (NF-kappaB), which suppresses apoptosis by an unknown mechanism. The activation of NF-kappaB was found to block the activation of caspase-8. TRAF1 (TNFR-associated factor 1), TRAF2, and the inhibitor-of-apoptosis (IAP) proteins c-IAP1 and c-IAP2 were identified as gene targets of NF-kappaB transcriptional activity. In cells in which NF-kappaB was inactive, all of these proteins were required to fully suppress TNF-induced apoptosis, whereas c-IAP1 and c-IAP2 were sufficient to suppress etoposide-induced apoptosis. Thus, NF-kappaB activates a group of gene products that function cooperatively at the earliest checkpoint to suppress TNF-alpha-mediated apoptosis and that function more distally to suppress genotoxic agent-mediated apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, C Y -- Mayo, M W -- Korneluk, R G -- Goeddel, D V -- Baldwin, A S Jr -- AI35098/AI/NIAID NIH HHS/ -- CA 75080/CA/NCI NIH HHS/ -- CA73756/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1680-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Endodontics, School of Dentistry, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733516" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cysteine Endopeptidases/*metabolism ; Cytochrome c Group/metabolism ; Enzyme Activation ; Etoposide/pharmacology ; Gene Expression Regulation ; Humans ; Inhibitor of Apoptosis Proteins ; Mitochondria/metabolism ; NF-kappa B/*metabolism ; Proteins/*genetics/physiology ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-04-05
    Description: The natriuretic peptides are hormones that can stimulate natriuretic, diuretic, and vasorelaxant activity in vivo, presumably through the activation of two known cell surface receptor guanylyl cyclases (ANPR-A and ANPR-B). Although atrial natriuretic peptide (ANP) and, to a lesser extent, brain natriuretic peptide (BNP) are efficient activators of the ANPR-A guanylyl cyclase, neither hormone can significantly stimulate ANPR-B. A member of this hormone family, C-type natriuretic peptide (CNP), potently and selectively activated the human ANPR-B guanylyl cyclase. CNP does not increase guanosine 3',5'-monophosphate accumulation in cells expressing human ANPR-A. The affinity of CNP for ANPR-B is 50- or 500-fold higher than ANP or BNP, respectively. This ligand-receptor pair may be involved in the regulation of fluid homeostasis by the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koller, K J -- Lowe, D G -- Bennett, G L -- Minamino, N -- Kangawa, K -- Matsuo, H -- Goeddel, D V -- New York, N.Y. -- Science. 1991 Apr 5;252(5002):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Genentech, Inc., South San Francisco 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1672777" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atrial Natriuretic Factor/*physiology ; Cells, Cultured ; Cercopithecus aethiops ; Cloning, Molecular ; Dose-Response Relationship, Drug ; Guanylate Cyclase/metabolism ; Humans ; Natriuretic Peptide, Brain ; Natriuretic Peptide, C-Type ; Nerve Tissue Proteins/*pharmacology ; Receptors, Atrial Natriuretic Factor ; Receptors, Cell Surface/*physiology ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-11-05
    Description: Activation of the transcription factor nuclear factor kappa B (NF-kappaB) by inflammatory cytokines requires the successive action of NF-kappaB-inducing kinase (NIK) and IkappaB kinase-alpha (IKK-alpha). A widely expressed protein kinase was identified that is 52 percent identical to IKK-alpha. IkappaB kinase-beta (IKK-beta) activated NF-kappaB when overexpressed and phosphorylated serine residues 32 and 36 of IkappaB-alpha and serines 19 and 23 of IkappaB-beta. The activity of IKK-beta was stimulated by tumor necrosis factor and interleukin-1 treatment. IKK-alpha and IKK-beta formed heterodimers that interacted with NIK. Overexpression of a catalytically inactive form of IKK-beta blocked cytokine-induced NF-kappaB activation. Thus, an active IkappaB kinase complex may require three distinct protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woronicz, J D -- Gao, X -- Cao, Z -- Rothe, M -- Goeddel, D V -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cytokines/metabolism ; Enzyme Activation ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-06-19
    Description: A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially--a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuh, G -- Cunningham, B C -- Fukunaga, R -- Nagata, S -- Goeddel, D V -- Wells, J A -- New York, N.Y. -- Science. 1992 Jun 19;256(5064):1677-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1535167" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Cell Division/drug effects ; Cell Line ; DNA Replication/drug effects ; Dose-Response Relationship, Drug ; Growth Hormone/analysis/physiology ; Humans ; Models, Molecular ; Receptors, Granulocyte Colony-Stimulating Factor/physiology ; Receptors, Somatotropin/*physiology ; Signal Transduction/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...