ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Ecosystem  (373)
  • Signal Transduction  (227)
  • Cell & Developmental Biology
  • Fisheries
  • American Association for the Advancement of Science (AAAS)  (606)
  • Programme Gestion Intégrée des Ressources Marines et Côtières, Dakar (Senegal)
  • 2010-2014  (606)
  • 1975-1979
  • 1950-1954
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodroffe, Rosie -- Hedges, Simon -- Durant, Sarah -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):389-90. doi: 10.1126/science.345.6195.389-b. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK. rosie.woodroffe@ioz.ac.uk. ; Wildlife Conservation Society, Bronx, NY 10460, USA. ; Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK. Wildlife Conservation Society, Bronx, NY 10460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061195" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Wild ; *Biodiversity ; *Conservation of Natural Resources ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1470-1. doi: 10.1126/science.344.6191.1470.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970076" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; *Ecosystem ; Geologic Sediments/*microbiology ; *Natural Gas ; Oil and Gas Fields/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodroffe, Rosie -- Hedges, Simon -- Durant, Sarah M -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):46-8. doi: 10.1126/science.1246251.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Zoology, Regent's Park, London NW1 4RY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700847" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Wild ; *Biodiversity ; *Conservation of Natural Resources ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-08
    Description: Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of gamma-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glykys, J -- Dzhala, V -- Egawa, K -- Balena, T -- Saponjian, Y -- Kuchibhotla, K V -- Bacskai, B J -- Kahle, K T -- Zeuthen, T -- Staley, K J -- NS 40109-06/NS/NINDS NIH HHS/ -- R01 EB000768/EB/NIBIB NIH HHS/ -- R01 NS040109/NS/NINDS NIH HHS/ -- R01 NS074772/NS/NINDS NIH HHS/ -- R25 NS065743/NS/NINDS NIH HHS/ -- S10 RR025645/RR/NCRR NIH HHS/ -- U41 RR019703/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):670-5. doi: 10.1126/science.1245423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cell Membrane Permeability ; Cell Polarity ; Chloride Channels/*metabolism ; Chlorides/*metabolism ; Cytoplasm/metabolism ; Extracellular Matrix Proteins/metabolism ; Glycoproteins/metabolism ; Mice ; Mice, Transgenic ; Neurons/*metabolism ; Receptors, GABA-A/*metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-28
    Description: Reef-building in metazoans represents an important ecological innovation whereby individuals collectively enhance feeding efficiency and gain protection from competitors and predation. The appearance of metazoan reefs in the fossil record therefore indicates an adaptive response to complex ecological pressures. In the Nama Group, Namibia, we found evidence of reef-building by the earliest known skeletal metazoan, the globally distributed Cloudina, ~548 million years ago. These Cloudina reefs formed open frameworks without a microbial component but with mutual attachment and cementation between individuals. Orientated growth implies a passive suspension-feeding habit into nutrient-rich currents. The characteristics of Cloudina support the view that metazoan reef-building was promoted by the rise of substrate competitors and predators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Penny, A M -- Wood, R -- Curtis, A -- Bowyer, F -- Tostevin, R -- Hoffman, K-H -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1504-6. doi: 10.1126/science.1253393.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK. a.m.penny@ed.ac.uk. ; School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK. ; Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. ; Geological Survey of Namibia, Private Bag 13297, Windhoek, Namibia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbonates ; *Ecosystem ; *Fossils ; Invertebrates/anatomy & histology/*growth & development/physiology ; Namibia ; Predatory Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-05
    Description: Development of vertebrate embryos involves tightly regulated molecular and cellular processes that progressively instruct proliferating embryonic cells about their identity and behavior. Whereas numerous gene activities have been found to be essential during early embryogenesis, little is known about the minimal conditions and factors that would be sufficient to instruct pluripotent cells to organize the embryo. Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Peng-Fei -- Houssin, Nathalie -- Ferri-Lagneau, Karine F -- Thisse, Bernard -- Thisse, Christine -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):87-9. doi: 10.1126/science.1248252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/*physiology ; Body Patterning ; Bone Morphogenetic Proteins/genetics/*physiology ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Gastrula/physiology ; Gastrulation ; Gene Expression Regulation, Developmental ; Morphogenesis ; Nodal Protein/genetics/*physiology ; RNA, Messenger/genetics ; Signal Transduction ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-23
    Description: Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Black, Bryan A -- Sydeman, William J -- Frank, David C -- Griffin, Daniel -- Stahle, David W -- Garcia-Reyes, Marisol -- Rykaczewski, Ryan R -- Bograd, Steven J -- Peterson, William T -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1498-502. doi: 10.1126/science.1253209.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA. bryan.black@utexas.edu. ; Farallon Institute for Advanced Ecosystem Research, 101 H Street, Suite Q, Petaluma, CA 94952, USA. ; Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland and Oeschger Centre for Climate Change Research, University of Bern, Zahringerstrasse 25, CH-3012 Bern, Switzerland. ; Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA. ; Department of Geosciences, University of Arkansas, 216 Ozark Hall, Fayetteville, AR 72701, USA. ; Department of Biological Sciences and Marine Science Program, University of South Carolina, 701 Sumter Street, Columbia, SC 29208, USA. ; Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), 1352 Lighthouse Avenue, Pacific Grove, CA 93950, USA. ; Northwest Fisheries Science Center, Hatfield Marine Science Center, NOAA, 2030 Southeast Marine Science Drive, Newport, OR 97365, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237100" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms ; Biodiversity ; Climate Change ; *Ecosystem ; Food Chain ; *Oceans and Seas ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-06
    Description: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreeramkumar, Vinatha -- Adrover, Jose M -- Ballesteros, Ivan -- Cuartero, Maria Isabel -- Rossaint, Jan -- Bilbao, Izaskun -- Nacher, Maria -- Pitaval, Christophe -- Radovanovic, Irena -- Fukui, Yoshinori -- McEver, Rodger P -- Filippi, Marie-Dominique -- Lizasoain, Ignacio -- Ruiz-Cabello, Jesus -- Zarbock, Alexander -- Moro, Maria A -- Hidalgo, Andres -- HL03463/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL090676/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- R01 HL034363/HL/NHLBI NIH HHS/ -- R01 HL090676/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1234-8. doi: 10.1126/science.1256478. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. ; Unidad de Investigacion Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain. ; Department of Anesthesiology and Critical Care Medicine, University of Munster and Max Planck Institute Munster, Munster, Germany. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. ; Division of Immunogenetics, Department of Immunobiology and Neuroscience, Kyushu University, Japan. ; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany. ahidalgo@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Circulation ; Blood Platelets/*immunology ; Cell Movement ; Cell Polarity ; Endothelium, Vascular/immunology ; Inflammation/blood/*immunology ; Male ; Membrane Glycoproteins ; Mice ; Mice, Inbred C57BL ; Neutrophils/*immunology ; *Platelet Activation ; Signal Transduction ; Thrombosis/*immunology ; Venules/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-06
    Description: In 1990, Andrew Bakun proposed that increasing greenhouse gas concentrations would force intensification of upwelling-favorable winds in eastern boundary current systems that contribute substantial services to society. Because there is considerable disagreement about whether contemporary wind trends support Bakun's hypothesis, we performed a meta-analysis of the literature on upwelling-favorable wind intensification. The preponderance of published analyses suggests that winds have intensified in the California, Benguela, and Humboldt upwelling systems and weakened in the Iberian system over time scales ranging up to 60 years; wind change is equivocal in the Canary system. Stronger intensification signals are observed at higher latitudes, consistent with the warming pattern associated with climate change. Overall, reported changes in coastal winds, although subtle and spatially variable, support Bakun's hypothesis of upwelling intensification in eastern boundary current systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sydeman, W J -- Garcia-Reyes, M -- Schoeman, D S -- Rykaczewski, R R -- Thompson, S A -- Black, B A -- Bograd, S J -- New York, N.Y. -- Science. 2014 Jul 4;345(6192):77-80. doi: 10.1126/science.1251635.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Farallon Institute for Advanced Ecosystem Research, Suite Q, 101 H Street, Petaluma, CA 94952, USA. wsydeman@comcast.net. ; Farallon Institute for Advanced Ecosystem Research, Suite Q, 101 H Street, Petaluma, CA 94952, USA. ; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558, Australia. ; Department of Biological Sciences and Marine Science Program, University of South Carolina, 701 Sumter Street, Columbia, SC 29208, USA. ; Farallon Institute for Advanced Ecosystem Research, Suite Q, 101 H Street, Petaluma, CA 94952, USA. Climate Impacts Group, University of Washington, Box 355674, Seattle, WA 98195, USA. ; Marine Science Institute, University of Texas, 750 Channel View Drive, Port Aransas, TX 78373, USA. ; Environmental Research Division, National Oceanic and Atmospheric Administration (NOAA) Southwest Fisheries Science Center, 1352 Lighthouse Avenue, Pacific Grove, CA 93950-2097, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24994651" target="_blank"〉PubMed〈/a〉
    Keywords: California ; *Climate Change ; *Ecosystem ; Greenhouse Effect ; *Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gramling, Carolyn -- New York, N.Y. -- Science. 2014 May 2;344(6183):463. doi: 10.1126/science.344.6183.463.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786058" target="_blank"〉PubMed〈/a〉
    Keywords: *Aquatic Organisms ; Copper ; *Ecosystem ; Gold ; Mining/*economics ; Papua New Guinea ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-09-06
    Description: Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tam, Jerry C H -- Bidgood, Susanna R -- McEwan, William A -- James, Leo C -- 281627/European Research Council/International -- MC_U105181010/Medical Research Council/United Kingdom -- U105181010/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1256070. doi: 10.1126/science.1256070. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. lcj@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190799" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*immunology ; Adenovirus Infections, Human/*immunology ; Animals ; Antibodies, Viral/immunology ; Complement C3/*immunology ; Cytokines/biosynthesis/genetics ; Dogs ; HEK293 Cells ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factors/metabolism ; NF-kappa B/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Ribonucleoproteins/genetics/metabolism ; Signal Transduction ; Transcription Factor AP-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Peled, Liron -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1191-2. doi: 10.1126/science.aaa1808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, La Jolla, CA 92122, USA. lironbp@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Body Size ; *Cell Enlargement ; *Cell Proliferation ; GTP-Binding Protein Regulators/*metabolism ; Lysosomes/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/metabolism ; Protein Transport ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-11-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferreira, J -- Aragao, L E O C -- Barlow, J -- Barreto, P -- Berenguer, E -- Bustamante, M -- Gardner, T A -- Lees, A C -- Lima, A -- Louzada, J -- Pardini, R -- Parry, L -- Peres, C A -- Pompeu, P S -- Tabarelli, M -- Zuanon, J -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):706-7. doi: 10.1126/science.1260194.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉See the supplementary materials for author af liations. joice.ferreira@embrapa.br. ; See the supplementary materials for author af liations.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378611" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Brazil ; Conservation of Natural Resources/*trends ; *Ecosystem ; Federal Government ; *Mining ; Risk
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-08-30
    Description: Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herz, Hans-Martin -- Morgan, Marc -- Gao, Xin -- Jackson, Jessica -- Rickels, Ryan -- Swanson, Selene K -- Florens, Laurence -- Washburn, Michael P -- Eissenberg, Joel C -- Shilatifard, Ali -- CA R01CA089455/CA/NCI NIH HHS/ -- R01 CA089455/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1065-70. doi: 10.1126/science.1255104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ; Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ash@northwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Chromatin/*metabolism ; Disease Models, Animal ; Drosophila Proteins/genetics ; Drosophila melanogaster ; Gene Silencing ; Glioma/genetics/metabolism ; Heterochromatin/metabolism ; Histone-Lysine N-Methyltransferase/genetics ; Histones/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Lysine/*genetics ; Methionine/*genetics ; Methylation ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-07-26
    Description: In theoretical ecology, traditional studies based on dynamical stability and numerical simulations have not found a unified answer to the effect of network architecture on community persistence. Here, we introduce a mathematical framework based on the concept of structural stability to explain such a disparity of results. We investigated the range of conditions necessary for the stable coexistence of all species in mutualistic systems. We show that the apparently contradictory conclusions reached by previous studies arise as a consequence of overseeing either the necessary conditions for persistence or its dependence on model parameterization. We show that observed network architectures maximize the range of conditions for species coexistence. We discuss the applicability of structural stability to study other types of interspecific interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohr, Rudolf P -- Saavedra, Serguei -- Bascompte, Jordi -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):1253497. doi: 10.1126/science.1253497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana-Consejo Superior de Investigaciones Cientificas (EBD-CSIC), Calle Americo Vespucio s/n, E-41092 Sevilla, Spain. Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Chemin du Musee 10, CH-1700 Fribourg, Switzerland. ; Integrative Ecology Group, Estacion Biologica de Donana-Consejo Superior de Investigaciones Cientificas (EBD-CSIC), Calle Americo Vespucio s/n, E-41092 Sevilla, Spain. ; Integrative Ecology Group, Estacion Biologica de Donana-Consejo Superior de Investigaciones Cientificas (EBD-CSIC), Calle Americo Vespucio s/n, E-41092 Sevilla, Spain. bascompte@ebd.csic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061214" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computer Simulation ; *Ecosystem ; *Models, Biological ; Plants ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-05-17
    Description: Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum. Knockdown of Sema3A, a secreted semaphorin, in Purkinje cells or its receptor in climbing fibers accelerated synapse elimination during postnatal day 8 (P8) to P18. Conversely, knockdown of Sema7A, a membrane-anchored semaphorin, in Purkinje cells or either of its two receptors in climbing fibers impaired synapse elimination after P15. The effect of Sema7A involves signaling by metabotropic glutamate receptor 1, a canonical pathway for climbing fiber synapse elimination. These findings define how semaphorins retrogradely regulate multiple processes of synapse elimination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uesaka, Naofumi -- Uchigashima, Motokazu -- Mikuni, Takayasu -- Nakazawa, Takanobu -- Nakao, Harumi -- Hirai, Hirokazu -- Aiba, Atsu -- Watanabe, Masahiko -- Kano, Masanobu -- New York, N.Y. -- Science. 2014 May 30;344(6187):1020-3. doi: 10.1126/science.1252514. Epub 2014 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan. ; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. mkano-tky@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24831527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/genetics/*metabolism ; Brain/*growth & development/metabolism ; Gene Knockdown Techniques ; Mice ; Mice, Inbred C57BL ; Purkinje Cells/metabolism/*physiology ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/genetics/metabolism ; Semaphorin-3A/genetics/*metabolism ; Semaphorins/genetics/*metabolism ; Signal Transduction ; Synapses/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-01-05
    Description: Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Sougata -- Huang, Hai -- Liu, Songmei -- Kornberg, Thomas B -- GM030637/GM/NIGMS NIH HHS/ -- K99HL114867/HL/NHLBI NIH HHS/ -- R01 GM030637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):1244624. doi: 10.1126/science.1244624. Epub 2014 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385607" target="_blank"〉PubMed〈/a〉
    Keywords: Air Sacs/cytology/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism ; *Cell Communication ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Dynamins/genetics/metabolism ; Membrane Proteins/genetics/metabolism ; Protein Transport ; Pseudopodia/*metabolism ; Signal Transduction ; Trachea/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardinale, Bradley -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1098. doi: 10.1126/science.344.6188.1098-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48103, USA. bradcard@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904146" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Ecosystem ; *Fishes ; *Invertebrates ; *Mammals ; *Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-03-15
    Description: Motor neurons, which relay neural commands to drive skeletal muscle movements, encompass types ranging from "slow" to "fast," whose biophysical properties govern the timing, gradation, and amplitude of muscle force. Here we identify the noncanonical Notch ligand Delta-like homolog 1 (Dlk1) as a determinant of motor neuron functional diversification. Dlk1, expressed by ~30% of motor neurons, is necessary and sufficient to promote a fast biophysical signature in the mouse and chick. Dlk1 suppresses Notch signaling and activates expression of the K(+) channel subunit Kcng4 to modulate delayed-rectifier currents. Dlk1 inactivation comprehensively shifts motor neurons toward slow biophysical and transcriptome signatures, while abolishing peak force outputs. Our findings provide insights into the development of motor neuron functional diversity and its contribution to the execution of movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Daniel -- Cherukuri, Pitchaiah -- Henningfeld, Kristine -- Poh, Chor Hoon -- Wittler, Lars -- Grote, Phillip -- Schluter, Oliver -- Schmidt, Jennifer -- Laborda, Jorge -- Bauer, Steven R -- Brownstone, Robert M -- Marquardt, Till -- R01 HD042013/HD/NICHD NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1264-6. doi: 10.1126/science.1246448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Grisebachstrasse 5, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Regulation ; Intercellular Signaling Peptides and Proteins/genetics/*physiology ; Mice ; Mice, Knockout ; Motor Neurons/*metabolism ; Movement ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/innervation/*physiology ; Potassium Channels, Voltage-Gated/genetics ; Receptors, Notch/*physiology ; Signal Transduction ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-02-01
    Description: Ecologists have long sought to understand the factors controlling the structure of savanna vegetation. Using data from 2154 sites in savannas across Africa, Australia, and South America, we found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal area. However, among continents, the magnitude of these effects varied substantially, so that a single model cannot adequately represent savanna woody biomass across these regions. Historical and environmental differences drive the regional variation in the functional relationships between woody vegetation, fire, and climate. These same differences will determine the regional responses of vegetation to future climates, with implications for global carbon stocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lehmann, Caroline E R -- Anderson, T Michael -- Sankaran, Mahesh -- Higgins, Steven I -- Archibald, Sally -- Hoffmann, William A -- Hanan, Niall P -- Williams, Richard J -- Fensham, Roderick J -- Felfili, Jeanine -- Hutley, Lindsay B -- Ratnam, Jayashree -- San Jose, Jose -- Montes, Ruben -- Franklin, Don -- Russell-Smith, Jeremy -- Ryan, Casey M -- Durigan, Giselda -- Hiernaux, Pierre -- Haidar, Ricardo -- Bowman, David M J S -- Bond, William J -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):548-52. doi: 10.1126/science.1247355.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482480" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Australia ; *Climate ; *Ecosystem ; *Fires ; Humidity ; Models, Biological ; South America ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-01-11
    Description: It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauli, Andrea -- Norris, Megan L -- Valen, Eivind -- Chew, Guo-Liang -- Gagnon, James A -- Zimmerman, Steven -- Mitchell, Andrew -- Ma, Jiao -- Dubrulle, Julien -- Reyon, Deepak -- Tsai, Shengdar Q -- Joung, J Keith -- Saghatelian, Alan -- Schier, Alexander F -- K99 HD076935/HD/NICHD NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- R01 GM102491/GM/NIGMS NIH HHS/ -- R01 HG005111/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):1248636. doi: 10.1126/science.1248636. Epub 2014 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24407481" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cell Movement ; Chemokine CXCL12/metabolism ; Frameshift Mutation ; Gastrulation/genetics/*physiology ; Molecular Sequence Data ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pawar, Samraat -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):383. doi: 10.1126/science.1256466.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, U K. s.pawar@imperial.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061191" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; *Models, Biological ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-04-05
    Description: Animal migrations span the globe, involving immense numbers of individuals from a wide range of taxa. Migrants transport nutrients, energy, and other organisms as they forage and are preyed upon throughout their journeys. These highly predictable, pulsed movements across large spatial scales render migration a potentially powerful yet underappreciated dimension of biodiversity that is intimately embedded within resident communities. We review examples from across the animal kingdom to distill fundamental processes by which migratory animals influence communities and ecosystems, demonstrating that they can uniquely alter energy flow, food-web topology and stability, trophic cascades, and the structure of metacommunities. Given the potential for migration to alter ecological networks worldwide, we suggest an integrative framework through which community dynamics and ecosystem functioning may explicitly consider animal migrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, S -- Hoye, B J -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):1242552. doi: 10.1126/science.1242552.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bird Migration, Swiss Ornithological Institute, 6204 Sempach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700862" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; *Biodiversity ; *Ecosystem ; Food Chain ; Herbivory ; Parasites/physiology ; Predatory Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1301. doi: 10.1126/science.343.6177.1301.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653015" target="_blank"〉PubMed〈/a〉
    Keywords: Colorado ; *Ecosystem ; *Floods ; Groundwater ; Mexico ; *Rivers ; Salinity ; Trees/*growth & development ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-29
    Description: T cell responses are initiated by antigen and promoted by a range of costimulatory signals. Understanding how T cells integrate alternative signal combinations and make decisions affecting immune response strength or tolerance poses a considerable theoretical challenge. Here, we report that T cell receptor (TCR) and costimulatory signals imprint an early, cell-intrinsic, division fate, whereby cells effectively count through generations before returning automatically to a quiescent state. This autonomous program can be extended by cytokines. Signals from the TCR, costimulatory receptors, and cytokines add together using a linear division calculus, allowing the strength of a T cell response to be predicted from the sum of the underlying signal components. These data resolve a long-standing costimulation paradox and provide a quantitative paradigm for therapeutically manipulating immune response strength.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchingo, Julia M -- Kan, Andrey -- Sutherland, Robyn M -- Duffy, Ken R -- Wellard, Cameron J -- Belz, Gabrielle T -- Lew, Andrew M -- Dowling, Mark R -- Heinzel, Susanne -- Hodgkin, Philip D -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1123-7. doi: 10.1126/science.1260044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. ; Hamilton Institute, National University of Ireland, Maynooth, Ireland. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. The Royal Melbourne Hospital, Parkville, VIC, Australia. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. hodgkin@wehi.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cytokines/*immunology ; *Immune Tolerance ; Lymphocyte Activation ; Mice ; Receptors, Antigen, T-Cell/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNutt, Marcia -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1289. doi: 10.1126/science.1253412.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marcia McNutt is Editor-in-Chief of Science.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653006" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; *Aquatic Organisms ; *Ecosystem ; Environmental Monitoring ; Environmental Restoration and Remediation ; Gulf of Mexico ; *Petroleum Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-10-04
    Description: Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clevers, Hans -- Loh, Kyle M -- Nusse, Roel -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):1248012. doi: 10.1126/science.1248012. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584CT Utrecht, Netherlands. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. rnusse@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; Cell Division ; Hair Follicle/physiology ; Humans ; Intestines/physiology ; Mammary Glands, Human/physiology ; Regeneration/genetics/*physiology ; Signal Transduction ; Stem Cell Niche/physiology ; Stem Cells/cytology/metabolism/*physiology ; Transcription, Genetic ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-04-20
    Description: Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayser, Matthew S -- Yue, Zhifeng -- Sehgal, Amita -- R25MH060490/MH/NIMH NIH HHS/ -- T32 HL007713/HL/NHLBI NIH HHS/ -- T32HL07713/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):269-74. doi: 10.1126/science.1250553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arousal ; Brain/growth & development/physiology ; Courtship ; Dopamine/metabolism ; Dopaminergic Neurons/*physiology ; Drosophila/genetics/growth & development/*physiology ; Female ; Male ; Models, Animal ; Neural Pathways/physiology ; Olfactory Bulb/growth & development/physiology ; Sexual Behavior, Animal ; Signal Transduction ; *Sleep ; Sleep Deprivation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Ryan P -- Port, Jesse A -- Yamahara, Kevan M -- Martone, Rebecca G -- Lowell, Natalie -- Thomsen, Philip Francis -- Mach, Megan E -- Bennett, Meredith -- Prahler, Erin -- Caldwell, Margaret R -- Crowder, Larry B -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1455-6. doi: 10.1126/science.1251156. Epub 2014 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Marine and Environmental Affairs, University of Washington, Seattle, WA 98103, USA. Center for Ocean Solutions, Stanford University, Stanford, CA 94305, USA. rpkelly@uw.edu. ; Center for Ocean Solutions, Stanford University, Stanford, CA 94305, USA. ; School of Marine and Environmental Affairs, University of Washington, Seattle, WA 98103, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970068" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquatic Organisms/genetics ; DNA/*analysis ; Ecological Parameter Monitoring/*methods ; *Ecosystem ; Environmental Monitoring/*methods ; *Environmental Policy/legislation & jurisprudence ; Introduced Species
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):472-3. doi: 10.1126/science.343.6170.472.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants ; Biomass ; Butterflies ; Carnivory ; *Ecosystem ; Male ; *Salts ; *Sodium Chloride ; Soil/*chemistry ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-07-19
    Description: Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Munoz, Elena -- Arboleda-Estudillo, Yohanna -- Otu, Hasan H -- Cibelli, Jose B -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):822-5. doi: 10.1126/science.1254745. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. ; Department of Genetics and Bioengineering, Istanbul Bilgi University 34060, Istanbul, Turkey. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. ; LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Department of Physiology, Michigan State University, East Lansing, MI 48824, USA. cibelli@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035411" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/*metabolism ; Cell Dedifferentiation ; Cell Differentiation ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology/physiology ; Fibroblasts/cytology/physiology ; Growth Differentiation Factor 9/metabolism ; Histone Chaperones/genetics/*metabolism ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Metaphase ; Octamer Transcription Factor-3/metabolism ; Oocytes/cytology/physiology ; Signal Transduction ; Transcriptional Activation ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-10-25
    Description: Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naive and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naive cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naive cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krishnaswamy, Smita -- Spitzer, Matthew H -- Mingueneau, Michael -- Bendall, Sean C -- Litvin, Oren -- Stone, Erica -- Pe'er, Dana -- Nolan, Garry P -- 1K01DK095008/DK/NIDDK NIH HHS/ -- 1R01CA130826/CA/NCI NIH HHS/ -- 1U54CA121852-01A1/CA/NCI NIH HHS/ -- CA 09-011/CA/NCI NIH HHS/ -- HHSN268201000034C/HV/NHLBI NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HV-10-05/HV/NHLBI NIH HHS/ -- K01 DK095008/DK/NIDDK NIH HHS/ -- P01 CA034233/CA/NCI NIH HHS/ -- R00 GM104148/GM/NIGMS NIH HHS/ -- R01 CA130826/CA/NCI NIH HHS/ -- S10RR027582-01/RR/NCRR NIH HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 CA149145/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. Epub 2014 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA. ; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. ; Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. ; Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. dpeer@biology.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology ; Computer Simulation ; Image Cytometry ; Male ; Mice ; Mice, Mutant Strains ; Mitogen-Activated Protein Kinase 1/genetics ; Receptors, Antigen, T-Cell/*metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction ; Single-Cell Analysis/*methods ; Systems Biology/*methods ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-03-01
    Description: Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Tongda -- Dai, Ning -- Chen, Jisheng -- Nagawa, Shingo -- Cao, Min -- Li, Hongjiang -- Zhou, Zimin -- Chen, Xu -- De Rycke, Riet -- Rakusova, Hana -- Wang, Wuyi -- Jones, Alan M -- Friml, Jiri -- Patterson, Sara E -- Bleecker, Anthony B -- Yang, Zhenbiao -- GM065989/GM/NIGMS NIH HHS/ -- GM081451/GM/NIGMS NIH HHS/ -- R01 GM081451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1025-8. doi: 10.1126/science.1245125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578577" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics ; Cell Membrane/*enzymology ; Indoleacetic Acids/*metabolism ; Plant Leaves/enzymology/genetics ; Plant Proteins/*metabolism ; Protein Kinases/genetics/*metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-04-26
    Description: Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action, we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrillo, Ezequiel -- Godoy Herz, Micaela A -- Fuchs, Armin -- Reifer, Dominik -- Fuller, John -- Yanovsky, Marcelo J -- Simpson, Craig -- Brown, John W S -- Barta, Andrea -- Kalyna, Maria -- Kornblihtt, Alberto R -- BB/G024979/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P 26333/Austrian Science Fund FWF/Austria -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):427-30. doi: 10.1126/science.1250322. Epub 2014 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio de Fisiologia y Biologia Molecular, Departamento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763593" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cell Nucleus/genetics ; Chloroplasts/*metabolism ; Circadian Clocks ; Dibromothymoquinone/pharmacology ; Diuron/pharmacology ; Electron Transport/drug effects ; *Gene Expression Regulation, Plant ; Light ; Models, Biological ; Oxidation-Reduction ; Photosynthesis/drug effects ; Plant Leaves/metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plastoquinone/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seedlings/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfeifer, M -- Packer, C -- Burton, A C -- Garnett, S T -- Loveridge, A J -- MacNulty, D -- Platts, P J -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):389. doi: 10.1126/science.345.6195.389-a. Epub 2014 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Forest Ecology and Conservation Lab, Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK. York Institute for Tropical Ecosystems, Environment Department, University of York, York, YO10 5DD, UK. m.pfeifer@imperial.ac.uk. ; Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA. ; Alberta Innovates Technology Futures, Victoria, BC V8Z 7X8, Canada. Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada. ; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia. ; Wildlife Conservation Research Unit, Department of Zoology, Oxford University, Oxford, OX13 5QL, UK. ; Department of Wildland Resources, Utah State University, Logan, UT 84322, USA. ; York Institute for Tropical Ecosystems, Environment Department, University of York, York, YO10 5DD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061194" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Wild ; *Biodiversity ; *Conservation of Natural Resources ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornelas, Maria -- Gotelli, Nicholas J -- McGill, Brian -- Magurran, Anne E -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1098-9. doi: 10.1126/science.344.6188.1098-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, UK. maadd@st-andrews.ac.uk. ; Department of Biology, University of Vermont, Burlington, VT 05405, USA. ; School of Biology and Ecology, Sustainability Solutions Initiative, University of Maine, Orono, ME 04469, USA. ; Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Ecosystem ; *Fishes ; *Invertebrates ; *Mammals ; *Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-04-20
    Description: The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal alpha diversity, measured as change in local diversity, and temporal beta diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of alpha diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal alpha and beta diversity. Monitoring and understanding change in species composition should be a conservation priority.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornelas, Maria -- Gotelli, Nicholas J -- McGill, Brian -- Shimadzu, Hideyasu -- Moyes, Faye -- Sievers, Caya -- Magurran, Anne E -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):296-9. doi: 10.1126/science.1248484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744374" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Ecosystem ; Extinction, Biological ; *Fishes ; Introduced Species ; *Invertebrates ; *Mammals ; *Plants ; Population Dynamics ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-01-11
    Description: Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ripple, William J -- Estes, James A -- Beschta, Robert L -- Wilmers, Christopher C -- Ritchie, Euan G -- Hebblewhite, Mark -- Berger, Joel -- Elmhagen, Bodil -- Letnic, Mike -- Nelson, Michael P -- Schmitz, Oswald J -- Smith, Douglas W -- Wallach, Arian D -- Wirsing, Aaron J -- New York, N.Y. -- Science. 2014 Jan 10;343(6167):1241484. doi: 10.1126/science.1241484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24408439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora/anatomy & histology/classification/physiology ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans ; Meat Products/statistics & numerical data ; Oceans and Seas ; Plants ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-07-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Kara Lavender -- Thompson, Richard C -- New York, N.Y. -- Science. 2014 Jul 11;345(6193):144-5. doi: 10.1126/science.1254065. Epub 2014 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oceanography, Sea Education Association, Woods Hole, MA 02543, USA. klavender@sea.edu. ; School of Marine Science and Engineering, Plymouth University, Plymouth PL4 8AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25013051" target="_blank"〉PubMed〈/a〉
    Keywords: Aquatic Organisms/*drug effects ; *Ecosystem ; Oceans and Seas ; Particle Size ; Plastics/*toxicity ; *Seawater ; Water Pollutants, Chemical/*toxicity ; Water Pollution, Chemical/*prevention & control
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-05-09
    Description: Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being rediscovered as regulators of several diseases, including cancer. Here we show that in mice, mammary tumor growth induces the accumulation of tumor-associated macrophages (TAMs) that are phenotypically and functionally distinct from mammary tissue macrophages (MTMs). TAMs express the adhesion molecule Vcam1 and proliferate upon their differentiation from inflammatory monocytes, but do not exhibit an "alternatively activated" phenotype. TAM terminal differentiation depends on the transcriptional regulator of Notch signaling, RBPJ; and TAM, but not MTM, depletion restores tumor-infiltrating cytotoxic T cell responses and suppresses tumor growth. These findings reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franklin, Ruth A -- Liao, Will -- Sarkar, Abira -- Kim, Myoungjoo V -- Bivona, Michael R -- Liu, Kang -- Pamer, Eric G -- Li, Ming O -- AI101251/AI/NIAID NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI101251/AI/NIAID NIH HHS/ -- R37 AI039031/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 May 23;344(6186):921-5. doi: 10.1126/science.1252510. Epub 2014 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA. ; New York Genome Center, New York, NY 10022, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. ; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. lim@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812208" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation ; Female ; Inflammation/immunology/pathology ; Macrophages/*immunology ; Mammary Neoplasms, Animal/*immunology/*pathology ; Mice ; Mice, Inbred C57BL ; Monocyte-Macrophage Precursor Cells/immunology ; Receptors, Notch/metabolism ; Signal Transduction ; Vascular Cell Adhesion Molecule-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapron, Guillaume -- Lopez-Bao, Jose Vicente -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1199-200. doi: 10.1126/science.343.6176.1199-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Grimso Wildlife Research Station, Swedish University of Agricultural Sciences, SE-73091 Riddarhyttan, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626913" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-05-17
    Description: Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 x 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, 〉99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Alexander M -- Xuan, Yuanhu -- Xu, Meng -- Wang, Rui-Sheng -- Ho, Cheng-Hsun -- Lalonde, Sylvie -- You, Chang Hun -- Sardi, Maria I -- Parsa, Saman A -- Smith-Valle, Erika -- Su, Tianying -- Frazer, Keith A -- Pilot, Guillaume -- Pratelli, Rejane -- Grossmann, Guido -- Acharya, Biswa R -- Hu, Heng-Cheng -- Engineer, Cawas -- Villiers, Florent -- Ju, Chuanli -- Takeda, Kouji -- Su, Zhao -- Dong, Qunfeng -- Assmann, Sarah M -- Chen, Jin -- Kwak, June M -- Schroeder, Julian I -- Albert, Reka -- Rhee, Seung Y -- Frommer, Wolf B -- New York, N.Y. -- Science. 2014 May 16;344(6185):711-6. doi: 10.1126/science.1251358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. ; Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic University and State University, Blacksburg, VA 24061, USA. ; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. wfrommer@stanford.edu srhee@carnegiescience.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833385" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; Membrane Proteins/genetics/*metabolism ; *Protein Interaction Maps ; Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mace, Georgina M -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1558-60. doi: 10.1126/science.1254704.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. g.mace@ucl.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; Ecological and Environmental Processes ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Machovina, Brian -- Feeley, Kenneth J -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):838. doi: 10.1126/science.343.6173.838-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Florida International University, Miami, FL 33199, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558143" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):834-7. doi: 10.1126/science.343.6173.834.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558142" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustics ; Animals ; Computer Systems ; Ecological Parameter Monitoring/*methods ; *Ecosystem ; Software ; *Sound ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexander, Kathleen A -- Sanderson, Claire E -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1199. doi: 10.1126/science.343.6176.1199-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Fisheries and Wildlife Conservation, Virginia Tech University, Blacksburg, VA 24061, USA and CARACAL, Centre for Conservation of African Resources: Animals, Communities, and Land Use, Kasane, Botswana.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626912" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carnivora ; *Ecological and Environmental Phenomena ; *Ecosystem ; *Extinction, Biological ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-11-02
    Description: Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but global Purkinje cell knockout had no effect. Removal of the TrkC ligand neurotrophin-3 (NT-3) from cerebellar granule cells, which provide major afferent input to developing Purkinje cell dendrites, rescued the dendrite defects caused by sparse TrkC disruption in Purkinje cells. Our data demonstrate that NT-3 from presynaptic neurons (granule cells) is required for TrkC-dependent competitive dendrite morphogenesis in postsynaptic neurons (Purkinje cells)--a previously unknown mechanism of neural circuit development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, William -- Hippenmeyer, Simon -- Luo, Liqun -- 5 F31 NS071697/NS/NINDS NIH HHS/ -- F31 NS071697/NS/NINDS NIH HHS/ -- R01 NS050835/NS/NINDS NIH HHS/ -- R01-NS050835/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):626-9. doi: 10.1126/science.1258996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. lluo@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359972" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nerve Net/cytology/*growth & development ; *Neurogenesis ; Neurotrophin 3/*metabolism ; Purkinje Cells/*cytology/metabolism ; Receptor, trkC/genetics/*metabolism ; Signal Transduction ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandolfi, John M -- Lovelock, Catherine E -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):266-7. doi: 10.1126/science.1252963.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St. Lucia, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744366" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Ecosystem ; *Fishes ; *Invertebrates ; *Mammals ; *Plants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-11-29
    Description: The capacity of human norovirus (NoV), which causes 〉90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-lambda, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldridge, Megan T -- Nice, Timothy J -- McCune, Broc T -- Yokoyama, Christine C -- Kambal, Amal -- Wheadon, Michael -- Diamond, Michael S -- Ivanova, Yulia -- Artyomov, Maxim -- Virgin, Herbert W -- 1F31CA177194/CA/NCI NIH HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):266-9. doi: 10.1126/science.1258025. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431490" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Caliciviridae Infections/drug therapy/immunology/microbiology/*virology ; Cytokines/*physiology ; Female ; Gastroenteritis/drug therapy/immunology/microbiology/*virology ; Intestines/*microbiology/virology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; *Microbiota/drug effects ; Norovirus/immunology/*physiology ; Receptors, Cytokine/genetics/metabolism ; Signal Transduction ; *Symbiosis ; Viral Load ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-31
    Description: Invasion of microbial DNA into the cytoplasm of animal cells triggers a cascade of host immune reactions that help clear the infection; however, self DNA in the cytoplasm can cause autoimmune diseases. Biochemical approaches led to the identification of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a cytosolic DNA sensor that triggers innate immune responses. Here, we show that cells from cGAS-deficient (cGas(-/-)) mice, including fibroblasts, macrophages, and dendritic cells, failed to produce type I interferons and other cytokines in response to DNA transfection or DNA virus infection. cGas(-/-) mice were more susceptible to lethal infection with herpes simplex virus 1 (HSV1) than wild-type mice. We also show that cGAMP is an adjuvant that boosts antigen-specific T cell activation and antibody production in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xiao-Dong -- Wu, Jiaxi -- Gao, Daxing -- Wang, Hua -- Sun, Lijun -- Chen, Zhijian J -- 5T32AI070116/AI/NIAID NIH HHS/ -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1390-4. doi: 10.1126/science.1244040. Epub 2013 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23989956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; DNA, Viral/genetics/immunology ; Dendritic Cells/immunology ; Fibroblasts/immunology ; Herpes Simplex/*immunology ; *Herpesvirus 1, Human ; Interferon Regulatory Factor-3/genetics ; Interferon-beta/*biosynthesis/genetics ; Lymphocyte Activation ; Macrophages/immunology ; Mice ; Mice, Knockout ; Nucleotidyltransferases/genetics/*immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-11-10
    Description: Environmental and hormonal signals cause reorganization of microtubule arrays in higher plants, but the mechanisms driving these transitions have remained elusive. The organization of these arrays is required to direct morphogenesis. We discovered that microtubule severing by the protein katanin plays a crucial and unexpected role in the reorientation of cortical arrays, as triggered by blue light. Imaging and genetic experiments revealed that phototropin photoreceptors stimulate katanin-mediated severing specifically at microtubule intersections, leading to the generation of new microtubules at these locations. We show how this activity serves as the basis for a mechanism that amplifies microtubules orthogonal to the initial array, thereby driving array reorientation. Our observations show how severing is used constructively to build a new microtubule array.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindeboom, Jelmer J -- Nakamura, Masayoshi -- Hibbel, Anneke -- Shundyak, Kostya -- Gutierrez, Ryan -- Ketelaar, Tijs -- Emons, Anne Mie C -- Mulder, Bela M -- Kirik, Viktor -- Ehrhardt, David W -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1245533. doi: 10.1126/science.1245533. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200811" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Arabidopsis/genetics/growth & development/*metabolism/*ultrastructure ; Arabidopsis Proteins/genetics/*metabolism ; Hypocotyl/metabolism/ultrastructure ; Light ; Microtubules/*metabolism/ultrastructure ; Phosphoproteins/metabolism ; *Phototropism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-10
    Description: Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, J-H -- Goldstein, A H -- Timkovsky, J -- Fares, S -- Weber, R -- Karlik, J -- Holzinger, R -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):643-7. doi: 10.1126/science.1235053.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929979" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; *Ecosystem ; Mass Spectrometry ; Ozone/analysis/chemistry ; Plants/chemistry ; Volatile Organic Compounds/analysis/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aspinall, Richard -- Gregory, Peter -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):421. doi: 10.1126/science.342.6157.421-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159029" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pedaste, Margus -- de Jong, Ton -- Sarapuu, Tago -- Piksoot, Jaanika -- van Joolingen, Wouter R -- Giemza, Adam -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1537-8. doi: 10.1126/science.1229908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Tartu, 50103 Tartu, Estonia. margus.pedaste@ut.ee〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812708" target="_blank"〉PubMed〈/a〉
    Keywords: Ecology/*education ; *Ecosystem ; Estonia ; Germany ; Netherlands ; Problem-Based Learning/*methods ; Research Design ; *Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-04-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, A T -- Bustamante, M M C -- Nardoto, G B -- Mitre, S K -- Perez, T -- Ometto, J P H B -- Ascarrunz, N L -- Forti, M C -- Longo, K -- Gavito, M E -- Enrich-Prast, A -- Martinelli, L A -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):149. doi: 10.1126/science.1231679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universidad de Buenos Aires, IFEVA-CONICET, Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580515" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Biomass ; *Conservation of Natural Resources ; *Ecosystem ; *Environment ; Human Activities ; Humans ; Latin America ; Nitrogen ; *Nitrogen Cycle ; Politics ; Public Health ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-03
    Description: The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, R D -- Turner, S Kirtland -- Hull, P M -- Ridgwell, A -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):492-8. doi: 10.1126/science.1240543.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA. rnorris@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Climate Change/history ; *Ecosystem ; Greenhouse Effect ; History, Ancient ; *Oceans and Seas ; *Seawater ; Temperature ; Tidal Waves ; Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-09-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Inez -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1075-6. doi: 10.1126/science.1242004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, Berkeley, Berkeley, CA 94720-4767, USA. ifung@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009383" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; *Carbon Cycle ; Carbon Dioxide/*chemistry ; *Ecosystem ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obst, Carl -- Edens, Bram -- Hein, Lars -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):420. doi: 10.1126/science.342.6157.420-a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Melbourne Sustainable Society Institute, University of Melbourne, Victoria, 3010 Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159027" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-23
    Description: In many mammalian tissues, mature differentiated cells are replaced by self-renewing stem cells, either continuously during homeostasis or in response to challenge and injury. For example, hematopoietic stem cells generate all mature blood cells, including monocytes, which have long been thought to be the major source of tissue macrophages. Recently, however, major macrophage populations were found to be derived from embryonic progenitors and to renew independently of hematopoietic stem cells. This process may not require progenitors, as mature macrophages can proliferate in response to specific stimuli indefinitely and without transformation or loss of functional differentiation. These findings suggest that macrophages are mature differentiated cells that may have a self-renewal potential similar to that of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieweke, Michael H -- Allen, Judith E -- MR/J001929/1/Medical Research Council/United Kingdom -- MR/K01207X1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):1242974. doi: 10.1126/science.1242974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cytokines/metabolism ; Embryonic Stem Cells/cytology ; Humans ; Macrophages/*cytology ; Mice ; Monocytes/cytology ; Rats ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-10-05
    Description: Mitochondrial morphology is crucial for tissue homeostasis, but its role in cell differentiation is unclear. We found that mitochondrial fusion was required for proper cardiomyocyte development. Ablation of mitochondrial fusion proteins Mitofusin 1 and 2 in the embryonic mouse heart, or gene-trapping of Mitofusin 2 or Optic atrophy 1 in mouse embryonic stem cells (ESCs), arrested mouse heart development and impaired differentiation of ESCs into cardiomyocytes. Gene expression profiling revealed decreased levels of transcription factors transforming growth factor-beta/bone morphogenetic protein, serum response factor, GATA4, and myocyte enhancer factor 2, linked to increased Ca(2+)-dependent calcineurin activity and Notch1 signaling that impaired ESC differentiation. Orchestration of cardiomyocyte differentiation by mitochondrial morphology reveals how mitochondria, Ca(2+), and calcineurin interact to regulate Notch1 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasahara, Atsuko -- Cipolat, Sara -- Chen, Yun -- Dorn, Gerald W 2nd -- Scorrano, Luca -- GPP10005/Telethon/Italy -- R01 HL059888/HL/NHLBI NIH HHS/ -- R01 HL59888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):734-7. doi: 10.1126/science.1241359. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Differentiation/genetics/*physiology ; GTP Phosphohydrolases/genetics/metabolism ; Gene Expression Profiling ; Heart/embryology ; Mice ; Mice, Knockout ; Mitochondrial Dynamics/genetics/*physiology ; Myocytes, Cardiac/*cytology/ultrastructure ; Receptor, Notch1/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chown, S L -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):141. doi: 10.1126/science.339.6116.141-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-01-19
    Description: A paper by Wearn et al. (Reports, 13 July 2012, p. 228) yields new insights on extinction debt. However, it leaves out the area dependence of the relaxation process. We show that this is not warranted on theoretical or observational grounds and that it may lead to erroneous conservation recommendations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halley, John M -- Iwasa, Yoh -- Vokou, Despoina -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):271. doi: 10.1126/science.1231438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece. jhalley@cc.uoi.gr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329033" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; *Trees ; *Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belgrano, Andrea -- Fowler, Charles W -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1176-7. doi: 10.1126/science.1245490.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Turistgatan 5, SE-453 30 Lysekil, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Body Size ; Conservation of Natural Resources ; *Ecosystem ; *Fisheries/methods ; Fishes/anatomy & histology/*genetics/growth & development ; Phenotype ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-06-08
    Description: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Christian H -- Healey, Eleanor -- van Erp, Susan -- Bishop, Benjamin -- Tang, Chenxiang -- Gilbert, Robert J C -- Aricescu, A Radu -- Pasterkamp, R Jeroen -- Siebold, Christian -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 097301/Wellcome Trust/United Kingdom -- A14414/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):77-80. doi: 10.1126/science.1232322. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. christian@strubi.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biophysical Phenomena ; Cell Adhesion Molecules, Neuronal/*chemistry/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Membrane Proteins/*chemistry ; Mutation ; Oligopeptides/chemistry ; Protein Structure, Tertiary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1166-7. doi: 10.1126/science.342.6163.1166.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; *Colubridae/physiology ; *Ecosystem ; Female ; Guam ; *Introduced Species ; Male ; Mice ; Pest Control ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-02-23
    Description: Cellular growth signals stimulate anabolic processes. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase that senses growth signals to regulate anabolic growth and proliferation. Activation of mTORC1 led to the acute stimulation of metabolic flux through the de novo pyrimidine synthesis pathway. mTORC1 signaling posttranslationally regulated this metabolic pathway via its downstream target ribosomal protein S6 kinase 1 (S6K1), which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase), the enzyme that catalyzes the first three steps of de novo pyrimidine synthesis. Growth signaling through mTORC1 thus stimulates the production of new nucleotides to accommodate an increase in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Sahra, Issam -- Howell, Jessica J -- Asara, John M -- Manning, Brendan D -- F32 DK095508/DK/NIDDK NIH HHS/ -- F32-DK095508/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01-CA120964/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30-CA006516/CA/NCI NIH HHS/ -- R01 CA122617/CA/NCI NIH HHS/ -- R01-CA122617/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429703" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Animals ; Aspartate Carbamoyltransferase/*metabolism ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/*metabolism ; Dihydroorotase/*metabolism ; HeLa Cells ; Humans ; Mice ; Multiprotein Complexes/*metabolism ; Pyrimidines/*biosynthesis ; Ribosomal Protein S6 Kinases/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):636-7. doi: 10.1126/science.339.6120.636.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393236" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Extraction and Processing Industry/economics ; Gulf of Mexico ; Organizations, Nonprofit/economics ; Petroleum ; *Petroleum Pollution/adverse effects/analysis/economics ; Research ; *Research Support as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-21
    Description: During the past 50 years, the human population has more than doubled and global agricultural production has similarly risen. However, the productive arable area has increased by just 10%; thus the increased use of pesticides has been a consequence of the demands of human population growth, and its impact has reached global significance. Although we often know a pesticide's mode of action in the target species, we still largely do not understand the full impact of unintended side effects on wildlife, particularly at higher levels of biological organization: populations, communities, and ecosystems. In these times of regional and global species declines, we are challenged with the task of causally linking knowledge about the molecular actions of pesticides to their possible interference with biological processes, in order to develop reliable predictions about the consequences of pesticide use, and misuse, in a rapidly changing world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohler, Heinz-R -- Triebskorn, Rita -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):759-65. doi: 10.1126/science.1237591.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tubingen, Tubingen, Germany. heinz-r.koehler@uni-tuebingen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950533" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Animals ; *Animals, Wild ; Aquatic Organisms ; Biological Evolution ; *Ecosystem ; Ecotoxicology/methods/trends ; Food Chain ; Humans ; Pesticides/*toxicity ; Population Dynamics ; Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-02-09
    Description: Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renne, Paul R -- Deino, Alan L -- Hilgen, Frederik J -- Kuiper, Klaudia F -- Mark, Darren F -- Mitchell, William S 3rd -- Morgan, Leah E -- Mundil, Roland -- Smit, Jan -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):684-7. doi: 10.1126/science.1230492.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA. prenne@bgc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393261" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argon ; Chronology as Topic ; *Ecosystem ; *Extinction, Biological ; Geologic Sediments ; Mammals ; Mexico ; *Minor Planets ; Radioisotopes ; Radiometric Dating
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-10-26
    Description: The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C(CCS52A2) ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heyman, Jefri -- Cools, Toon -- Vandenbussche, Filip -- Heyndrickx, Ken S -- Van Leene, Jelle -- Vercauteren, Ilse -- Vanderauwera, Sandy -- Vandepoele, Klaas -- De Jaeger, Geert -- Van Der Straeten, Dominique -- De Veylder, Lieven -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):860-3. doi: 10.1126/science.1240667. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158907" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome/metabolism ; Arabidopsis/*cytology/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Cell Cycle/genetics/physiology ; Cell Cycle Proteins/metabolism ; Cell Division/genetics/*physiology ; Mitosis/genetics/physiology ; Peptide Hormones/genetics/metabolism ; Plant Roots/*cytology/*growth & development ; Proteolysis ; Signal Transduction ; Stem Cell Niche ; Stem Cells/*physiology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-02-23
    Description: Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Pia L -- Harada, Takamasa -- Christian, David A -- Pantano, Diego A -- Tsai, Richard K -- Discher, Dennis E -- 8UL1TR000003/TR/NCATS NIH HHS/ -- P01-DK032094/DK/NIDDK NIH HHS/ -- P30-DK090969/DK/NIDDK NIH HHS/ -- R01 EB007049/EB/NIBIB NIH HHS/ -- R01 HL062352/HL/NHLBI NIH HHS/ -- R01-EB007049/EB/NIBIB NIH HHS/ -- R01-HL062352/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD47/chemistry/immunology/metabolism ; Antigens, Differentiation/*metabolism ; Antineoplastic Agents/administration & dosage ; Autoantigens ; Blood Circulation ; Diagnostic Imaging/methods ; Drug Delivery Systems/*methods ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; *Nanoparticles/administration & dosage/analysis ; Neoplasms/chemistry/diagnosis/drug therapy ; Paclitaxel/administration & dosage ; Particle Size ; Peptide Fragments/chemical synthesis/chemistry/immunology/*metabolism ; Phagocytes/immunology/metabolism ; *Phagocytosis ; Receptors, Immunologic/immunology/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, Y -- Li, H -- Miguez-Macho, G -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):940-3. doi: 10.1126/science.1229881.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08854, USA. yingfan@rci.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430651" target="_blank"〉PubMed〈/a〉
    Keywords: Climate ; *Ecosystem ; Geography ; *Groundwater ; Models, Theoretical ; Plants ; Rain ; Rivers ; Wetlands
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-02-02
    Description: Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751578/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751578/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neuert, Gregor -- Munsky, Brian -- Tan, Rui Zhen -- Teytelman, Leonid -- Khammash, Mustafa -- van Oudenaarden, Alexander -- 1DP1OD003936/OD/NIH HHS/ -- DP1 CA174420/CA/NCI NIH HHS/ -- U54 CA143874/CA/NCI NIH HHS/ -- U54CA143874/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):584-7. doi: 10.1126/science.1231456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372015" target="_blank"〉PubMed〈/a〉
    Keywords: *Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Heat-Shock Proteins/metabolism ; Membrane Transport Proteins/metabolism ; *Models, Genetic ; *Models, Statistical ; Osmosis ; Osmotic Pressure ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Signal Transduction ; Single-Cell Analysis/*methods ; Stochastic Processes ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-07-28
    Description: The resolution of type 2 diabetes after Roux-en-Y gastric bypass (RYGB) attests to the important role of the gastrointestinal tract in glucose homeostasis. Previous studies in RYGB-treated rats have shown that the Roux limb displays hyperplasia and hypertrophy. Here, we report that the Roux limb of RYGB-treated rats exhibits reprogramming of intestinal glucose metabolism to meet its increased bioenergetic demands; glucose transporter-1 is up-regulated, basolateral glucose uptake is enhanced, aerobic glycolysis is augmented, and glucose is directed toward metabolic pathways that support tissue growth. We show that reprogramming of intestinal glucose metabolism is triggered by the exposure of the Roux limb to undigested nutrients. We demonstrate by positron emission tomography-computed tomography scanning and biodistribution analysis using 2-deoxy-2-[18F]fluoro-D-glucose that reprogramming of intestinal glucose metabolism renders the intestine a major tissue for glucose disposal, contributing to the improvement in glycemic control after RYGB.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeidi, Nima -- Meoli, Luca -- Nestoridi, Eirini -- Gupta, Nitin K -- Kvas, Stephanie -- Kucharczyk, John -- Bonab, Ali A -- Fischman, Alan J -- Yarmush, Martin L -- Stylopoulos, Nicholas -- DK089503/DK/NIDDK NIH HHS/ -- F32 DK095558/DK/NIDDK NIH HHS/ -- F32DK095558/DK/NIDDK NIH HHS/ -- P50 GM021700/GM/NIGMS NIH HHS/ -- T32DK007191/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):406-10. doi: 10.1126/science.1235103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888041" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Blood Glucose/*metabolism ; Cholesterol/biosynthesis ; Diabetes Mellitus, Experimental/metabolism/surgery ; Digestion ; Energy Metabolism ; Fluorodeoxyglucose F18/metabolism ; *Gastric Bypass ; Gene Expression Regulation ; Glucose/*metabolism ; Glucose Transporter Type 1/metabolism ; Glycolysis ; Jejunum/*metabolism ; Male ; Metabolic Networks and Pathways ; Metabolomics ; Multimodal Imaging ; Pentose Phosphate Pathway ; Positron-Emission Tomography ; Rats ; Rats, Long-Evans ; Signal Transduction ; Tissue Distribution ; Tomography, X-Ray Computed ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindenmayer, David B -- Possingham, Hugh P -- New York, N.Y. -- Science. 2013 May 10;340(6133):680. doi: 10.1126/science.340.6133.680-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; *Endangered Species ; *Extinction, Biological ; Mining ; *Phalangeridae ; Victoria
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palike, Heiko -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):655-6. doi: 10.1126/science.1233948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany. hpaelike@marum.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; *Extinction, Biological ; *Minor Planets
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-09-04
    Description: Halley et al. purport to show a power-law relationship between fragment size and relaxation rates. We use a much more extensive data set to show that area dependence of relaxation rates exists only for very small fragment sizes (〈60 hectares), which has limited relevance for our analyses conducted using 250,000-hectare grid squares. We also show that the example of Halley et al. is based on an unrealistic fragmentation model with an infinite number of fragments that have average size of zero hectares. A more realistic formulation of the model shows that relaxation is much less dependent on fragmentation than Halley et al. present.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wearn, Oliver R -- Reuman, Daniel C -- Ewers, Robert M -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):271. doi: 10.1126/science.1231618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial College London, Silwood Park, Ascot SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; *Extinction, Biological ; *Trees ; *Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2013 May 3;340(6132):546-7. doi: 10.1126/science.340.6132.546.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquaculture ; *Aquatic Organisms ; *Bays ; *Earthquakes ; *Ecosystem ; Fisheries ; Geologic Sediments ; Japan ; Pacific Ocean ; *Tsunamis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graham, Andrea -- Ferrier, Helen -- Mitchell, Diane -- Jones, Ceris -- Bicknell, Philip -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):420-1. doi: 10.1126/science.342.6157.420-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Policy Services, Agriculture House, National Farmers' Union, Stoneleigh, Warwickshire, CV82TZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159028" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-10
    Description: Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45 degrees to 90 degrees N but by less than 25% for 10 degrees to 45 degrees N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graven, H D -- Keeling, R F -- Piper, S C -- Patra, P K -- Stephens, B B -- Wofsy, S C -- Welp, L R -- Sweeney, C -- Tans, P P -- Kelley, J J -- Daube, B C -- Kort, E A -- Santoni, G W -- Bent, J D -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1085-9. doi: 10.1126/science.1239207. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA. hgraven@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929948" target="_blank"〉PubMed〈/a〉
    Keywords: Arctic Regions ; Atmosphere/*chemistry ; *Carbon Cycle ; Carbon Dioxide/*chemistry ; *Ecosystem ; Oceans and Seas ; Seasons ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):482. doi: 10.1126/science.341.6145.482-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908220" target="_blank"〉PubMed〈/a〉
    Keywords: Climate Change/*history ; *Ecosystem ; Ethiopia ; History, 19th Century ; Photography/*history
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-03-02
    Description: The initial phase in the development of a migraine is still poorly understood. Here, we describe a previously unknown signaling pathway between stressed neurons and trigeminal afferents during cortical spreading depression (CSD), the putative cause of migraine aura and headache. CSD caused neuronal Pannexin1 (Panx1) megachannel opening and caspase-1 activation followed by high-mobility group box 1 (HMGB1) release from neurons and nuclear factor kappaB activation in astrocytes. Suppression of this cascade abolished CSD-induced trigeminovascular activation, dural mast cell degranulation, and headache. CSD-induced neuronal megachannel opening may promote sustained activation of trigeminal afferents via parenchymal inflammatory cascades reaching glia limitans. This pathway may function to alarm an organism with headache when neurons are stressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karatas, Hulya -- Erdener, Sefik Evren -- Gursoy-Ozdemir, Yasemin -- Lule, Sevda -- Eren-Kocak, Emine -- Sen, Zumrut Duygu -- Dalkara, Turgay -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1092-5. doi: 10.1126/science.1231897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449592" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Astrocytes/metabolism/physiology ; Caspase 1/metabolism ; Connexins/antagonists & inhibitors/*biosynthesis ; *Cortical Spreading Depression ; HMGB1 Protein/metabolism ; Mice ; Mice, Inbred C57BL ; Migraine Disorders/metabolism/*physiopathology ; NF-kappa B/metabolism ; Nerve Fibers/physiology ; Nerve Tissue Proteins/antagonists & inhibitors/*biosynthesis ; Neurons/metabolism/*physiology ; Protein Transport ; Signal Transduction ; Trigeminal Nerve/metabolism/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-04-13
    Description: Wnt signaling stabilizes beta-catenin through the LRP6 receptor signaling complex, which antagonizes the beta-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3 (GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated ("open") for beta-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated ("closed") Axin through an intramolecular interaction. Inactivation of Axin diminished its association with beta-catenin and LRP6, thereby inhibiting beta-catenin phosphorylation and enabling activated LRP6 to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for scaffold regulation and morphogen signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sung-Eun -- Huang, He -- Zhao, Ming -- Zhang, Xinjun -- Zhang, Aili -- Semonov, Mikhail V -- MacDonald, Bryan T -- Zhang, Xiaowu -- Garcia Abreu, Jose -- Peng, Leilei -- He, Xi -- P30 HD-18655/HD/NICHD NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R00EB008737/EB/NIBIB NIH HHS/ -- R01 AR060359/AR/NIAMS NIH HHS/ -- R01 GM074241/GM/NIGMS NIH HHS/ -- R01EB015481/EB/NIBIB NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 17;340(6134):867-70. doi: 10.1126/science.1232389. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axin Protein/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein Stability ; Signal Transduction ; Wnt Proteins/*metabolism ; Xenopus ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-10-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bateman, Ian J -- Harwood, Amii R -- Mace, Georgina M -- Watson, Robert T -- Abson, David J -- Andrews, Barnaby -- Binner, Amy -- Crowe, Andrew -- Day, Brett H -- Dugdale, Steve -- Fezzi, Carlo -- Foden, Jo -- Hadley, David -- Haines-Young, Roy -- Hulme, Mark -- Kontoleon, Andreas -- Lovett, Andrew A -- Munday, Paul -- Pascual, Unai -- Paterson, James -- Perino, Grischa -- Sen, Antara -- Siriwardena, Gavin -- van Soest, Daan -- Termansen, Mette -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):421-2. doi: 10.1126/science.342.6157.421-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Social and Economic Research on the Global Environment, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24159030" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; *Climate Change ; *Conservation of Natural Resources ; *Decision Support Techniques ; *Ecosystem ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-07-06
    Description: Landscapes generate a wide range of valuable ecosystem services, yet land-use decisions often ignore the value of these services. Using the example of the United Kingdom, we show the significance of land-use change not only for agricultural production but also for emissions and sequestration of greenhouse gases, open-access recreational visits, urban green space, and wild-species diversity. We use spatially explicit models in conjunction with valuation methods to estimate comparable economic values for these services, taking account of climate change impacts. We show that, although decisions that focus solely on agriculture reduce overall ecosystem service values, highly significant value increases can be obtained from targeted planning by incorporating all potential services and their values and that this approach also conserves wild-species diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bateman, Ian J -- Harwood, Amii R -- Mace, Georgina M -- Watson, Robert T -- Abson, David J -- Andrews, Barnaby -- Binner, Amy -- Crowe, Andrew -- Day, Brett H -- Dugdale, Steve -- Fezzi, Carlo -- Foden, Jo -- Hadley, David -- Haines-Young, Roy -- Hulme, Mark -- Kontoleon, Andreas -- Lovett, Andrew A -- Munday, Paul -- Pascual, Unai -- Paterson, James -- Perino, Grischa -- Sen, Antara -- Siriwardena, Gavin -- van Soest, Daan -- Termansen, Mette -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):45-50. doi: 10.1126/science.1234379.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Social and Economic Research on the Global Environment (CSERGE), School of Environmental Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, UK. i.bateman@uea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828934" target="_blank"〉PubMed〈/a〉
    Keywords: *Agriculture ; Animals ; Biodiversity ; *Climate Change ; *Conservation of Natural Resources ; Decision Making ; *Decision Support Techniques ; *Ecosystem ; Great Britain ; Marketing ; *Models, Economic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-02-16
    Description: In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82 degrees to 89 degrees N and 30 degrees to 130 degrees E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boetius, Antje -- Albrecht, Sebastian -- Bakker, Karel -- Bienhold, Christina -- Felden, Janine -- Fernandez-Mendez, Mar -- Hendricks, Stefan -- Katlein, Christian -- Lalande, Catherine -- Krumpen, Thomas -- Nicolaus, Marcel -- Peeken, Ilka -- Rabe, Benjamin -- Rogacheva, Antonina -- Rybakova, Elena -- Somavilla, Raquel -- Wenzhofer, Frank -- RV Polarstern ARK27-3-Shipboard Science Party -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1430-2. doi: 10.1126/science.1231346. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27515 Bremerhaven, Germany. antje.boetius@awi.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; Biodiversity ; *Biomass ; Carbon Cycle ; Climate Change ; *Diatoms/cytology/growth & development ; *Ecosystem ; Freezing ; Geologic Sediments ; *Ice Cover ; Sea Cucumbers ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Biao -- Busch, Jonah -- Zhang, Li -- Ran, Jianghong -- Gu, Xiaodong -- Zhang, Wen -- Du, Beibei -- Mittermeier, Russell A -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):521. doi: 10.1126/science.339.6119.521.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; Conservation of Natural Resources/*economics ; *Ecosystem ; Trees ; *Ursidae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-04-20
    Description: The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houben, Alexander J P -- Bijl, Peter K -- Pross, Jorg -- Bohaty, Steven M -- Passchier, Sandra -- Stickley, Catherine E -- Rohl, Ursula -- Sugisaki, Saiko -- Tauxe, Lisa -- van de Flierdt, Tina -- Olney, Matthew -- Sangiorgi, Francesca -- Sluijs, Appy -- Escutia, Carlota -- Brinkhuis, Henk -- Expedition 318 Scientists -- Dotti, Carlota Escutia -- Klaus, Adam -- Fehr, Annick -- Williams, Trevor -- Bendle, James A P -- Carr, Stephanie A -- Dunbar, Robert B -- Flores, Jose-Abel -- Gonzalez, Jhon J -- Hayden, Travis G -- Iwai, Masao -- Jimenez-Espejo, Francisco J -- Katsuki, Kota -- Kong, Gee Soo -- McKay, Robert M -- Nakai, Mutsumi -- Pekar, Stephen F -- Riesselman, Christina -- Sakai, Toyosaburo -- Salzmann, Ulrich -- Shrivastava, Prakash K -- Tuo, Shouting -- Welsh, Kevin -- Yamane, Masako -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):341-4. doi: 10.1126/science.1223646.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Laboratory of Palaeobotany and Palynology, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. Alexander.Houben@TNO.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599491" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Animals ; Antarctic Regions ; Cold Temperature ; Dinoflagellida/*physiology ; *Ecosystem ; Fossils ; *Ice Cover ; *Oceans and Seas ; Phytoplankton/*physiology ; Zooplankton/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-03
    Description: Terrestrial ecosystems have encountered substantial warming over the past century, with temperatures increasing about twice as rapidly over land as over the oceans. Here, we review the likelihood of continued changes in terrestrial climate, including analyses of the Coupled Model Intercomparison Project global climate model ensemble. Inertia toward continued emissions creates potential 21st-century global warming that is comparable in magnitude to that of the largest global changes in the past 65 million years but is orders of magnitude more rapid. The rate of warming implies a velocity of climate change and required range shifts of up to several kilometers per year, raising the prospect of daunting challenges for ecosystems, especially in the context of extensive land use and degradation, changes in frequency and severity of extreme events, and interactions with other stresses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diffenbaugh, Noah S -- Field, Christopher B -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):486-92. doi: 10.1126/science.1237123.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA. diffenbaugh@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908225" target="_blank"〉PubMed〈/a〉
    Keywords: *Climate Change ; Ecology ; *Ecosystem ; Forecasting ; Global Warming ; Humans ; Models, Theoretical ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: Development, regeneration, and even day-to-day physiology require plant and animal cells to make decisions based on their locations. The principles by which cells may do this are deceptively straightforward. But when reliability needs to be high--as often occurs during development--successful strategies tend to be anything but simple. Increasingly, the challenge facing biologists is to relate the diverse diffusible molecules, control circuits, and gene regulatory networks that help cells know where they are to the varied, sometimes stringent, constraints imposed by the need for real-world precision and accuracy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932337/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932337/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lander, Arthur D -- P50 GM076516/GM/NIGMS NIH HHS/ -- P50GM076516/GM/NIGMS NIH HHS/ -- R01 GM067247/GM/NIGMS NIH HHS/ -- R01GM067247/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):923-7. doi: 10.1126/science.1224186.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental and Cell Biology, and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA. adlander@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Physiological Phenomena ; Diffusion ; Embryonic Development ; Gene Regulatory Networks ; Intercellular Signaling Peptides and Proteins/*metabolism ; *Morphogenesis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-21
    Description: Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive. We show that administering oleoylethanolamine, a gastrointestinal lipid messenger whose synthesis is suppressed after prolonged high-fat exposure, is sufficient to restore gut-stimulated dopamine release in high-fat-fed mice. Administering oleoylethanolamine to high-fat-fed mice also eliminated motivation deficits during flavorless intragastric feeding and increased oral intake of low-fat emulsions. Our findings suggest that high-fat-induced gastrointestinal dysfunctions play a key role in dopamine deficiency and that restoring gut-generated lipid signaling may increase the reward value of less palatable, yet healthier, foods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tellez, Luis A -- Medina, Sara -- Han, Wenfei -- Ferreira, Jozelia G -- Licona-Limon, Paula -- Ren, Xueying -- Lam, Tukiet T -- Schwartz, Gary J -- de Araujo, Ivan E -- DC009997/DC/NIDCD NIH HHS/ -- DK020541/DK/NIDDK NIH HHS/ -- DK026687/DK/NIDDK NIH HHS/ -- DK085579/DK/NIDDK NIH HHS/ -- P30 DK026687/DK/NIDDK NIH HHS/ -- UL1RR024139/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):800-2. doi: 10.1126/science.1239275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The John B. Pierce Laboratory, New Haven, CT 06519, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950538" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetite ; Corpus Striatum/*metabolism ; Dietary Fats/*administration & dosage ; Dopamine/deficiency/*metabolism ; Endocannabinoids/*administration & dosage/biosynthesis/*physiology ; Energy Intake ; Ethanolamines/*administration & dosage ; Feeding Behavior ; Gastrointestinal Tract/*metabolism ; Homeostasis ; Intestine, Small/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Oleic Acids/*administration & dosage/biosynthesis/*physiology ; PPAR alpha/genetics/metabolism ; Reward ; Signal Transduction ; Vagus Nerve/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menz, Myles H M -- Dixon, Kingsley W -- Hobbs, Richard J -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):526-7. doi: 10.1126/science.1228334.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kings Park and Botanic Garden, Perth 6005, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372001" target="_blank"〉PubMed〈/a〉
    Keywords: Costs and Cost Analysis ; *Ecosystem ; Environmental Restoration and Remediation/*economics ; *Information Dissemination ; *Knowledge
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mervis, Jeffrey -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):300. doi: 10.1126/science.342.6156.300.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136943" target="_blank"〉PubMed〈/a〉
    Keywords: *Budgets ; *Ecosystem ; *Federal Government ; Research/*economics ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...