ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-16
    Description: In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82 degrees to 89 degrees N and 30 degrees to 130 degrees E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boetius, Antje -- Albrecht, Sebastian -- Bakker, Karel -- Bienhold, Christina -- Felden, Janine -- Fernandez-Mendez, Mar -- Hendricks, Stefan -- Katlein, Christian -- Lalande, Catherine -- Krumpen, Thomas -- Nicolaus, Marcel -- Peeken, Ilka -- Rabe, Benjamin -- Rogacheva, Antonina -- Rybakova, Elena -- Somavilla, Raquel -- Wenzhofer, Frank -- RV Polarstern ARK27-3-Shipboard Science Party -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1430-2. doi: 10.1126/science.1231346. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, 27515 Bremerhaven, Germany. antje.boetius@awi.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413190" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions ; Biodiversity ; *Biomass ; Carbon Cycle ; Climate Change ; *Diatoms/cytology/growth & development ; *Ecosystem ; Freezing ; Geologic Sediments ; *Ice Cover ; Sea Cucumbers ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-14
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-04
    Description: In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (〉 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: Marine organic matter (OM) sinks from surface water to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as an energy and carbon source, produce dissolved OM (DOM) in the process of degradation, enriching the sediment pore water with fresh DOM compounds. In the oligotrophic deep Arctic basin, particle flux is low but highly seasonal. We hypothesized that the molecular signal of freshly deposited, primary produced OM would be detectable in surface sediment pore water, which should differ in DOM composition from bottom water and deeper sediment pore water. The study focused on (i) the molecular composition of the DOM in sediment pore water of the deep Eurasian Arctic basins, (ii) the signal of marine vs. terrigenous DOM represented by different compounds preserved in the pore water and (iii) the relationship between Arctic Ocean ice cover and DOM composition. Composition based on mass spectrometric information, obtained via 15 T Fourier transform ion cyclotron resonance mass spectrometry, was correlated with environmental parameters with partial least square analysis. The fresh marine detrital OM signal from surface water was limited to pore water from 〈 5 cm sediment depth. The productive ice margin stations showed a higher abundance of peptide, unsaturated aliphatic and saturated fatty acid molecular formulae, indicative of recent phytodetritus deposition, than the multiyear ice-covered stations, which had a stronger aromatic signal. The study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and how it may be altered in response to sea ice retreat and increasing river runoff.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-23
    Description: Over the last decades, the Arctic Ocean has suffered a substantial decline in sea ice cover due to global warming. The impacts of these variations on primary productivity, fluxes of dissolved and particulate organic matter (OM) and turnover at the seafloor are still poorly understood. Here we focus on the characteristics and dynamics of the pool of marine dissolved OM (DOM) in surface sediments of the Arctic Ocean. To investigate spatial and temporal variations of DOM in relation to particulate OM input and benthic microbial community parameters, sediment porewater and overlying bottom water were collected from the long-term observatory HAUSGARTEN in June 2013 and 2014. The study area in the Fram Strait, which is partially covered by sea ice, was sampled along a bathymetric transect (1050–5500 m water depth), from east to west (7°0.2′ E to 5°17′ W), and from south to north (78°37’ to 79°43’ N). Molecular data on solid phase extracted DOM obtained via Fourier Transform Ion Cyclotron Resonance Mass Spectrometric analysis and a suite of bulk chemical parameters were related to benthic biogeochemical data. Our results demonstrate a close coupling between the production and input of OM from the surface ocean to the seafloor, and the concentration and composition of DOC/DOM in the deep sea. Surface porewaters collected in 2013 from shallower stations (≤1500 m water depth) in the eastern Fram Strait, had a signal of a larger and more recent input of OM (higher concentrations of phytodetritus). This was associated with higher numbers of molecular formulas, abundances of unsaturated aliphatic and N-containing formulas, in concert with higher enzymatic activity, phospholipids, total organic carbon and protein content. In contrast, porewaters collected in 2014 from deeper stations and from the West, were associated with lower OM input, and showed higher abundances of aromatic and oxygen-poor compounds. Higher OM input was also reflected in higher DOC concentrations and fluxes from the sediment into the water column. Our study demonstrates that regional and temporal variations in OM input can quickly translate into changes in the quantity and quality of surface porewater DOM, the latter substantially altered by deep-sea sediment bacteria.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3in: Hubberten, H.-W. (Ed.), The Expedition of the Research Vessel "Polarstern" to the Antarctic in 2007 (ANT-XXIII/9); Berichte zur Polar- und Meeresforschung, 583, pp. 15-36, ISSN: 1866-3192
    Publication Date: 2016-11-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3International Society for Microbial Ecology, ISME-13, Seattle, USA.-27.08.2010., 22
    Publication Date: 2014-10-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-17
    Description: The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy-diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37-3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy-diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...