ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-01
    Description: Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO 2 (ffCO 2 ) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO 2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO 2 by measuring radiocarbon ( 14 C) in CO 2 , an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO 2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO 2 emissions are consistent with the California Air Resources Board’s reported ffCO 2 emissions, providing tentative validation of California’s reported ffCO 2 emissions in 2014–15. Continuing this prot...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-08
    Description: The seasonal cycle of atmospheric potential oxygen (APO ∼ O2 + 1.1 CO2) reflects three seasonally varying ocean processes: 1) thermal in- and outgassing, 2) mixed layer net community production (NCP) and 3) deep water ventilation. Previous studies have isolated the net biological seasonal signal (i.e., the sum of NCP and ventilation), after using air-sea heat flux data to estimate the thermal signal. In this study, we resolve all three components of the APO seasonal cycle using a methodology in which the ventilation signal is estimated based on atmospheric N2O data, the thermal signal is estimated based on heat flux or atmospheric Ar/N2 data, and the production signal is inferred as a residual. The isolation of the NCP signal in APO allows for direct comparison to estimates of NCP based on satellite ocean color data, after translating the latter into an atmospheric signal using an atmospheric transport model. When applied to ocean color data using algorithms specially adapted to the Southern Ocean and APO data at three southern monitoring sites, these two independent methods converge on a similar phase and amplitude of the seasonal NCP signal in APO and yield an estimate of annual mean NCP south of 50°S of 0.8–1.2 Pg C/yr, with corresponding annual mean NPP of ∼3 Pg C/yr and a mean growing season f ratio of ∼0.33. These results are supported by ocean biogeochemistry model simulations, in which air-sea O2 and N2O fluxes are resolved into component thermal, ventilation and (for O2) NCP contributions.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-03
    Description: We present recent observed climate trends for carbon dioxide concentration, global mean air temperature, and global sea level, and we compare these trends to previous model projections as summarized in the 2001 assessment report of the Intergovernmental Panel on Climate Change (IPCC). The IPCC scenarios and projections start in the year 1990, which is also the base year of the Kyoto protocol, in which almost all industrialized nations accepted a binding commitment to reduce their greenhouse gas emissions. The data available for the period since 1990 raise concerns that the climate system, in particular sea level, may be responding more quickly to climate change than our current generation of models indicates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rahmstorf, Stefan -- Cazenave, Anny -- Church, John A -- Hansen, James E -- Keeling, Ralph F -- Parker, David E -- Somerville, Richard C J -- New York, N.Y. -- Science. 2007 May 4;316(5825):709. Epub 2007 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Potsdam Institute for Climate Impact Research, 14482 Potsdam, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272686" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keeling, Ralph F -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1440-1. Epub 2007 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA. rkeeling@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17495137" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-03-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keeling, Ralph F -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1771-2. doi: 10.1126/science.1156761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA. rkeeling@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369129" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keeling, Ralph F -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1743; author reply 1743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, La Jolla, CA 92093-0244, USA. rkeeling@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961656" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon/analysis ; Carbon Dioxide/*analysis ; Climate ; Oceans and Seas ; Oxygen/analysis ; Seawater/*chemistry ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-01
    Description: The stable isotope ratios of atmospheric CO(2) ((18)O/(16)O and (13)C/(12)C) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way. Interpreting the (18)O/(16)O variability has proved difficult, however, because oxygen isotopes in CO(2) are influenced by both the carbon cycle and the water cycle. Previous attention focused on the decreasing (18)O/(16)O ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration; a global increase in C(4) crops at the expense of C(3) forests; and environmental conditions, such as atmospheric turbulence and solar radiation, that affect CO(2) exchange between leaves and the atmosphere. Here we present 30 years' worth of data on (18)O/(16)O in CO(2) from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Nino/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Nino increases the (18)O/(16)O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO(2) by biosphere-atmosphere gas exchange. We show how the decay time of the El Nino anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Nino events, implying a shorter cycling time of CO(2) with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year, may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO(2). Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welp, Lisa R -- Keeling, Ralph F -- Meijer, Harro A J -- Bollenbacher, Alane F -- Piper, Stephen C -- Yoshimura, Kei -- Francey, Roger J -- Allison, Colin E -- Wahlen, Martin -- England -- Nature. 2011 Sep 28;477(7366):579-82. doi: 10.1038/nature10421.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0244, USA. lwelp@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21956330" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Carbon Cycle/physiology ; Carbon Dioxide/*analysis/*chemistry ; Crops, Agricultural/metabolism ; *El Nino-Southern Oscillation ; Humidity ; Oxygen Isotopes/*analysis ; Rain ; Soil/analysis/chemistry ; Trees/metabolism ; Water/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-03-11
    Description: The separation of atmospheric constituents by gravity has been proposed theoretically for almost two centuries. However, turbulent mixing has prevented the detection of this phenomenon in the lower atmosphere. By using precise measurements of the Ar/N2 ratio of air samples taken under strong nocturnal inversions, we have detected such separation in near-surface layers. The effect is shown to be consistent with combined influence of thermal and gravimetric separation, with the thermal contribution being more important.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adachi, Yosuke -- Kawamura, Kenji -- Armi, Laurence -- Keeling, Ralph F -- New York, N.Y. -- Science. 2006 Mar 10;311(5766):1429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0244, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16527973" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-10
    Description: Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45 degrees to 90 degrees N but by less than 25% for 10 degrees to 45 degrees N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graven, H D -- Keeling, R F -- Piper, S C -- Patra, P K -- Stephens, B B -- Wofsy, S C -- Welp, L R -- Sweeney, C -- Tans, P P -- Kelley, J J -- Daube, B C -- Kort, E A -- Santoni, G W -- Bent, J D -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1085-9. doi: 10.1126/science.1239207. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA. hgraven@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929948" target="_blank"〉PubMed〈/a〉
    Keywords: Arctic Regions ; Atmosphere/*chemistry ; *Carbon Cycle ; Carbon Dioxide/*chemistry ; *Ecosystem ; Oceans and Seas ; Seasons ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...