ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-20
    Description: The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal alpha diversity, measured as change in local diversity, and temporal beta diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of alpha diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal alpha and beta diversity. Monitoring and understanding change in species composition should be a conservation priority.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornelas, Maria -- Gotelli, Nicholas J -- McGill, Brian -- Shimadzu, Hideyasu -- Moyes, Faye -- Sievers, Caya -- Magurran, Anne E -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):296-9. doi: 10.1126/science.1248484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744374" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Birds ; *Ecosystem ; Extinction, Biological ; *Fishes ; Introduced Species ; *Invertebrates ; *Mammals ; *Plants ; Population Dynamics ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-27
    Description: Many theoretical models of community dynamics predict that species richness ( S ) and total abundance ( N ) are regulated in their temporal fluctuations. We present novel evidence for widespread regulation of biodiversity. For 59 plant and animal assemblages from around the globe monitored annually for a decade or more, the majority exhibited regulated fluctuations compared to the null hypothesis of an unconstrained random walk. However, there was little evidence for statistical artifacts, regulation driven by correlations with average annual temperature, or local-scale compensatory fluctuations in S or N . In the absence of major environmental perturbations, such as urbanization or cropland transformation, species richness and abundance may be buffered and exhibit some resilience in their temporal trajectories. These results suggest that regulatory processes are occurring despite unprecedented environmental change, highlighting the need for community-level assessment of biodiversity trends, as well as extensions of existing theory to address open source pools and shifting environmental conditions.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...