ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Call number: SR 90.0001(1808-O)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: IV, O-44 S. + 18 pl.
    Series Statement: U.S. Geological Survey bulletin 1808-O
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0002(560-A)
    In: Professional paper
    Type of Medium: Series available for loan
    Pages: X, A-188 S. + 6 pl.
    Series Statement: U.S. Geological Survey professional paper 560-A
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0001(1614)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: V, 129 S.
    Series Statement: U.S. Geological Survey bulletin 1614
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: S 90.0001(2144)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: IV, 106 S.
    Series Statement: U.S. Geological Survey bulletin 2144
    Classification:
    Geochemistry
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Marchenko methods are a suite of geophysical techniques that convert seismograms of energy created by surface sources and measured by surface receivers into seismograms that would have been recorded by a virtual receiver at an arbitrary point inside the subsurface – an operation called redatuming. In principle these redatumed seismograms contain all contributions from direct, primary (singly-reflected) and multiply-reflected waves that would have been recorded by a real subsurface receiver, without requiring prior information about interfaces that generated the reflections. The potential of these methods for seismic imaging and redatuming has been demonstrated extensively in previous literature, but only using one- and two-dimensional Marchenko methods. There remain aspects of the methods that are poorly understood when applied in a three-dimensional world, so we investigate the application of Marchenko methods to three-dimensional data, subsurface structures and wavefields. We first show that for waves propagating in three dimensions, Marchenko methods can be applied to seismic data collected using both linear (so-called 2D-seismic) and areal (3D-seismic) acquisition arrays. However, for 2D acquisition arrays the Marchenko workflow requires additional dimensionality correction factors to obtain accurate solutions, even in a subsurface that only varies with depth. Without these correction factors phase errors occur in redatumed Marchenko estimates; these errors propagate through the Marchenko algorithm and create depth errors in the Marchenko images. Furthermore, applying Marchenko methods to fully three-dimensional seismic wavefields recorded by linear (2D-seismic) arrays that contain out-of-plane reflections deteriorates surface-to-subsurface Green’s function estimates with spurious energy and resulting images are less accurate than those created using ‘conventional’ imaging methods. The application of fully three-dimensional Marchenko methods using data recorded on areal arrays solves both of the above problems, creating accurately redatumed wavefields and images with reduced artifact contamination. However, it appears that source/receiver spacing at most of $\lambda _A\Big /4$ is required for accurate results using existing Marchenko methods, where λ〈sub〉〈span〉A〈/span〉〈/sub〉 is the dominant wavelength and in many real 3D seismic acquisition scenarios this is impractical.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Geoscientists often have little information about earth’s subsurface heterogeneities prior to mapping them using seismic or other geophysical data. Marchenko methods are a set of novel, data-driven techniques that help us to project surface seismic data to points in the subsurface, to form seismograms as though they had been created at each point. In so doing, Marchenko methods account for many of the complex, multiply reflected seismic wave interactions that take place in the real earth’s subsurface. The resulting seismograms are the information required to create subsurface images that are more accurate than standard methods. Our aim is to introduce these concepts with the minimum amount of mathematics required to understand how the Marchenko method can iterate to a solution and to provide a well-commented, easily editable MATLAB code package for demonstration and training purposes. Green’s function estimation using the Marchenko method is first illustrated for a constant velocity, variable density, 1D medium, with results that indicate a near-perfect match when compared with true, synthetically modeled solutions. Similar quality results are shown for variable velocity, 2D Green’s function estimation. Finally, we determine how these estimates could be used to create images of the subsurface, which, when compared with standard methods, contain reduced contamination due to multiple-related artifacts. Our code package includes the 2D data set required to reconstruct the relevant figures that we present, and it allows for experimentation with the implementation of the Marchenko method and the application of Marchenko imaging.〈/span〉
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-06
    Description: Micropores can constitute up to 100% of the total porosity within carbonate-hosted hydrocarbon reservoirs, usually existing within micritic fabrics. Here, three-dimensional computational representations of end-point micritic fabrics are produced using a flexible, object-based algorithm to further our understanding of the contribution that micropores make to flow. By methodically altering model parameters, we explore the state space of microporous carbonates, quantifying single and multiphase flow using lattice-Boltzmann and network models. In purely micritic fabrics, average pore radius (ranging from 0.26 to 0.44 μm) was found to have a positive correlation with single-phase permeability (1.7 to 2.7 md, respectively). Similarly, increasing average pore size resulted in decreasing residual oil saturation under both water-wet and 50% fractionally oil-wet states. Permeability was found to increase by an order of magnitude (from 0.6 to 7.5 md) within fabrics of varying total matrix porosity (from 18% to 35%) because of increasing pore size (0.37 to 0.56 μm, respectively), but minimal effect on multiphase flow was observed. Increased pore size due to micrite rounding notably increases permeability in comparison with original rhombic fabrics with the same porosity, but multiphase flow properties are unaffected. Finally, when moldic mesopores are added to a micritic matrix, they impact flow when directly connected. Otherwise, micropores control single-phase permeability magnitude. Importantly, recovery is dependent on both wetting scenario and pore-network homogeneity: under water-wet imbibition, increasing proportions of microporosity yield lower residual oil saturations. Together, these results quantify the importance of micropores in contributing to, or controlling, overall flow and sweep characteristics in such fabrics.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Marchenko methods are a suite of geophysical techniques that convert seismograms of energy created by surface sources and measured by surface receivers into seismograms that would have been recorded by a virtual receiver at an arbitrary point inside the subsurface—an operation called redatuming. In principle these redatumed seismograms contain all contributions from direct, primary (singly-reflected) and multiply-reflected waves that would have been recorded by a real subsurface receiver, without requiring prior information about interfaces that generated the reflections. The potential of these methods for seismic imaging and redatuming has been demonstrated extensively in previous literature, but only using 1-D and 2-D Marchenko methods. There remain aspects of the methods that are poorly understood when applied in a 3-D world, so we investigate the application of Marchenko methods to 3-D data, subsurface structures and wavefields. We first show that for waves propagating in three dimensions, Marchenko methods can be applied to seismic data collected using both linear (so-called 2-D seismic) and areal (3-D seismic) acquisition arrays. However, for 2-D acquisition arrays the Marchenko workflow requires additional dimensionality correction factors to obtain accurate solutions, even in a subsurface that only varies with depth. Without these correction factors phase errors occur in redatumed Marchenko estimates; these errors propagate through the Marchenko algorithm and create depth errors in the Marchenko images. Furthermore, applying Marchenko methods to fully 3-D seismic wavefields recorded by linear (2-D seismic) arrays that contain out-of-plane reflections deteriorates surface-to-subsurface Green’s function estimates with spurious energy and resulting images are less accurate than those created using ‘conventional’ imaging methods. The application of fully 3-D Marchenko methods using data recorded on areal arrays solves both of the above problems, creating accurately redatumed wavefields and images with reduced artefact contamination. However, it appears that source–receiver spacing at most of $\lambda _A /4$ is required for accurate results using existing Marchenko methods, where λ〈sub〉〈span〉A〈/span〉〈/sub〉 is the dominant wavelength and in many real 3-D seismic acquisition scenarios this is impractical.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-29
    Description: Monitoring of stored carbon dioxide (CO 2 ) in subsurface reservoirs is fundamental to operation and management of the storage site, and is a requirement of some national and international legislation. As a consequence, effectiveness of monitorability (the ability to observe the evolving location of subsurface CO 2 ) for any given level of investment in monitoring technology is a significant investment uncertainty that must be assessed along other components of the storage-site selection criteria (e.g. capacity, injectivity and storage economies). We develop a workflow to assess the time-lapse seismic detectability of changes in subsurface aquifer reservoirs by analysing expected changes in seismic amplitude variation with angle (AVA) in the field. Laboratory measurements are used to calculate the seismic response of the reservoir at different saturations and pressures. We include the scattering effect of material above and below the reservoir by using a finite-difference, full-waveform modelling approach AVA analysis then assimilates local site effects into the detectability assessment. We show that performing waveform modelling which includes local geological heterogeneities above and below the reservoir interval is essential to assess the storage site monitroability. In order to quantify expected time-lapse changes in the seismic response, we introduce a new set of robust time-lapse attributes based on time–frequency decomposition. The attributes effectively separate amplitude and phase changes (time-shifts) of time-lapse seismic records, and allow us to quantify their repeatability against the background noise. Furthermore, the frequency-dependent nature of the attributes provides a quantification of the frequency–domain effects of time-lapse changes. The approach is employed to assess the detectability of supercritical CO 2 in two analogue storage sites in the near-shore UK North Sea. Analysis of laboratory measurements and AVA responses indicate the contrasting monitorability of the two sites, which helps decision making about further site investigation and development. Application of the approach to hydrocarbon reservoir monitoring is straightforward.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-12
    Description: Seismic imaging provides much of our information about the Earth's crustal structure. The principal source of imaging errors derives from simplicistically modeled predictions of the complex, scattered wavefields that interact with each subsurface point to be imaged. A new method of wavefield extrapolation based on inverse scattering theory produces accurate estimates of these subsurface scattered wavefields, while still using relatively little information about the Earth's properties. We use it for the first time to create real target-oriented seismic images of a North Sea field. We synthesize underside illumination from surface reflection data, and use it to reveal subsurface features that are not present in an image from conventional migration of surface data. To reconstruct underside reflections, we rely on the so-called downgoing focusing function, whose coda consists entirely of transmission-born multiple scattering. As such, we provide the first field data example of reconstructing underside reflections with contributions from transmitted multiples, without the need to first locate or image any reflectors in order to reconstruct multiple scattering effects.
    Keywords: Express Letters, Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...