ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (786)
  • Cells, Cultured  (319)
  • Genes
  • Kinetics
  • Pregnancy
  • American Association for the Advancement of Science (AAAS)  (786)
  • Annual Reviews
  • 2010-2014  (229)
  • 1980-1984  (557)
  • 1955-1959
  • 1930-1934
  • Computer Science  (786)
Collection
  • Articles  (786)
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (786)
  • Annual Reviews
Years
Year
Topic
  • 1
    Publication Date: 2010-12-15
    Description: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, Laura -- Tripathy, Sucheta -- Ishaque, Naveed -- Boot, Nico -- Cabral, Adriana -- Kemen, Eric -- Thines, Marco -- Ah-Fong, Audrey -- Anderson, Ryan -- Badejoko, Wole -- Bittner-Eddy, Peter -- Boore, Jeffrey L -- Chibucos, Marcus C -- Coates, Mary -- Dehal, Paramvir -- Delehaunty, Kim -- Dong, Suomeng -- Downton, Polly -- Dumas, Bernard -- Fabro, Georgina -- Fronick, Catrina -- Fuerstenberg, Susan I -- Fulton, Lucinda -- Gaulin, Elodie -- Govers, Francine -- Hughes, Linda -- Humphray, Sean -- Jiang, Rays H Y -- Judelson, Howard -- Kamoun, Sophien -- Kyung, Kim -- Meijer, Harold -- Minx, Patrick -- Morris, Paul -- Nelson, Joanne -- Phuntumart, Vipa -- Qutob, Dinah -- Rehmany, Anne -- Rougon-Cardoso, Alejandra -- Ryden, Peter -- Torto-Alalibo, Trudy -- Studholme, David -- Wang, Yuanchao -- Win, Joe -- Wood, Jo -- Clifton, Sandra W -- Rogers, Jane -- Van den Ackerveken, Guido -- Jones, Jonathan D G -- McDowell, John M -- Beynon, Jim -- Tyler, Brett M -- 079643/Wellcome Trust/United Kingdom -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E007120/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024815/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024882/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F0161901/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G015244/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- EP/F500025/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- T12144/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1549-51. doi: 10.1126/science.1195203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148394" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Arabidopsis/*parasitology ; Enzymes/genetics ; *Evolution, Molecular ; Gene Dosage ; Genes ; *Genome ; Host-Pathogen Interactions ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Oomycetes/*genetics/*growth & development/pathogenicity/physiology ; Phytophthora/genetics ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Spores/physiology ; Synteny ; Virulence Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-11
    Description: Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galazka, Jonathan M -- Tian, Chaoguang -- Beeson, William T -- Martinez, Bruno -- Glass, N Louise -- Cate, Jamie H D -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):84-6. doi: 10.1126/science.1192838. Epub 2010 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829451" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Biological Transport ; Biomass ; Cellobiose/metabolism ; Cellulase/metabolism ; Cellulose/*analogs & derivatives/*metabolism ; Dextrins/*metabolism ; Ethanol/metabolism ; Fermentation ; Fungal Proteins/genetics/*metabolism ; Genetic Engineering ; Kinetics ; Membrane Transport Proteins/genetics/*metabolism ; Neurospora crassa/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; beta-Glucosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-07-10
    Description: Self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. The past decade has witnessed great progress in nanoparticle self-assembly, yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge. We report on the marked similarity between the self-assembly of metal nanoparticles and reaction-controlled step-growth polymerization. The nanoparticles act as multifunctional monomer units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a colloidal polymer. We show that the kinetics and statistics of step-growth polymerization enable a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures; their aggregation numbers and size distribution; and the formation of structural isomers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Kun -- Nie, Zhihong -- Zhao, Nana -- Li, Wei -- Rubinstein, Michael -- Kumacheva, Eugenia -- 1-R01-HL077546-03A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):197-200. doi: 10.1126/science.1189457.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616274" target="_blank"〉PubMed〈/a〉
    Keywords: Cetrimonium Compounds/chemistry ; Colloids ; Cyclization ; Gold ; Isomerism ; Kinetics ; Metal Nanoparticles/*chemistry ; Microscopy, Electron, Transmission ; Nanotechnology/methods ; Physicochemical Processes ; Polymers ; Polystyrenes/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauvageau, Guy -- Humphries, R Keith -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1291-2. doi: 10.1126/science.1195173.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics of Stem Cells Laboratory, Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3C 3J7, Canada. guy.sauvageau@umontreal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829472" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Fetal Blood/cytology ; *Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*drug effects/physiology ; Humans ; Mice ; Purines/chemistry/metabolism/*pharmacology ; Receptors, Aryl Hydrocarbon/*antagonists & inhibitors/metabolism ; Small Molecule Libraries ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhatia, Mickie -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1024-5. doi: 10.1126/science.1194919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8N 3Z5, Canada. mbhatia@mcmaster.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798306" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Culture Techniques/*methods ; Cell Differentiation ; Cell Division ; Cells, Cultured ; Elasticity ; Humans ; Hydrogels ; Mice ; Muscle Fibers, Skeletal/*cytology/physiology ; Myoblasts, Skeletal/cytology/physiology ; Regeneration ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-09-18
    Description: Proliferating cells, including cancer cells, require altered metabolism to efficiently incorporate nutrients such as glucose into biomass. The M2 isoform of pyruvate kinase (PKM2) promotes the metabolism of glucose by aerobic glycolysis and contributes to anabolic metabolism. Paradoxically, decreased pyruvate kinase enzyme activity accompanies the expression of PKM2 in rapidly dividing cancer cells and tissues. We demonstrate that phosphoenolpyruvate (PEP), the substrate for pyruvate kinase in cells, can act as a phosphate donor in mammalian cells because PEP participates in the phosphorylation of the glycolytic enzyme phosphoglycerate mutase (PGAM1) in PKM2-expressing cells. We used mass spectrometry to show that the phosphate from PEP is transferred to the catalytic histidine (His11) on human PGAM1. This reaction occurred at physiological concentrations of PEP and produced pyruvate in the absence of PKM2 activity. The presence of histidine-phosphorylated PGAM1 correlated with the expression of PKM2 in cancer cell lines and tumor tissues. Thus, decreased pyruvate kinase activity in PKM2-expressing cells allows PEP-dependent histidine phosphorylation of PGAM1 and may provide an alternate glycolytic pathway that decouples adenosine triphosphate production from PEP-mediated phosphotransfer, allowing for the high rate of glycolysis to support the anabolic metabolism observed in many proliferating cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vander Heiden, Matthew G -- Locasale, Jason W -- Swanson, Kenneth D -- Sharfi, Hadar -- Heffron, Greg J -- Amador-Noguez, Daniel -- Christofk, Heather R -- Wagner, Gerhard -- Rabinowitz, Joshua D -- Asara, John M -- Cantley, Lewis C -- 1K08CA136983/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5 T32 CA009361-28/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- K08 CA136983/CA/NCI NIH HHS/ -- K08 CA136983-02/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-10/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-01A1/CA/NCI NIH HHS/ -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-20/GM/NIGMS NIH HHS/ -- P01CA089021/CA/NCI NIH HHS/ -- P01GM047467/GM/NIGMS NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43S1/CA/NCI NIH HHS/ -- R01 AI078063/AI/NIAID NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01-GM56302/GM/NIGMS NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- R21/R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299/DK/NIDDK NIH HHS/ -- R33 DK070299-03/DK/NIDDK NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009361/CA/NCI NIH HHS/ -- T32 CA009361-28/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Female ; Glucose/*metabolism ; Glyceric Acids/metabolism ; *Glycolysis ; Histidine/metabolism ; Humans ; Isoenzymes/metabolism ; Kinetics ; Male ; Mammary Neoplasms, Animal/metabolism ; Mice ; Neoplasms/*metabolism/pathology ; Phosphoenolpyruvate/metabolism ; Phosphoglycerate Mutase/*metabolism ; Phosphopyruvate Hydratase/metabolism ; Phosphorylation ; Prostatic Neoplasms/metabolism ; Pyruvate Kinase/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-22
    Description: Astrocytes provide structural and metabolic support for neuronal networks, but direct evidence demonstrating their active role in complex behaviors is limited. Central respiratory chemosensitivity is an essential mechanism that, via regulation of breathing, maintains constant levels of blood and brain pH and partial pressure of CO2. We found that astrocytes of the brainstem chemoreceptor areas are highly chemosensitive. They responded to physiological decreases in pH with vigorous elevations in intracellular Ca2+ and release of adenosine triphosphate (ATP). ATP propagated astrocytic Ca2+ excitation, activated chemoreceptor neurons, and induced adaptive increases in breathing. Mimicking pH-evoked Ca2+ responses by means of optogenetic stimulation of astrocytes expressing channelrhodopsin-2 activated chemoreceptor neurons via an ATP-dependent mechanism and triggered robust respiratory responses in vivo. This demonstrates a potentially crucial role for brain glial cells in mediating a fundamental physiological reflex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160742/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160742/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gourine, Alexander V -- Kasymov, Vitaliy -- Marina, Nephtali -- Tang, Feige -- Figueiredo, Melina F -- Lane, Samantha -- Teschemacher, Anja G -- Spyer, K Michael -- Deisseroth, Karl -- Kasparov, Sergey -- 079040/Wellcome Trust/United Kingdom -- PG/09/064/27886/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):571-5. doi: 10.1126/science.1190721. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK. a.gourine@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647426" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Animals ; Astrocytes/*physiology ; Brain Stem/cytology/*physiology ; Calcium/metabolism ; Carbon Dioxide/analysis/blood ; Cells, Cultured ; Chemoreceptor Cells/*physiology ; Exocytosis ; Gap Junctions/metabolism ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Light ; Medulla Oblongata/cytology/*physiology ; Membrane Potentials ; Rats ; Rats, Sprague-Dawley ; Receptors, Purinergic P2/metabolism ; *Respiration ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, Eliot -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):153. doi: 10.1126/science.328.5975.153.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378781" target="_blank"〉PubMed〈/a〉
    Keywords: Genes ; *Genes, BRCA1 ; *Genes, BRCA2 ; Humans ; New York ; Patents as Topic/*legislation & jurisprudence ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-30
    Description: In addition to their pivotal role in thrombosis and wound repair, platelets participate in inflammatory responses. We investigated the role of platelets in the autoimmune disease rheumatoid arthritis. We identified platelet microparticles--submicrometer vesicles elaborated by activated platelets--in joint fluid from patients with rheumatoid arthritis and other forms of inflammatory arthritis, but not in joint fluid from patients with osteoarthritis. Platelet microparticles were proinflammatory, eliciting cytokine responses from synovial fibroblasts via interleukin-1. Consistent with these findings, depletion of platelets attenuated murine inflammatory arthritis. Using both pharmacologic and genetic approaches, we identified the collagen receptor glycoprotein VI as a key trigger for platelet microparticle generation in arthritis pathophysiology. Thus, these findings demonstrate a previously unappreciated role for platelets and their activation-induced microparticles in inflammatory joint diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927861/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2927861/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boilard, Eric -- Nigrovic, Peter A -- Larabee, Katherine -- Watts, Gerald F M -- Coblyn, Jonathan S -- Weinblatt, Michael E -- Massarotti, Elena M -- Remold-O'Donnell, Eileen -- Farndale, Richard W -- Ware, Jerry -- Lee, David M -- G0500707/Medical Research Council/United Kingdom -- HL091269/HL/NHLBI NIH HHS/ -- HL50545/HL/NHLBI NIH HHS/ -- K08AR051321/AR/NIAMS NIH HHS/ -- P01 AI065858/AI/NIAID NIH HHS/ -- R01 HL050545/HL/NHLBI NIH HHS/ -- R01 HL050545-16/HL/NHLBI NIH HHS/ -- R01 HL050545-18/HL/NHLBI NIH HHS/ -- R21 HL091269/HL/NHLBI NIH HHS/ -- R21 HL091269-01A2/HL/NHLBI NIH HHS/ -- RG/09/003/27122/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):580-3. doi: 10.1126/science.1181928.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis/blood/immunology ; Arthritis, Rheumatoid/*blood/*immunology/physiopathology ; Blood Platelets/cytology/*physiology/ultrastructure ; Cell-Derived Microparticles/metabolism/*physiology ; Cells, Cultured ; Collagen/*metabolism ; Cytokines/*metabolism ; Extracellular Matrix/metabolism ; Fibroblasts/immunology/metabolism ; Humans ; Interleukin-1/metabolism ; Mice ; Mice, Transgenic ; Platelet Activation ; Platelet Membrane Glycoproteins/metabolism ; Receptors, Collagen/metabolism ; Synovial Fluid/cytology/*immunology ; Synovial Membrane/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-07-22
    Description: Stem cells that naturally reside in adult tissues, such as muscle stem cells (MuSCs), exhibit robust regenerative capacity in vivo that is rapidly lost in culture. Using a bioengineered substrate to recapitulate key biophysical and biochemical niche features in conjunction with a highly automated single-cell tracking algorithm, we show that substrate elasticity is a potent regulator of MuSC fate in culture. Unlike MuSCs on rigid plastic dishes (approximately 10(6) kilopascals), MuSCs cultured on soft hydrogel substrates that mimic the elasticity of muscle (12 kilopascals) self-renew in vitro and contribute extensively to muscle regeneration when subsequently transplanted into mice and assayed histologically and quantitatively by noninvasive bioluminescence imaging. Our studies provide novel evidence that by recapitulating physiological tissue rigidity, propagation of adult muscle stem cells is possible, enabling future cell-based therapies for muscle-wasting diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, P M -- Havenstrite, K L -- Magnusson, K E G -- Sacco, A -- Leonardi, N A -- Kraft, P -- Nguyen, N K -- Thrun, S -- Lutolf, M P -- Blau, H M -- 2 T32 HD007249/HD/NICHD NIH HHS/ -- 52005886/Howard Hughes Medical Institute/ -- AG009521/AG/NIA NIH HHS/ -- AG020961/AG/NIA NIH HHS/ -- CA09151/CA/NCI NIH HHS/ -- HL096113/HL/NHLBI NIH HHS/ -- R01 AG009521/AG/NIA NIH HHS/ -- R01 AG009521-25/AG/NIA NIH HHS/ -- R01 AG020961/AG/NIA NIH HHS/ -- R01 AG020961-06A2/AG/NIA NIH HHS/ -- R01 AG020961-07/AG/NIA NIH HHS/ -- R01 HL096113/HL/NHLBI NIH HHS/ -- R01 HL096113-03/HL/NHLBI NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA009151-35/CA/NCI NIH HHS/ -- T32 HD007249/HD/NICHD NIH HHS/ -- T32 HD007249-25/HD/NICHD NIH HHS/ -- U01 HL100397/HL/NHLBI NIH HHS/ -- U01 HL100397-01/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1078-81. doi: 10.1126/science.1191035. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647425" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cell Count ; Cell Culture Techniques/*methods ; Cell Death ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Separation ; Cell Survival ; Cells, Cultured ; Elastic Modulus ; Hydrogels ; Mice ; Mice, Inbred C57BL ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; Muscle Fibers, Skeletal/*cytology/physiology ; Muscle, Skeletal/*cytology ; Polyethylene Glycols ; Regeneration ; Satellite Cells, Skeletal Muscle/cytology ; Stem Cell Niche/*physiology ; Stem Cell Transplantation ; Stem Cells/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2010-03-27
    Description: Shelterin is an essential telomeric protein complex that prevents DNA damage signaling and DNA repair at mammalian chromosome ends. Here we report on the role of the TRF2-interacting factor Rap1, a conserved shelterin subunit of unknown function. We removed Rap1 from mouse telomeres either through gene deletion or by replacing TRF2 with a mutant that does not bind Rap1. Rap1 was dispensable for the essential functions of TRF2--repression of ATM kinase signaling and nonhomologous end joining (NHEJ)--and mice lacking telomeric Rap1 were viable and fertile. However, Rap1 was critical for the repression of homology-directed repair (HDR), which can alter telomere length. The data reveal that HDR at telomeres can take place in the absence of DNA damage foci and underscore the functional compartmentalization within shelterin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- Kabir, Shaheen -- van Overbeek, Megan -- Celli, Giulia B -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM049046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 AG016642-01/AG/NIA NIH HHS/ -- R01 AG016642-02/AG/NIA NIH HHS/ -- R01 AG016642-03/AG/NIA NIH HHS/ -- R01 AG016642-04/AG/NIA NIH HHS/ -- R01 AG016642-05/AG/NIA NIH HHS/ -- R01 AG016642-06/AG/NIA NIH HHS/ -- R01 AG016642-07/AG/NIA NIH HHS/ -- R01 AG016642-08/AG/NIA NIH HHS/ -- R01 AG016642-09/AG/NIA NIH HHS/ -- R01 AG016642-10/AG/NIA NIH HHS/ -- R01 AG016642-11/AG/NIA NIH HHS/ -- R01 GM049046/GM/NIGMS NIH HHS/ -- R01 GM049046-07/GM/NIGMS NIH HHS/ -- R01 GM049046-08/GM/NIGMS NIH HHS/ -- R01 GM049046-09/GM/NIGMS NIH HHS/ -- R01 GM049046-10/GM/NIGMS NIH HHS/ -- R01 GM049046-11/GM/NIGMS NIH HHS/ -- R01 GM049046-12/GM/NIGMS NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- R37 GM049046-13/GM/NIGMS NIH HHS/ -- R37 GM049046-14/GM/NIGMS NIH HHS/ -- R37 GM049046-15/GM/NIGMS NIH HHS/ -- R37 GM049046-16/GM/NIGMS NIH HHS/ -- R37 GM049046-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1657-61. doi: 10.1126/science.1185100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Proliferation ; Cells, Cultured ; Checkpoint Kinase 2 ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Gene Deletion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Recombination, Genetic ; Signal Transduction ; Sister Chromatid Exchange ; Telomere/*genetics/metabolism ; Telomere-Binding Proteins/chemistry/*genetics/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-12-15
    Description: Alzheimer's disease is hypothesized to be caused by an imbalance between beta-amyloid (Abeta) production and clearance that leads to Abeta accumulation in the central nervous system (CNS). Abeta production and clearance are key targets in the development of disease-modifying therapeutic agents for Alzheimer's disease. However, there has not been direct evidence of altered Abeta production or clearance in Alzheimer's disease. By using metabolic labeling, we measured Abeta42 and Abeta40 production and clearance rates in the CNS of participants with Alzheimer's disease and cognitively normal controls. Clearance rates for both Abeta42 and Abeta40 were impaired in Alzheimer's disease compared with controls. On average, there were no differences in Abeta40 or Abeta42 production rates. Thus, the common late-onset form of Alzheimer's disease is characterized by an overall impairment in Abeta clearance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073454/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073454/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mawuenyega, Kwasi G -- Sigurdson, Wendy -- Ovod, Vitaliy -- Munsell, Ling -- Kasten, Tom -- Morris, John C -- Yarasheski, Kevin E -- Bateman, Randall J -- K08 AG027091/AG/NIA NIH HHS/ -- K08 AG027091-03/AG/NIA NIH HHS/ -- K23 AG030946/AG/NIA NIH HHS/ -- K23 AG030946-04/AG/NIA NIH HHS/ -- P01 AG003991/AG/NIA NIH HHS/ -- P01 AG003991-28/AG/NIA NIH HHS/ -- P01 AG03991/AG/NIA NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-10/DK/NIDDK NIH HHS/ -- P41 GM103422/GM/NIGMS NIH HHS/ -- P41 RR000954/RR/NCRR NIH HHS/ -- P41 RR000954-34/RR/NCRR NIH HHS/ -- P50 AG005681/AG/NIA NIH HHS/ -- P50 AG005681-28/AG/NIA NIH HHS/ -- P50 AG05681/AG/NIA NIH HHS/ -- P60 DK020579/DK/NIDDK NIH HHS/ -- P60 DK020579-31/DK/NIDDK NIH HHS/ -- R01 NS065667/NS/NINDS NIH HHS/ -- R01 NS065667-03/NS/NINDS NIH HHS/ -- UL1 RR024992/RR/NCRR NIH HHS/ -- UL1 RR024992-05/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1774. doi: 10.1126/science.1197623. Epub 2010 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148344" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/cerebrospinal fluid/*metabolism ; Amyloid beta-Peptides/cerebrospinal fluid/*metabolism ; Brain/*metabolism ; Female ; Humans ; Kinetics ; Male ; Middle Aged ; Peptide Fragments/cerebrospinal fluid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-08-28
    Description: Presynaptic nerve terminals release neurotransmitters repeatedly, often at high frequency, and in relative isolation from neuronal cell bodies. Repeated release requires cycles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-complex assembly and disassembly, with continuous generation of reactive SNARE-protein intermediates. Although many forms of neurodegeneration initiate presynaptically, only few pathogenic mechanisms are known, and the functions of presynaptic proteins linked to neurodegeneration, such as alpha-synuclein, remain unclear. Here, we show that maintenance of continuous presynaptic SNARE-complex assembly required a nonclassical chaperone activity mediated by synucleins. Specifically, alpha-synuclein directly bound to the SNARE-protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) and promoted SNARE-complex assembly. Moreover, triple-knockout mice lacking synucleins developed age-dependent neurological impairments, exhibited decreased SNARE-complex assembly, and died prematurely. Thus, synucleins may function to sustain normal SNARE-complex assembly in a presynaptic terminal during aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235365/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burre, Jacqueline -- Sharma, Manu -- Tsetsenis, Theodoros -- Buchman, Vladimir -- Etherton, Mark R -- Sudhof, Thomas C -- 075615/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 24;329(5999):1663-7. doi: 10.1126/science.1195227. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798282" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; Cells, Cultured ; HSP40 Heat-Shock Proteins/metabolism ; Humans ; Membrane Fusion ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Nerve Degeneration/*metabolism ; Neurons/*metabolism ; Presynaptic Terminals/*metabolism ; Protein Binding ; Rats ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism ; alpha-Synuclein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-02-27
    Description: A20 negatively regulates inflammation by inhibiting the nuclear factor kappaB (NF-kappaB) transcription factor in the tumor necrosis factor-receptor (TNFR) and Toll-like receptor (TLR) pathways. A20 contains deubiquitinase and E3 ligase domains and thus has been proposed to function as a ubiquitin-editing enzyme downstream of TNFR1 by inactivating ubiquitinated RIP1. However, it remains unclear how A20 terminates NF-kappaB signaling downstream of TLRs. We have shown that A20 inhibited the E3 ligase activities of TRAF6, TRAF2, and cIAP1 by antagonizing interactions with the E2 ubiquitin conjugating enzymes Ubc13 and UbcH5c. A20, together with the regulatory molecule TAX1BP1, interacted with Ubc13 and UbcH5c and triggered their ubiquitination and proteasome-dependent degradation. These findings suggest mechanism of A20 action in the inhibition of inflammatory signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shembade, Noula -- Ma, Averil -- Harhaj, Edward W -- R01 CA135362/CA/NCI NIH HHS/ -- R01 CA135362-04/CA/NCI NIH HHS/ -- R01 DK071939/DK/NIDDK NIH HHS/ -- R01 DK071939-07/DK/NIDDK NIH HHS/ -- R01 GM083143/GM/NIGMS NIH HHS/ -- R01 GM083143-03/GM/NIGMS NIH HHS/ -- R01CA135362/CA/NCI NIH HHS/ -- R01GM083143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1135-9. doi: 10.1126/science.1182364.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, FL 33136, USA. nshembade@med.miami.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cells, Cultured ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Gene Products, tax/metabolism ; Inflammation/*metabolism ; Inhibitor of Apoptosis Proteins/antagonists & inhibitors/metabolism ; Interleukin-1/immunology/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Mice ; NF-kappa B/*metabolism ; Neoplasm Proteins/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Receptors, Tumor Necrosis Factor, Type I/metabolism ; *Signal Transduction ; TNF Receptor-Associated Factor 2/antagonists & inhibitors/metabolism ; TNF Receptor-Associated Factor 6/antagonists & inhibitors/metabolism ; Tumor Necrosis Factor-alpha/immunology/metabolism ; Ubiquitin-Conjugating Enzymes/*metabolism ; Ubiquitin-Protein Ligases/*antagonists & inhibitors/metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-06-05
    Description: Despite the widespread use of axially chiral, or atropisomeric, biaryl ligands in modern synthesis and the occurrence of numerous natural products exhibiting axial chirality, few catalytic methods have emerged for the direct asymmetric preparation of this compound class. Here, we present a tripeptide-derived small-molecule catalyst for the dynamic kinetic resolution of racemic biaryl substrates. The reaction proceeds via an atropisomer-selective electrophilic aromatic substitution reaction using simple bromination reagents. The result is an enantioselective synthesis that delivers chiral nonracemic biaryl compounds with excellent optical purity and good isolated chemical yields (in most cases a 〉95:5 enantiomer ratio and isolated yields of 65 to 87%). A mechanistic model is advanced that accounts for the basis of selectivity observed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gustafson, Jeffrey L -- Lim, Daniel -- Miller, Scott J -- GM068649/GM/NIGMS NIH HHS/ -- R01 GM068649/GM/NIGMS NIH HHS/ -- R01 GM068649-10/GM/NIGMS NIH HHS/ -- R37 GM068649/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1251-5. doi: 10.1126/science.1188403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, 225 Prospect Street, Post Office Box 208107, New Haven, CT 06520-8107, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522769" target="_blank"〉PubMed〈/a〉
    Keywords: Biphenyl Compounds/*chemical synthesis/chemistry ; Bromine/chemistry ; Catalysis ; *Halogenation ; Kinetics ; Ligands ; Molecular Structure ; Oligopeptides/*chemistry ; Physicochemical Processes ; *Stereoisomerism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-05-08
    Description: Clathrin-mediated endocytosis, the major pathway for ligand internalization into eukaryotic cells, is thought to be initiated by the clustering of clathrin and adaptors around receptors destined for internalization. However, here we report that the membrane-sculpting F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 (FCHo1/2) were required for plasma membrane clathrin-coated vesicle (CCV) budding and marked sites of CCV formation. Changes in FCHo1/2 expression levels correlated directly with numbers of CCV budding events, ligand endocytosis, and synaptic vesicle marker recycling. FCHo1/2 proteins bound specifically to the plasma membrane and recruited the scaffold proteins eps15 and intersectin, which in turn engaged the adaptor complex AP2. The FCHo F-BAR membrane-bending activity was required, leading to the proposal that FCHo1/2 sculpt the initial bud site and recruit the clathrin machinery for CCV formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883440/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henne, William Mike -- Boucrot, Emmanuel -- Meinecke, Michael -- Evergren, Emma -- Vallis, Yvonne -- Mittal, Rohit -- McMahon, Harvey T -- MC_U105178795/Medical Research Council/United Kingdom -- U.1051.02.007(78795)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1281-4. doi: 10.1126/science.1188462. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448150" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/metabolism ; Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport/metabolism ; Animals ; Calcium-Binding Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Clathrin/*metabolism ; Clathrin-Coated Vesicles/*metabolism ; *Endocytosis ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Membrane Proteins ; Mice ; Models, Molecular ; Neurons/cytology/metabolism ; Phosphoproteins/metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-10-16
    Description: Neutrophils are recruited from the blood to sites of sterile inflammation, where they contribute to wound healing but may also cause tissue damage. By using spinning disk confocal intravital microscopy, we examined the kinetics and molecular mechanisms of neutrophil recruitment to sites of focal hepatic necrosis in vivo. Adenosine triphosphate released from necrotic cells activated the Nlrp3 inflammasome to generate an inflammatory microenvironment that alerted circulating neutrophils to adhere within liver sinusoids. Subsequently, generation of an intravascular chemokine gradient directed neutrophil migration through healthy tissue toward foci of damage. Lastly, formyl-peptide signals released from necrotic cells guided neutrophils through nonperfused sinusoids into the injury. Thus, dynamic in vivo imaging revealed a multistep hierarchy of directional cues that guide neutrophil localization to sites of sterile inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonald, Braedon -- Pittman, Keir -- Menezes, Gustavo B -- Hirota, Simon A -- Slaba, Ingrid -- Waterhouse, Christopher C M -- Beck, Paul L -- Muruve, Daniel A -- Kubes, Paul -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):362-6. doi: 10.1126/science.1195491.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Research Group, University of Calgary, Alberta T2N 4N1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947763" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion ; Chemokine CXCL2/metabolism ; Chemokines/metabolism ; Chemotaxis, Leukocyte ; Cues ; Endothelium, Vascular/physiology ; Inflammation/*immunology/metabolism/*pathology ; Kinetics ; Liver/blood supply/*immunology/metabolism/*pathology ; Liver Diseases/*immunology/metabolism/*pathology ; Macrophage-1 Antigen/physiology ; Mice ; Microscopy/methods ; Microscopy, Confocal ; Microvessels/physiology ; Necrosis ; *Neutrophil Infiltration ; Neutrophils/physiology ; Peptides/metabolism ; Receptors, Formyl Peptide/metabolism ; Receptors, Interleukin-8B/metabolism ; Receptors, Purinergic P2/metabolism ; Receptors, Purinergic P2X7 ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-13
    Description: Hamilton's theory of inclusive fitness showed how natural selection could lead to behaviors that decrease the relative fitness of the actor and also either benefit (altruism) or harm (spite) other individuals. However, several fundamental issues in the evolution of altruism and spite have remained contentious. Here, we show how recent work has resolved three key debates, helping clarify how Hamilton's theoretical overview links to real-world examples, in organisms ranging from bacteria to humans: Is the evolution of extreme altruism, represented by the sterile workers of social insects, driven by genetics or ecology? Does spite really exist in nature? And, can altruism be favored between individuals who are not close kin but share a "greenbeard" gene for altruism?〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, Stuart A -- Gardner, Andy -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1341-4. doi: 10.1126/science.1178332.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, Oxford University, South Parks Road, Oxford OX1 3PS, UK. stuart.west@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223978" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; *Altruism ; Animals ; Behavior, Animal ; Competitive Behavior ; Cooperative Behavior ; Diploidy ; Female ; Genes ; *Genetic Fitness ; Haploidy ; Humans ; Male ; Reproduction ; *Selection, Genetic ; Sexual Behavior, Animal ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2010-07-21
    Description: The Centre for the AIDS Program of Research in South Africa (CAPRISA) 004 trial assessed the effectiveness and safety of a 1% vaginal gel formulation of tenofovir, a nucleotide reverse transcriptase inhibitor, for the prevention of HIV acquisition in women. A double-blind, randomized controlled trial was conducted comparing tenofovir gel (n = 445 women) with placebo gel (n = 444 women) in sexually active, HIV-uninfected 18- to 40-year-old women in urban and rural KwaZulu-Natal, South Africa. HIV serostatus, safety, sexual behavior, and gel and condom use were assessed at monthly follow-up visits for 30 months. HIV incidence in the tenofovir gel arm was 5.6 per 100 women-years (person time of study observation) (38 out of 680.6 women-years) compared with 9.1 per 100 women-years (60 out of 660.7 women-years) in the placebo gel arm (incidence rate ratio = 0.61; P = 0.017). In high adherers (gel adherence 〉 80%), HIV incidence was 54% lower (P = 0.025) in the tenofovir gel arm. In intermediate adherers (gel adherence 50 to 80%) and low adherers (gel adherence 〈 50%), the HIV incidence reduction was 38 and 28%, respectively. Tenofovir gel reduced HIV acquisition by an estimated 39% overall, and by 54% in women with high gel adherence. No increase in the overall adverse event rates was observed. There were no changes in viral load and no tenofovir resistance in HIV seroconverters. Tenofovir gel could potentially fill an important HIV prevention gap, especially for women unable to successfully negotiate mutual monogamy or condom use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abdool Karim, Quarraisha -- Abdool Karim, Salim S -- Frohlich, Janet A -- Grobler, Anneke C -- Baxter, Cheryl -- Mansoor, Leila E -- Kharsany, Ayesha B M -- Sibeko, Sengeziwe -- Mlisana, Koleka P -- Omar, Zaheen -- Gengiah, Tanuja N -- Maarschalk, Silvia -- Arulappan, Natasha -- Mlotshwa, Mukelisiwe -- Morris, Lynn -- Taylor, Douglas -- CAPRISA 004 Trial Group -- AI51794/AI/NIAID NIH HHS/ -- D43 TW000231/TW/FIC NIH HHS/ -- D43 TW000231-17/TW/FIC NIH HHS/ -- D43TW00231/TW/FIC NIH HHS/ -- U01 AI068619/AI/NIAID NIH HHS/ -- U01AI068633/AI/NIAID NIH HHS/ -- U01AI46749/AI/NIAID NIH HHS/ -- U19 AI051794/AI/NIAID NIH HHS/ -- U19 AI051794-05/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1168-74. doi: 10.1126/science.1193748. Epub 2010 Jul 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for the AIDS Program of Research in South Africa (CAPRISA), Durban 4013, South Africa. caprisa@ukzn.ac.za〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20643915" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/administration & dosage/adverse effects/*analogs & ; derivatives/therapeutic use ; Administration, Intravaginal ; Adolescent ; Adult ; Anti-HIV Agents/*administration & dosage/adverse effects/therapeutic use ; Anti-Infective Agents, Local/administration & dosage/adverse effects/therapeutic ; use ; Double-Blind Method ; Drug Resistance, Viral ; Female ; HIV Infections/epidemiology/*prevention & control ; HIV-1/*drug effects/physiology ; Humans ; Incidence ; Organophosphonates/*administration & dosage/adverse effects/therapeutic use ; Patient Compliance ; Pregnancy ; Pregnancy Outcome ; Rural Population/statistics & numerical data ; Sexual Behavior ; South Africa/epidemiology ; Tenofovir ; Urban Population/statistics & numerical data ; Vaginal Creams, Foams, and Jellies ; Viral Load ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-09-04
    Description: Leukotriene A(4) hydrolase (LTA(4)H) is a proinflammatory enzyme that generates the inflammatory mediator leukotriene B(4) (LTB(4)). LTA(4)H also possesses aminopeptidase activity with unknown substrate and physiological importance; we identified the neutrophil chemoattractant proline-glycine-proline (PGP) as this physiological substrate. PGP is a biomarker for chronic obstructive pulmonary disease (COPD) and is implicated in neutrophil persistence in the lung. In acute neutrophil-driven inflammation, PGP was degraded by LTA(4)H, which facilitated the resolution of inflammation. In contrast, cigarette smoke, a major risk factor for the development of COPD, selectively inhibited LTA(4)H aminopeptidase activity, which led to the accumulation of PGP and neutrophils. These studies imply that therapeutic strategies inhibiting LTA(4)H to prevent LTB(4) generation may not reduce neutrophil recruitment because of elevated levels of PGP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snelgrove, Robert J -- Jackson, Patricia L -- Hardison, Matthew T -- Noerager, Brett D -- Kinloch, Andrew -- Gaggar, Amit -- Shastry, Suresh -- Rowe, Steven M -- Shim, Yun M -- Hussell, Tracy -- Blalock, J Edwin -- 082727/Z/07/Z/Wellcome Trust/United Kingdom -- 1K23DK075788/DK/NIDDK NIH HHS/ -- 1R03DK084110-01/DK/NIDDK NIH HHS/ -- G0400795/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- HL07783/HL/NHLBI NIH HHS/ -- HL087824/HL/NHLBI NIH HHS/ -- HL090999/HL/NHLBI NIH HHS/ -- HL102371-A1/HL/NHLBI NIH HHS/ -- K08HL091127/HL/NHLBI NIH HHS/ -- P171/03/C1/048/Medical Research Council/United Kingdom -- P30 DK079337/DK/NIDDK NIH HHS/ -- P30AR050948/AR/NIAMS NIH HHS/ -- P30CA13148/CA/NCI NIH HHS/ -- P50 AT00477/AT/NCCIH NIH HHS/ -- R01 HL077783/HL/NHLBI NIH HHS/ -- R01 HL077783-05/HL/NHLBI NIH HHS/ -- R01 HL087824/HL/NHLBI NIH HHS/ -- R01 HL087824-02/HL/NHLBI NIH HHS/ -- R01 HL090999/HL/NHLBI NIH HHS/ -- R01 HL090999-02S1/HL/NHLBI NIH HHS/ -- R01 HL090999-04/HL/NHLBI NIH HHS/ -- R01 HL102371/HL/NHLBI NIH HHS/ -- RR19231/RR/NCRR NIH HHS/ -- U54CA100949/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):90-4. doi: 10.1126/science.1190594. Epub 2010 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham Lung Health Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA. rjs198@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813919" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Bronchoalveolar Lavage Fluid/chemistry ; Cells, Cultured ; Chemokines, CXC/metabolism ; Chemotaxis, Leukocyte ; Epoxide Hydrolases/antagonists & inhibitors/isolation & purification/*metabolism ; Female ; Humans ; Inflammation ; Leukotriene B4/metabolism ; Lung/*immunology/metabolism/pathology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutrophils/enzymology/immunology/*physiology ; Oligopeptides/*metabolism ; Orthomyxoviridae Infections/immunology/metabolism/pathology ; Pneumococcal Infections/immunology/metabolism/pathology ; Pneumonia/*immunology/metabolism/pathology/therapy ; Proline/*analogs & derivatives/metabolism ; Pulmonary Disease, Chronic Obstructive/immunology/metabolism/pathology ; *Smoke ; Tobacco
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-07-22
    Description: The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Justin B -- Zanghellini, Alexandre -- Lovick, Helena M -- Kiss, Gert -- Lambert, Abigail R -- St Clair, Jennifer L -- Gallaher, Jasmine L -- Hilvert, Donald -- Gelb, Michael H -- Stoddard, Barry L -- Houk, Kendall N -- Michael, Forrest E -- Baker, David -- R01 GM075962/GM/NIGMS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32 GM008268-24/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647463" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamides/chemistry ; Algorithms ; Butadienes/chemistry ; Carbon/*chemistry ; Catalysis ; Catalytic Domain ; Computer Simulation ; *Computer-Aided Design ; Crystallography, X-Ray ; Enzymes/*chemistry/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutagenesis ; Physicochemical Processes ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics ; Software ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):519. doi: 10.1126/science.327.5965.519.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa/classification/genetics ; Biodiversity ; *Biological Evolution ; Cnidaria/classification/genetics ; *Ecosystem ; Genes ; Genetic Speciation ; Geologic Sediments ; Phylogeny ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-05-08
    Description: It is now possible to perform whole-genome shotgun sequencing as well as capture of specific genomic regions for extinct organisms. However, targeted resequencing of large parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can successfully recover more than a megabase of target regions from Neandertal DNA even in the presence of approximately 99.8% microbial DNA. Using this approach, we have sequenced approximately 14,000 protein-coding positions inferred to have changed on the human lineage since the last common ancestor shared with chimpanzees. By generating the sequence of one Neandertal and 50 present-day humans at these positions, we have identified 88 amino acid substitutions that have become fixed in humans since our divergence from the Neandertals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3140021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burbano, Hernan A -- Hodges, Emily -- Green, Richard E -- Briggs, Adrian W -- Krause, Johannes -- Meyer, Matthias -- Good, Jeffrey M -- Maricic, Tomislav -- Johnson, Philip L F -- Xuan, Zhenyu -- Rooks, Michelle -- Bhattacharjee, Arindam -- Brizuela, Leonardo -- Albert, Frank W -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Lachmann, Michael -- Hannon, Gregory J -- Paabo, Svante -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- P01 CA013106-39/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):723-5. doi: 10.1126/science.1188046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448179" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Fossils ; Genes ; *Genome ; *Genome, Human ; Hominidae/*genetics ; Humans ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis/*methods ; Pan troglodytes/genetics ; Proteins/chemistry/genetics ; Sequence Alignment ; Sequence Analysis, DNA/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-07-22
    Description: The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bungard, David -- Fuerth, Benjamin J -- Zeng, Ping-Yao -- Faubert, Brandon -- Maas, Nancy L -- Viollet, Benoit -- Carling, David -- Thompson, Craig B -- Jones, Russell G -- Berger, Shelley L -- CA078831/CA/NCI NIH HHS/ -- CA09171/CA/NCI NIH HHS/ -- CA105463/CA/NCI NIH HHS/ -- MC_U120027537/Medical Research Council/United Kingdom -- MOP-93799/Canadian Institutes of Health Research/Canada -- P01 AG031862/AG/NIA NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1201-5. doi: 10.1126/science.1191241. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647423" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adaptation, Physiological ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Enzyme Activation ; Gene Expression Regulation ; Histones/chemistry/*metabolism ; Humans ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Serine/metabolism ; Signal Transduction ; *Stress, Physiological ; *Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Singh, Harinder -- Demarco, Ignacio A -- New York, N.Y. -- Science. 2010 Aug 20;329(5994):914-5. doi: 10.1126/science.1194316.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Immunology, Genentech, San Francisco, CA 94080, USA. singh.harinder@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20724627" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Antibody Specificity/*genetics ; B-Lymphocytes/*immunology ; Carrier Proteins/genetics/*physiology ; Cells, Cultured ; Chromatin/metabolism ; Cytidine Deaminase/*metabolism ; Dna ; DNA Breaks, Double-Stranded ; DNA Modification Methylases/metabolism ; Histone-Lysine N-Methyltransferase/genetics ; Histones/metabolism ; Immunoglobulin Class Switching/genetics/*physiology ; Immunoglobulin Switch Region ; Lymphocyte Activation ; Methylation ; Mice ; Mice, Knockout ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Recombination, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Santo, James P -- R01 AR060723/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):44-5. doi: 10.1126/science.1191664.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Innate Immunity Unit, Institut Pasteur, Paris F-75724, France. james.di-santo@pasteur.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595605" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Expression Regulation ; Interleukin-7/physiology ; Killer Cells, Natural/cytology/immunology/*physiology ; *Lymphopoiesis/genetics ; Mice ; Models, Biological ; Precursor Cells, T-Lymphoid/cytology/physiology ; Repressor Proteins/*genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/cytology/immunology/*physiology ; Tumor Suppressor Proteins/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2010-06-26
    Description: Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active "organ-on-a-chip" microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huh, Dongeun -- Matthews, Benjamin D -- Mammoto, Akiko -- Montoya-Zavala, Martin -- Hsin, Hong Yuan -- Ingber, Donald E -- R01-ES016665/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1662-8. doi: 10.1126/science.1188302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576885" target="_blank"〉PubMed〈/a〉
    Keywords: Air ; Animals ; *Biomimetic Materials ; Blood-Air Barrier ; Capillaries/*physiology ; Capillary Permeability ; Cells, Cultured ; Endothelial Cells/*physiology ; Escherichia coli/immunology ; Humans ; Immunity, Innate ; Inflammation ; Lung/blood supply/physiology ; Mice ; *Microfluidic Analytical Techniques ; Microtechnology ; Nanoparticles/toxicity ; Neutrophil Infiltration ; Oxidative Stress ; Pneumocytes/*physiology ; Pulmonary Alveoli/*blood supply/cytology/immunology/*physiology ; Respiration ; Silicon Dioxide/toxicity ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-12-15
    Description: Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raffaele, Sylvain -- Farrer, Rhys A -- Cano, Liliana M -- Studholme, David J -- MacLean, Daniel -- Thines, Marco -- Jiang, Rays H Y -- Zody, Michael C -- Kunjeti, Sridhara G -- Donofrio, Nicole M -- Meyers, Blake C -- Nusbaum, Chad -- Kamoun, Sophien -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1540-3. doi: 10.1126/science.1193070.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148391" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Amino Acid Sequence ; Computational Biology ; DNA Copy Number Variations ; Epistasis, Genetic ; *Evolution, Molecular ; Genes ; *Genome ; Host Specificity/*genetics ; Host-Parasite Interactions ; Lycopersicon esculentum/parasitology ; Molecular Sequence Data ; Phytophthora/classification/*genetics/pathogenicity/physiology ; Phytophthora infestans/classification/*genetics/*pathogenicity/physiology ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/chemistry/genetics/metabolism ; Selection, Genetic ; Sequence Analysis, DNA ; Solanum tuberosum/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2010-09-11
    Description: Filopodia are finger-like protrusive structures, containing actin bundles. By incubating frog egg extracts with supported lipid bilayers containing phosphatidylinositol 4,5 bisphosphate, we have reconstituted the assembly of filopodia-like structures (FLSs). The actin assembles into parallel bundles, and known filopodial components localize to the tip and shaft. The filopodia tip complexes self-organize--they are not templated by preexisting membrane microdomains. The F-BAR domain protein toca-1 recruits N-WASP, followed by the Arp2/3 complex and actin. Elongation proteins, Diaphanous-related formin, VASP, and fascin are recruited subsequently. Although the Arp2/3 complex is required for FLS initiation, it is not essential for elongation, which involves formins. We propose that filopodia form via clustering of Arp2/3 complex activators, self-assembly of filopodial tip complexes on the membrane, and outgrowth of actin bundles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Kwonmoo -- Gallop, Jennifer L -- Rambani, Komal -- Kirschner, Marc W -- GM26875/GM/NIGMS NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01 GM026875-34/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1341-5. doi: 10.1126/science.1191710.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829485" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/ultrastructure ; Actin-Related Protein 2-3 Complex/metabolism ; Actins/*metabolism ; Animals ; Carrier Proteins/metabolism ; Cell Adhesion Molecules/metabolism ; Cell Membrane/metabolism ; Humans ; Kinetics ; *Lipid Bilayers ; Membrane Microdomains ; Mice ; Microfilament Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; NADPH Dehydrogenase/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoproteins/metabolism ; Pseudopodia/*metabolism/*ultrastructure ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism ; Xenopus ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-12-04
    Description: Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are associated with deficiency of Bax and Bak, including persistent interdigital webs and imperforate vaginas. Genetic deletion of Bid, Bim, and Puma prevented the homo-oligomerization of BAX and BAK, and thereby cytochrome c-mediated activation of caspases in response to diverse death signals in neurons and T lymphocytes, despite the presence of other BH3-only molecules. Thus, many forms of apoptosis require direct activation of BAX and BAK at the mitochondria by a member of the BID, BIM, or PUMA family of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, Decheng -- Tu, Ho-Chou -- Kim, Hyungjin -- Wang, Gary X -- Bean, Gregory R -- Takeuchi, Osamu -- Jeffers, John R -- Zambetti, Gerard P -- Hsieh, James J-D -- Cheng, Emily H-Y -- P30CA21765/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- R01 CA125562-03/CA/NCI NIH HHS/ -- R01 CA125562-04/CA/NCI NIH HHS/ -- R01CA125562/CA/NCI NIH HHS/ -- R01GM083159/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1390-3. doi: 10.1126/science.1190217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/deficiency/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/deficiency/genetics/*metabolism ; Caspases/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Cytochromes c/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Models, Biological ; Neurons/*physiology ; Permeability ; Protein Multimerization ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Stress, Physiological ; T-Lymphocytes/physiology ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism ; bcl-2 Homologous Antagonist-Killer Protein/chemistry/genetics/*metabolism ; bcl-2-Associated X Protein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray-Gallet, Dominique -- Almouzni, Genevieve -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):56-7. doi: 10.1126/science.1188653.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Nuclear Dynamics and Genome Plasticity, UMR218 CNRS/Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360101" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly ; DNA Replication ; Histones/*chemistry/*metabolism ; Humans ; Nucleosomes/*metabolism ; Protein Multimerization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Leslie -- New York, N.Y. -- Science. 2011 Jul 29;333(6042):540-3. doi: 10.1126/science.333.6042.540.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798924" target="_blank"〉PubMed〈/a〉
    Keywords: Birth Rate ; Female ; Forecasting ; Humans ; Male ; Parity ; *Population Growth ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-04-23
    Description: Cellular messenger RNA levels are achieved by the combinatorial complexity of factors controlling transcription, yet the small number of molecules involved in these pathways fluctuates stochastically. It has not yet been experimentally possible to observe the activity of single polymerases on an endogenous gene to elucidate how these events occur in vivo. Here, we describe a method of fluctuation analysis of fluorescently labeled RNA to measure dynamics of nascent RNA--including initiation, elongation, and termination--at an active yeast locus. We find no transcriptional memory between initiation events, and elongation speed can vary by threefold throughout the cell cycle. By measuring the abundance and intranuclear mobility of an upstream transcription factor, we observe that the gene firing rate is directly determined by trans-activating factor search times.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larson, Daniel R -- Zenklusen, Daniel -- Wu, Bin -- Chao, Jeffrey A -- Singer, Robert H -- 57071/PHS HHS/ -- 86217/PHS HHS/ -- R01 GM057071/GM/NIGMS NIH HHS/ -- R01 GM057071-10/GM/NIGMS NIH HHS/ -- R01 GM057071-11/GM/NIGMS NIH HHS/ -- R01 GM057071-12/GM/NIGMS NIH HHS/ -- R01 GM086217/GM/NIGMS NIH HHS/ -- R01 GM086217-01/GM/NIGMS NIH HHS/ -- R01 GM086217-02/GM/NIGMS NIH HHS/ -- R01 GM086217-03/GM/NIGMS NIH HHS/ -- R01 GM086217-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):475-8. doi: 10.1126/science.1202142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512033" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics ; Cell Cycle ; Cell Nucleus/metabolism ; DNA Polymerase I/genetics ; Facilitated Diffusion ; *Genes, Fungal ; Glutamate Synthase/genetics ; Green Fluorescent Proteins ; Kinetics ; Microscopy, Fluorescence ; Models, Genetic ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA Precursors/genetics/metabolism ; RNA, Fungal/biosynthesis/*genetics ; RNA, Messenger/biosynthesis/*genetics ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Spectrometry, Fluorescence ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-07-09
    Description: Both engineering and evolution are constrained by trade-offs between efficiency and robustness, but theory that formalizes this fact is limited. For a simple two-state model of glycolysis, we explicitly derive analytic equations for hard trade-offs between robustness and efficiency with oscillations as an inevitable side effect. The model describes how the trade-offs arise from individual parameters, including the interplay of feedback control with autocatalysis of network products necessary to power and catalyze intermediate reactions. We then use control theory to prove that the essential features of these hard trade-off "laws" are universal and fundamental, in that they depend minimally on the details of this system and generalize to the robust efficiency of any autocatalytic network. The theory also suggests worst-case conditions that are consistent with initial experiments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandra, Fiona A -- Buzi, Gentian -- Doyle, John C -- R01GM078992A/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):187-92. doi: 10.1126/science.1200705.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA. fiona@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21737735" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Biocatalysis ; Feedback, Physiological ; Glucose/metabolism ; *Glycolysis ; Kinetics ; Linear Models ; *Models, Biological ; NAD/metabolism ; Nonlinear Dynamics ; Phosphofructokinases/antagonists & inhibitors/metabolism ; Pyruvate Kinase/antagonists & inhibitors/metabolism ; Saccharomyces cerevisiae/*metabolism ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-11-15
    Description: Intestinal epithelial stem cell identity and location have been the subject of substantial research. Cells in the +4 niche are slow-cycling and label-retaining, whereas a different stem cell niche located at the crypt base is occupied by crypt base columnar (CBC) cells. CBCs are distinct from +4 cells, and the relationship between them is unknown, though both give rise to all intestinal epithelial lineages. We demonstrate that Hopx, an atypical homeobox protein, is a specific marker of +4 cells. Hopx-expressing cells give rise to CBCs and all mature intestinal epithelial lineages. Conversely, CBCs can give rise to +4 Hopx-positive cells. These findings demonstrate a bidirectional lineage relationship between active and quiescent stem cells in their niches.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeda, Norifumi -- Jain, Rajan -- LeBoeuf, Matthew R -- Wang, Qiaohong -- Lu, Min Min -- Epstein, Jonathan A -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1420-4. doi: 10.1126/science.1213214. Epub 2011 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22075725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epithelial Cells/*cytology ; Homeodomain Proteins/analysis/genetics ; Intestinal Mucosa/*cytology/drug effects ; Intestine, Small/*cytology/drug effects ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/physiology ; Paneth Cells/cytology ; *Stem Cell Niche ; Tamoxifen/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nair, Gautham -- Raj, Arjun -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):431-2. doi: 10.1126/science.1205995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512026" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Directed RNA Polymerases/metabolism ; Fibroblasts ; *Gene Expression ; *Gene Silencing ; Genes, Fungal ; Kinetics ; Mice ; Models, Genetic ; RNA, Messenger/*genetics/metabolism ; Signal Processing, Computer-Assisted ; Stochastic Processes ; *Transcription, Genetic ; *Transcriptional Activation ; Yeasts/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-03-12
    Description: The spliceosome is the complex macromolecular machine responsible for removing introns from precursors to messenger RNAs (pre-mRNAs). We combined yeast genetic engineering, chemical biology, and multiwavelength fluorescence microscopy to follow assembly of single spliceosomes in real time in whole-cell extracts. We find that individual spliceosomal subcomplexes associate with pre-mRNA sequentially via an ordered pathway to yield functional spliceosomes and that association of every subcomplex is reversible. Further, early subcomplex binding events do not fully commit a pre-mRNA to splicing; rather, commitment increases as assembly proceeds. These findings have important implications for the regulation of alternative splicing. This experimental strategy should prove widely useful for mechanistic analysis of other macromolecular machines in environments approaching the complexity of living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoskins, Aaron A -- Friedman, Larry J -- Gallagher, Sarah S -- Crawford, Daniel J -- Anderson, Eric G -- Wombacher, Richard -- Ramirez, Nicholas -- Cornish, Virginia W -- Gelles, Jeff -- Moore, Melissa J -- F32 GM079971/GM/NIGMS NIH HHS/ -- F32 GM079971-03/GM/NIGMS NIH HHS/ -- GM079971/GM/NIGMS NIH HHS/ -- GM759628/GM/NIGMS NIH HHS/ -- K99 GM086471/GM/NIGMS NIH HHS/ -- K99 GM086471-02/GM/NIGMS NIH HHS/ -- K99/R00 GM086471/GM/NIGMS NIH HHS/ -- R01 GM043369/GM/NIGMS NIH HHS/ -- R01 GM053007/GM/NIGMS NIH HHS/ -- R01 GM053007-15/GM/NIGMS NIH HHS/ -- R01 GM081648/GM/NIGMS NIH HHS/ -- R01 GM081648-04/GM/NIGMS NIH HHS/ -- R01 GM54469/GM/NIGMS NIH HHS/ -- R01 GM81648/GM/NIGMS NIH HHS/ -- R37 GM043369/GM/NIGMS NIH HHS/ -- R37 GM043369-21/GM/NIGMS NIH HHS/ -- RC1 GM091804/GM/NIGMS NIH HHS/ -- RC1 GM091804-02/GM/NIGMS NIH HHS/ -- T32 GM007596/GM/NIGMS NIH HHS/ -- T32 GM007596-30/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1289-95. doi: 10.1126/science.1198830.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393538" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Fluorescent Dyes ; Introns ; Kinetics ; Microscopy, Fluorescence ; Protein Binding ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Fungal/*metabolism ; Ribonucleoprotein, U1 Small Nuclear/metabolism ; Ribonucleoprotein, U2 Small Nuclear/metabolism ; Ribonucleoprotein, U4-U6 Small Nuclear/metabolism ; Ribonucleoprotein, U5 Small Nuclear/metabolism ; Ribonucleoproteins, Small Nuclear/*metabolism ; Saccharomyces cerevisiae/genetics/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/*metabolism ; Spliceosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-09-24
    Description: Nonhexameric helicases use adenosine triphosphate (ATP) to unzip base pairs in double-stranded nucleic acids (dsNAs). Studies have suggested that these helicases unzip dsNAs in single-base pair increments, consuming one ATP molecule per base pair, but direct evidence for this mechanism is lacking. We used optical tweezers to follow the unwinding of double-stranded RNA by the hepatitis C virus NS3 helicase. Single-base pair steps by NS3 were observed, along with nascent nucleotide release that was asynchronous with base pair opening. Asynchronous release of nascent nucleotides rationalizes various observations of its dsNA unwinding and may be used to coordinate the translocation speed of NS3 along the RNA during viral replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172460/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172460/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Wei -- Arunajadai, Srikesh G -- Moffitt, Jeffrey R -- Tinoco, Ignacio Jr -- Bustamante, Carlos -- 5R01GM010840/GM/NIGMS NIH HHS/ -- 5R01GM032543/GM/NIGMS NIH HHS/ -- R01 GM010840/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1746-9. doi: 10.1126/science.1206023.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA. chengwe@umich.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940894" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Algorithms ; Base Pairing ; Hepacivirus/*enzymology ; Kinetics ; Models, Biological ; Nucleic Acid Conformation ; Optical Tweezers ; RNA Helicases/*metabolism ; RNA, Double-Stranded/chemistry/*metabolism ; RNA, Viral/chemistry/*metabolism ; Viral Nonstructural Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-11-05
    Description: Since their origin, human populations have colonized the whole planet, but the demographic processes governing range expansions are mostly unknown. We analyzed the genealogy of more than one million individuals resulting from a range expansion in Quebec between 1686 and 1960 and reconstructed the spatial dynamics of the expansion. We find that a majority of the present Saguenay Lac-Saint-Jean population can be traced back to ancestors having lived directly on or close to the wave front. Ancestors located on the front contributed significantly more to the current gene pool than those from the range core, likely due to a 20% larger effective fertility of women on the wave front. This fitness component is heritable on the wave front and not in the core, implying that this life-history trait evolves during range expansions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreau, Claudia -- Bherer, Claude -- Vezina, Helene -- Jomphe, Michele -- Labuda, Damian -- Excoffier, Laurent -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1148-50. doi: 10.1126/science.1212880. Epub 2011 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche, Hopital Sainte-Justine, Universite de Montreal, 3175 Cote Sainte-Catherine, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22052972" target="_blank"〉PubMed〈/a〉
    Keywords: *Demography ; Emigration and Immigration ; Family Characteristics ; Female ; Fertility ; *Gene Pool ; Genes ; *Genetic Fitness ; Humans ; Male ; Marriage ; *Pedigree ; *Population Dynamics ; Quebec ; Registries ; Reproduction ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-03-19
    Description: In prokaryotes and eukaryotes, most genes appear to be transcribed during short periods called transcriptional bursts, interspersed by silent intervals. We describe how such bursts generate gene-specific temporal patterns of messenger RNA (mRNA) synthesis in mammalian cells. To monitor transcription at high temporal resolution, we established various gene trap cell lines and transgenic cell lines expressing a short-lived luciferase protein from an unstable mRNA, and recorded bioluminescence in real time in single cells. Mathematical modeling identified gene-specific on- and off-switching rates in transcriptional activity and mean numbers of mRNAs produced during the bursts. Transcriptional kinetics were markedly altered by cis-regulatory DNA elements. Our analysis demonstrated that bursting kinetics are highly gene-specific, reflecting refractory periods during which genes stay inactive for a certain time before switching on again.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suter, David M -- Molina, Nacho -- Gatfield, David -- Schneider, Kim -- Schibler, Ueli -- Naef, Felix -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):472-4. doi: 10.1126/science.1198817. Epub 2011 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Sciences III, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415320" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cells, Cultured ; Chromatin/physiology ; Circadian Rhythm/genetics ; Down-Regulation ; *Gene Expression ; Histones/metabolism ; Kinetics ; Luminescent Measurements ; Mice ; Models, Genetic ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; Stochastic Processes ; *Transcription, Genetic ; Transcriptional Activation ; Transgenes ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-29
    Description: An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 mus and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindorff-Larsen, Kresten -- Piana, Stefano -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):517-20. doi: 10.1126/science.1208351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. kresten.lindorff-larsen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034434" target="_blank"〉PubMed〈/a〉
    Keywords: Kinetics ; Molecular Dynamics Simulation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-10-15
    Description: Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Chenli -- Fu, Xiongfei -- Liu, Lizhong -- Ren, Xiaojing -- Chau, Carlos K L -- Li, Sihong -- Xiang, Lu -- Zeng, Hualing -- Chen, Guanhua -- Tang, Lei-Han -- Lenz, Peter -- Cui, Xiaodong -- Huang, Wei -- Hwa, Terence -- Huang, Jian-Dong -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):238-41. doi: 10.1126/science.1209042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998392" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl-Butyrolactones/metabolism ; Bacterial Load ; Cell Proliferation ; Culture Media ; Diffusion ; Escherichia coli K12/cytology/genetics/*growth & development/*physiology ; Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Kinetics ; Models, Biological ; Movement ; Quorum Sensing ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-03-26
    Description: Axon-dendrite polarization is crucial for neural network wiring and information processing in the brain. Polarization begins with the transformation of a single neurite into an axon and its subsequent rapid extension, which requires coordination of cellular energy status to allow for transport of building materials to support axon growth. We found that activation of the energy-sensing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway suppressed axon initiation and neuronal polarization. Phosphorylation of the kinesin light chain of the Kif5 motor protein by AMPK disrupted the association of the motor with phosphatidylinositol 3-kinase (PI3K), preventing PI3K targeting to the axonal tip and inhibiting polarization and axon growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, Stephen -- Liu, Xiuxin -- Zheng, Bin -- Cantley, Lewis -- Rakic, Pasko -- Man, Heng-Ye -- GM41890/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- K99CA133245/CA/NCI NIH HHS/ -- MH07907/MH/NIMH NIH HHS/ -- R00 CA133245/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 NS014841/NS/NINDS NIH HHS/ -- R01 NS014841-32/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):247-51. doi: 10.1126/science.1201678. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436401" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Aminoimidazole Carboxamide/analogs & derivatives/pharmacology ; Animals ; Axons/enzymology/*physiology/ultrastructure ; *Cell Polarity/drug effects ; Cells, Cultured ; Hippocampus/cytology/embryology ; Metformin/pharmacology ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/cytology/drug effects/enzymology/*physiology ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Ribonucleotides/pharmacology ; Signal Transduction ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-01-06
    Description: Apicomplexan parasites invade host cells and immediately initiate cell division. The extracellular parasite discharges transmembrane proteins onto its surface to mediate motility and invasion. These are shed by intramembrane cleavage, a process associated with invasion but otherwise poorly understood. Functional analysis of Toxoplasma rhomboid 4, a surface intramembrane protease, by conditional overexpression of a catalytically inactive form produced a profound block in replication. This was completely rescued by expression of the cleaved cytoplasmic tail of Toxoplasma or Plasmodium apical membrane antigen 1 (AMA1). These results reveal an unexpected function for AMA1 in parasite replication and suggest that invasion proteins help to promote parasite switch from an invasive to a replicative mode.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Joana M -- Ferguson, David J P -- Blackman, Michael J -- Soldati-Favre, Dominique -- MC_U117532063/Medical Research Council/United Kingdom -- U117532063/Medical Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):473-7. doi: 10.1126/science.1199284. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Faculty of Medicine, University of Geneva, 1 rue-Michel Servet, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205639" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Division ; Cell Membrane/metabolism ; Cells, Cultured ; Fibroblasts/parasitology ; Humans ; Membrane Proteins/chemistry/genetics/*metabolism ; Movement ; Mutant Proteins/metabolism ; Plasmodium falciparum ; Protozoan Proteins/chemistry/genetics/*metabolism ; Serine Proteases/genetics/metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-09-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Araque, Alfonso -- Navarrete, Marta -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1587-8. doi: 10.1126/science.1212525.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid 28002, Spain. araque@cajal.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921188" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adenosine Triphosphate/metabolism ; Animals ; Axons/*physiology ; Calcium Signaling ; Cells, Cultured ; Electric Stimulation ; Ganglia, Spinal/cytology ; Glutamic Acid/metabolism ; Myelin Basic Protein/*metabolism ; Myelin Sheath/*physiology ; Neural Stem Cells/cytology/metabolism ; Oligodendroglia/cytology/*metabolism ; Signal Transduction ; Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-04-23
    Description: Amination of alkanes has generally required metal catalysts and/or high temperatures. Here we report that simple exposure of a broad range of alkanes to N-triflylimino-lambda(3)-bromane 1 at ambient temperature results in C-H insertion of the nitrogen functionality to afford triflyl-substituted amines in moderate to high yields. Marked selectivity for tertiary over secondary C-H bonds was observed; primary (methyl) C-H bonds were inert. Addition of hexafluoroisopropanol to inhibit decomposition of 1 dramatically improved the C-H amination efficiencies. Second-order kinetics, activation parameters (negative activation entropy), deuterium isotope effects, and theoretical calculations suggest a concerted asynchronous bimolecular transition state for the metal-free C-H amination event.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ochiai, Masahito -- Miyamoto, Kazunori -- Kaneaki, Takao -- Hayashi, Satoko -- Nakanishi, Waro -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):448-51. doi: 10.1126/science.1201686.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan. mochiai@ph.tokushima-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512029" target="_blank"〉PubMed〈/a〉
    Keywords: Adamantane/chemistry ; Alkanes/*chemistry ; Amination ; Amines/*chemistry ; Bromobenzenes/*chemistry ; Carbon/chemistry ; Hydrocarbons, Brominated/*chemistry ; Hydrogen/chemistry ; Kinetics ; Physicochemical Processes ; Stereoisomerism ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-01-06
    Description: CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted T(reg) cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor-beta and affected Foxp3(+) T(reg) number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969237/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atarashi, Koji -- Tanoue, Takeshi -- Shima, Tatsuichiro -- Imaoka, Akemi -- Kuwahara, Tomomi -- Momose, Yoshika -- Cheng, Genhong -- Yamasaki, Sho -- Saito, Takashi -- Ohba, Yusuke -- Taniguchi, Tadatsugu -- Takeda, Kiyoshi -- Hori, Shohei -- Ivanov, Ivaylo I -- Umesaki, Yoshinori -- Itoh, Kikuji -- Honda, Kenya -- R00 DK085329/DK/NIDDK NIH HHS/ -- R01 AI052359/AI/NIAID NIH HHS/ -- R01 AI056154/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):337-41. doi: 10.1126/science.1198469. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205640" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Cecum/microbiology ; Cells, Cultured ; Clostridium/growth & development/*immunology ; Colitis/immunology/pathology/prevention & control ; Colon/*immunology/metabolism/*microbiology ; Feces/microbiology ; Forkhead Transcription Factors/metabolism ; Germ-Free Life ; Immunity, Innate ; Immunoglobulin E/biosynthesis ; Interleukin-10/immunology/metabolism ; Intestinal Mucosa/*immunology/metabolism ; Intestine, Small/immunology ; Metagenome ; Mice ; Mice, Inbred A ; Mice, Inbred BALB C ; Receptors, Pattern Recognition/physiology ; Specific Pathogen-Free Organisms ; T-Lymphocytes, Helper-Inducer/immunology ; T-Lymphocytes, Regulatory/*immunology/metabolism ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-01-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):17. doi: 10.1126/science.331.6013.17.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212329" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; Blood/virology ; Cells, Cultured ; DNA Contamination ; Fatigue Syndrome, Chronic/*virology ; Humans ; Mice ; Polymerase Chain Reaction ; Retroviridae Infections/*virology ; Sensitivity and Specificity ; Viremia ; Xenotropic murine leukemia virus-related virus/immunology/*isolation & ; purification/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-10-15
    Description: To establish chronic infections, viruses must develop strategies to evade the host's immune responses. Many retroviruses, including mouse mammary tumor virus (MMTV), are transmitted most efficiently through mucosal surfaces rich in microbiota. We found that MMTV, when ingested by newborn mice, stimulates a state of unresponsiveness toward viral antigens. This process required the intestinal microbiota, as antibiotic-treated mice or germ-free mice did not transmit infectious virus to their offspring. MMTV-bound bacterial lipopolysaccharide triggered Toll-like receptor 4 and subsequent interleukin-6 (IL-6)-dependent induction of the inhibitory cytokine IL-10. Thus, MMTV has evolved to rely on the interaction with the microbiota to induce an immune evasion pathway. Together, these findings reveal the fundamental importance of commensal microbiota in viral infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane, Melissa -- Case, Laure K -- Kopaskie, Karyl -- Kozlova, Alena -- MacDearmid, Cameron -- Chervonsky, Alexander V -- Golovkina, Tatyana V -- AI082418/AI/NIAID NIH HHS/ -- AI090084/AI/NIAID NIH HHS/ -- CA100383/CA/NCI NIH HHS/ -- DK42086/DK/NIDDK NIH HHS/ -- P30 CA014599/CA/NCI NIH HHS/ -- R01 AI090084/AI/NIAID NIH HHS/ -- R01 CA134667/CA/NCI NIH HHS/ -- R56 AI090084/AI/NIAID NIH HHS/ -- T32 AI065382-01/AI/NIAID NIH HHS/ -- T32GM007183/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):245-9. doi: 10.1126/science.1210718.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Anti-Bacterial Agents/pharmacology ; Antibodies, Viral/biosynthesis ; Antigens, Viral/immunology ; *Bacterial Physiological Phenomena ; Female ; Germ-Free Life ; *Immune Evasion ; Interleukin-10/genetics/metabolism ; Intestinal Mucosa/*virology ; Intestines/*microbiology ; Lipopolysaccharides/immunology/metabolism ; Mammary Tumor Virus, Mouse/*immunology/*pathogenicity ; *Metagenome ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Pregnancy ; Pregnancy Complications, Infectious/virology ; Retroviridae Infections/immunology/*transmission/virology ; Specific Pathogen-Free Organisms ; Toll-Like Receptor 4/immunology/metabolism ; Tumor Virus Infections/immunology/transmission/virology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-05-28
    Description: Two broad classes of models have been proposed to explain the patterning of the proximal-distal axis of the vertebrate limb (from the shoulder to the digit tips). Differentiating between them, we demonstrate that early limb mesenchyme in the chick is initially maintained in a state capable of generating all limb segments through exposure to a combination of proximal and distal signals. As the limb bud grows, the proximal limb is established through continued exposure to flank-derived signal(s), whereas the developmental program determining the medial and distal segments is initiated in domains that grow beyond proximal influence. In addition, the system we have developed, combining in vitro and in vivo culture, opens the door to a new level of analysis of patterning mechanisms in the limb.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258580/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Hu, Jimmy Kuang-Hsien -- ten Berge, Derk -- Fernandez-Teran, Marian -- Ros, Maria A -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37 HD032443-17/HD/NICHD NIH HHS/ -- R37HD032443/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 May 27;332(6033):1083-6. doi: 10.1126/science.1199499.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Medical School, Department of Genetics, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Cell Proliferation ; Cells, Cultured ; Chick Embryo ; Chondrogenesis ; Culture Media ; Extremities/*embryology ; Fibroblast Growth Factors/metabolism/pharmacology ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/metabolism ; Limb Buds/cytology/*embryology/metabolism ; Mesoderm/cytology/embryology/metabolism ; Neoplasm Proteins/genetics/metabolism ; Signal Transduction ; Tretinoin/metabolism/pharmacology ; Wnt Proteins/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-10-29
    Description: Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904783/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904783/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shakya, Reena -- Reid, Latarsha J -- Reczek, Colleen R -- Cole, Francesca -- Egli, Dieter -- Lin, Chyuan-Sheng -- deRooij, Dirk G -- Hirsch, Steffen -- Ravi, Kandasamy -- Hicks, James B -- Szabolcs, Matthias -- Jasin, Maria -- Baer, Richard -- Ludwig, Thomas -- F31-CA132626/CA/NCI NIH HHS/ -- F32-HD51392/HD/NICHD NIH HHS/ -- P01 CA097403/CA/NCI NIH HHS/ -- P01-CA97403/CA/NCI NIH HHS/ -- R01 CA137023/CA/NCI NIH HHS/ -- R01 HD040916/HD/NICHD NIH HHS/ -- R01 HD040916-10/HD/NICHD NIH HHS/ -- R01-CA137023/CA/NCI NIH HHS/ -- R01-HD40916/HD/NICHD NIH HHS/ -- T32-CA09503/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Oct 28;334(6055):525-8. doi: 10.1126/science.1209909.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22034435" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/chemistry/*metabolism ; Basic-Leucine Zipper Transcription Factors/genetics/metabolism ; Cells, Cultured ; Disease Models, Animal ; Embryonic Stem Cells/metabolism ; *Genes, BRCA1 ; Ligands ; Mammary Neoplasms, Experimental/*genetics/metabolism ; Mice ; Mutant Proteins/chemistry/genetics/metabolism ; Pancreatic Neoplasms/*genetics/metabolism ; Phosphoproteins/*metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; RING Finger Domains ; Tumor Suppressor Proteins/chemistry/metabolism ; Ubiquitin-Protein Ligases/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-01-29
    Description: Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-beta signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3330754/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hellal, Farida -- Hurtado, Andres -- Ruschel, Jorg -- Flynn, Kevin C -- Laskowski, Claudia J -- Umlauf, Martina -- Kapitein, Lukas C -- Strikis, Dinara -- Lemmon, Vance -- Bixby, John -- Hoogenraad, Casper C -- Bradke, Frank -- R01 HD057632/HD/NICHD NIH HHS/ -- R01 HD057632-04/HD/NICHD NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-03/NS/NINDS NIH HHS/ -- R01 NS059866-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):928-31. doi: 10.1126/science.1201148. Epub 2011 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Axonal Growth and Regeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273450" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/metabolism ; Cicatrix/pathology/*prevention & control ; Female ; Ganglia, Spinal/cytology ; Kinesin/metabolism ; Microtubules/drug effects/*metabolism ; Paclitaxel/*administration & dosage/pharmacology ; Protein Transport ; Rats ; Rats, Sprague-Dawley ; Sensory Receptor Cells/physiology ; Signal Transduction ; Smad2 Protein/metabolism ; Spinal Cord/cytology/drug effects ; Spinal Cord Injuries/*drug therapy/pathology/*physiopathology ; *Spinal Cord Regeneration ; Transforming Growth Factor beta/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradforth, Stephen -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1398-9. doi: 10.1126/science.1203629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA. stephen.bradforth@usc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415344" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Cyclohexanes/*chemistry ; Free Radicals ; Hydrogen/*chemistry ; Hydrogen Cyanide/*chemistry ; Kinetics ; Solutions ; Solvents/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-27
    Description: MED23 is a subunit of the Mediator complex, a key regulator of protein-coding gene expression. Here, we report a missense mutation (p. R617Q) in MED23 that cosegregates with nonsyndromic autosomal recessive intellectual disability. This mutation specifically impaired the response of JUN and FOS immediate early genes (IEGs) to serum mitogens by altering the interaction between enhancer-bound transcription factors (TCF4 and ELK1, respectively) and Mediator. Transcriptional dysregulation of these genes was also observed in cells derived from patients presenting with other neurological disorders linked to mutations in other Mediator subunits or proteins interacting with MED. These findings highlight the crucial role of Mediator in brain development and functioning and suggest that altered IEG expression might be a common molecular hallmark of cognitive deficit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hashimoto, Satoru -- Boissel, Sarah -- Zarhrate, Mohammed -- Rio, Marlene -- Munnich, Arnold -- Egly, Jean-Marc -- Colleaux, Laurence -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1161-3. doi: 10.1126/science.1206638.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868677" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Cells, Cultured ; Chromatin Immunoprecipitation ; Early Growth Response Protein 1/genetics ; Female ; *Gene Expression Regulation ; *Genes, Immediate-Early ; Genes, fos ; Genes, jun ; Histones/metabolism ; Humans ; Intellectual Disability/*genetics ; Male ; Mediator Complex/*genetics ; *Mutation, Missense ; Pedigree ; Promoter Regions, Genetic ; Transcription Factors/metabolism ; Transcriptional Activation ; ets-Domain Protein Elk-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775075/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775075/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hewitt, Sylvia C -- Korach, Kenneth S -- ZIA ES070065-35/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):863-4. doi: 10.1126/science.1202372.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/*genetics/*metabolism ; Cell Proliferation ; Embryo Implantation/*physiology ; Endometrium/cytology/*metabolism ; Epithelial Cells/cytology/physiology ; Estrogens/metabolism ; Female ; Fibroblast Growth Factors/*metabolism ; Gene Expression Profiling ; Mice ; Oligonucleotide Array Sequence Analysis ; Pregnancy ; Progesterone/*metabolism ; RNA, Messenger/genetics/metabolism ; *Signal Transduction ; Stromal Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2012-10-09
    Description: Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylwestrak, Emily L -- Ghosh, Anirvan -- R01 NS067216/NS/NINDS NIH HHS/ -- R01NS067216/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):536-40. doi: 10.1126/science.1222482. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; CA1 Region, Hippocampal/*metabolism ; Cells, Cultured ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; HEK293 Cells ; Humans ; Interneurons/*metabolism ; Mice ; Nerve Tissue Proteins/genetics/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Rats, Inbred LEC ; Synapses/genetics/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2012-07-24
    Description: Diseases of the esophageal epithelium (EE), such as reflux esophagitis and cancer, are rising in incidence. Despite this, the cellular behaviors underlying EE homeostasis and repair remain controversial. Here, we show that in mice, EE is maintained by a single population of cells that divide stochastically to generate proliferating and differentiating daughters with equal probability. In response to challenge with all-trans retinoic acid (atRA), the balance of daughter cell fate is unaltered, but the rate of cell division increases. However, after wounding, cells reversibly switch to producing an excess of proliferating daughters until the wound has closed. Such fate-switching enables a single progenitor population to both maintain and repair tissue without the need for a "reserve" slow-cycling stem cell pool.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527005/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doupe, David P -- Alcolea, Maria P -- Roshan, Amit -- Zhang, Gen -- Klein, Allon M -- Simons, Benjamin D -- Jones, Philip H -- 079249/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- G0601740/Medical Research Council/United Kingdom -- G0700600/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- G0800784/Medical Research Council/United Kingdom -- MC_U105370181/Medical Research Council/United Kingdom -- U.1053.00.010(70181)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1091-3. doi: 10.1126/science.1218835. Epub 2012 Jul 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22821983" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Differentiation/drug effects ; Cell Division/drug effects ; Cell Proliferation/drug effects ; Cells, Cultured ; Doxycycline/pharmacology ; Epithelial Cells/*physiology ; Epithelium/drug effects/metabolism/*physiology ; Esophagus/*cytology/*physiology ; Green Fluorescent Proteins/biosynthesis ; Histones/biosynthesis ; Mice ; Mice, Inbred C57BL ; Recombinant Fusion Proteins/biosynthesis ; *Regeneration ; Stem Cells/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2012-11-10
    Description: Despite more than 30 years of work on the Wnt signaling pathway, the basic mechanism of how the extracellular Wnt signal increases the intracellular concentration of beta-catenin is still contentious. Circumventing much of the detailed biochemistry, we used basic principles of chemical kinetics coupled with quantitative measurements to define the reactions on beta-catenin directly affected by the Wnt signal. We conclude that the core signal transduction mechanism is relatively simple, with only two regulated phosphorylation steps. Their partial inhibition gives rise to the full dynamics of the response and subsequently maintains a steady state in which the concentration of beta-catenin is increased.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Ana R -- Klein, Allon M -- Kirschner, Marc W -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1337-40. doi: 10.1126/science.1228734. Epub 2012 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23138978" target="_blank"〉PubMed〈/a〉
    Keywords: Casein Kinase I/chemistry/metabolism ; Cell Line, Tumor ; Cysteine Proteinase Inhibitors/pharmacology ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; Humans ; Kinetics ; Leupeptins/pharmacology ; Phosphorylation ; *Signal Transduction ; Wnt Proteins/*metabolism ; Wnt3A Protein/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2012-08-28
    Description: Mucus clearance is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. In the current gel-on-liquid mucus clearance model, a mucus gel is propelled on top of a "watery" periciliary layer surrounding the cilia. However, this model fails to explain the formation of a distinct mucus layer in health or why mucus clearance fails in disease. We propose a gel-on-brush model in which the periciliary layer is occupied by membrane-spanning mucins and mucopolysaccharides densely tethered to the airway surface. This brush prevents mucus penetration into the periciliary space and causes mucus to form a distinct layer. The relative osmotic moduli of the mucus and periciliary brush layers explain both the stability of mucus clearance in health and its failure in airway disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Button, Brian -- Cai, Li-Heng -- Ehre, Camille -- Kesimer, Mehmet -- Hill, David B -- Sheehan, John K -- Boucher, Richard C -- Rubinstein, Michael -- HHSN268200900020/PHS HHS/ -- K01DK080847/DK/NIDDK NIH HHS/ -- P01HL108808/HL/NHLBI NIH HHS/ -- P01HL110873-01/HL/NHLBI NIH HHS/ -- P01HL34322/HL/NHLBI NIH HHS/ -- P30DK065988/DK/NIDDK NIH HHS/ -- P50HL107168/HL/NHLBI NIH HHS/ -- P50HL107168-01/HL/NHLBI NIH HHS/ -- R01 HL103940/HL/NHLBI NIH HHS/ -- R01HL077546/HL/NHLBI NIH HHS/ -- R01HL103940/HL/NHLBI NIH HHS/ -- UL1-RR025747/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):937-41. doi: 10.1126/science.1223012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cystic Fibrosis Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923574" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Cilia/*physiology/ultrastructure ; Gels ; Glycosaminoglycans/*physiology ; Humans ; Lung/*physiology ; Lung Diseases/physiopathology ; *Models, Biological ; Mucins/*physiology ; *Mucociliary Clearance ; Mucus/*physiology ; Osmotic Pressure ; Respiratory Mucosa/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):33-5. doi: 10.1126/science.335.6064.33.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223790" target="_blank"〉PubMed〈/a〉
    Keywords: Afghan Campaign 2001- ; Animals ; Axons/pathology ; Blast Injuries/pathology/*physiopathology ; Brain Injuries/epidemiology/pathology/*physiopathology ; Cells, Cultured ; History, 21st Century ; Humans ; Integrins/metabolism ; Iraq War, 2003-2011 ; Neurons/physiology ; Tissue Engineering ; Vasospasm, Intracranial/pathology/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-12-15
    Description: Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latos, Paulina A -- Pauler, Florian M -- Koerner, Martha V -- Senergin, H Basak -- Hudson, Quanah J -- Stocsits, Roman R -- Allhoff, Wolfgang -- Stricker, Stefan H -- Klement, Ruth M -- Warczok, Katarzyna E -- Aumayr, Karin -- Pasierbek, Pawel -- Barlow, Denise P -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1469-72. doi: 10.1126/science.1228110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239737" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; *Gene Silencing ; *Genomic Imprinting ; Mice ; Multigene Family ; Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; RNA, Long Noncoding/genetics/*metabolism ; Receptor, IGF Type 2/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-01
    Description: Female rodents are known to terminate pregnancies after exposure to unfamiliar males ("Bruce effect"). Although laboratory support abounds, direct evidence for a Bruce effect under natural conditions is lacking. Here, we report a strong Bruce effect in a wild primate, the gelada (Theropithecus gelada). Female geladas terminate 80% of pregnancies in the weeks after a dominant male is replaced. Further, data on interbirth intervals suggest that pregnancy termination offers fitness benefits for females whose offspring would otherwise be susceptible to infanticide. Taken together, data support the hypothesis that the Bruce effect can be an adaptive strategy for females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Eila K -- Lu, Amy -- Bergman, Thore J -- Beehner, Jacinta C -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1222-5. doi: 10.1126/science.1213600. Epub 2012 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22362878" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; *Behavior, Animal ; Birth Rate ; Estrogens/analysis ; Ethiopia ; Feces/chemistry ; Female ; *Genetic Fitness ; Gestational Age ; Male ; Pregnancy ; Pregnancy Outcome ; *Pregnancy, Animal ; Sexual Behavior, Animal ; Social Behavior ; *Social Dominance ; *Theropithecus/physiology/psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-01-28
    Description: During the activation of humoral immune responses, B cells acquire antigen for subsequent presentation to cognate T cells. Here we show that after mouse B cells accumulate antigen, it is maintained in a polarized distribution for extended periods in vivo. Using high-throughput imaging flow cytometry, we observed that this polarization is preserved during B cell division, promoting asymmetric antigen segregation among progeny. Antigen inheritance correlates with the ability of progeny to activate T cells: Daughter cells receiving larger antigen stores exhibit a prolonged capacity to present antigen, which renders them more effective in competing for T cell help. The generation of progeny with differential capacities for antigen presentation may have implications for somatic hypermutation and class switching during affinity maturation and as B cells commit to effector cell fates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thaunat, Olivier -- Granja, Aitor G -- Barral, Patricia -- Filby, Andrew -- Montaner, Beatriz -- Collinson, Lucy -- Martinez-Martin, Nuria -- Harwood, Naomi E -- Bruckbauer, Andreas -- Batista, Facundo D -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 27;335(6067):475-9. doi: 10.1126/science.1214100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; Antigens/*analysis/*immunology ; B-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cells, Cultured ; Coculture Techniques ; Computer Simulation ; Flow Cytometry ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Muramidase/analysis/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-09-08
    Description: Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkuhn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-beta (TGF-beta) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706630/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miyoshi, Hiroyuki -- Ajima, Rieko -- Luo, Christine T -- Yamaguchi, Terry P -- Stappenbeck, Thaddeus S -- 5T35DK074375/DK/NIDDK NIH HHS/ -- DK90251/DK/NIDDK NIH HHS/ -- P30-DK52574/DK/NIDDK NIH HHS/ -- R01 DK071619/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):108-13. doi: 10.1126/science.1223821. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956684" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Movement/drug effects/physiology ; Cell Proliferation/drug effects ; Cells, Cultured ; Colon/embryology/*injuries/*physiology ; Culture Media, Conditioned/pharmacology ; Homeostasis/drug effects/physiology ; Intestinal Mucosa/embryology/injuries/physiology ; Ligands ; Mesoderm/cytology/embryology ; Mice ; Mice, Knockout ; Receptor Tyrosine Kinase-like Orphan Receptors/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Stem Cells/cytology/drug effects/physiology ; Tamoxifen/pharmacology ; Transforming Growth Factor beta/*metabolism ; Wnt Proteins/genetics/pharmacology/*physiology ; Wound Healing/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-02-11
    Description: Although recent experimental studies have suggested that the interactions among the pigment cells play a key role in the skin pattern formation, details of the mechanism remain largely unknown. By using an in vitro cell culture system, we have detected interactions between the two pigment cell types, melanophores and xanthophores, in the zebrafish skin. During primary culture, the melanophore membrane transiently depolarizes when contacted with the dendrites of a xanthophore. This depolarization triggers melanophore migration to avoid further contact with the xanthophores. Cell depolarization and repulsive movement were not observed in pigment cells with the jaguar mutant, which shows defective segregation of melanophores and xanthophores. The depolarization-repulsion of wild-type pigment cells may explain the pigment cell behaviors generating the stripe pattern of zebrafish.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inaba, Masafumi -- Yamanaka, Hiroaki -- Kondo, Shigeru -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):677. doi: 10.1126/science.1212821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Communication ; Cell Movement ; Cells, Cultured ; Chromatophores/*physiology ; Melanophores/*physiology ; Membrane Potentials ; Mutation ; Skin/cytology ; *Skin Pigmentation ; Zebrafish/*anatomy & histology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-12-17
    Description: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Chia-Lin -- Lin, Weiyu -- Seshasayee, Dhaya -- Chen, Yung-Hsiang -- Ding, Xiao -- Lin, Zhonghua -- Suto, Eric -- Huang, Zhiyu -- Lee, Wyne P -- Park, Hyunjoo -- Xu, Min -- Sun, Mei -- Rangell, Linda -- Lutman, Jeff L -- Ulufatu, Sheila -- Stefanich, Eric -- Chalouni, Cecile -- Sagolla, Meredith -- Diehl, Lauri -- Fielder, Paul -- Dean, Brian -- Balazs, Mercedesz -- Martin, Flavius -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):89-92. doi: 10.1126/science.1213682. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174130" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Animals ; Apoptosis ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Histiocytosis/*physiopathology ; *Homeostasis ; Humans ; Hydrogen-Ion Concentration ; Listeriosis/immunology/microbiology ; Lysosomal Storage Diseases/physiopathology ; Lysosomes/*physiology/ultrastructure ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/immunology/*physiology/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelopoiesis ; Nucleoside Transport Proteins/genetics/*physiology ; Phagocytosis ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Signal Transduction ; Thymocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-06-02
    Description: The circadian clock in mammals is driven by an autoregulatory transcriptional feedback mechanism that takes approximately 24 hours to complete. A key component of this mechanism is a heterodimeric transcriptional activator consisting of two basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain protein subunits, CLOCK and BMAL1. Here, we report the crystal structure of a complex containing the mouse CLOCK:BMAL1 bHLH-PAS domains at 2.3 A resolution. The structure reveals an unusual asymmetric heterodimer with the three domains in each of the two subunits--bHLH, PAS-A, and PAS-B--tightly intertwined and involved in dimerization interactions, resulting in three distinct protein interfaces. Mutations that perturb the observed heterodimer interfaces affect the stability and activity of the CLOCK:BMAL1 complex as well as the periodicity of the circadian oscillator. The structure of the CLOCK:BMAL1 complex is a starting point for understanding at an atomic level the mechanism driving the mammalian circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Nian -- Chelliah, Yogarany -- Shan, Yongli -- Taylor, Clinton A -- Yoo, Seung-Hee -- Partch, Carrie -- Green, Carla B -- Zhang, Hong -- Takahashi, Joseph S -- R01 GM081875/GM/NIGMS NIH HHS/ -- R01 GM090247/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):189-94. doi: 10.1126/science.1222804. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653727" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Animals ; CLOCK Proteins/*chemistry/genetics/metabolism ; Cells, Cultured ; *Circadian Rhythm ; Crystallography, X-Ray ; DNA/metabolism ; HEK293 Cells ; Helix-Loop-Helix Motifs ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Static Electricity ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-10-09
    Description: The endoplasmic reticulum (ER) is the primary organelle for folding and maturation of secretory and transmembrane proteins. Inability to meet protein-folding demand leads to "ER stress," and activates IRE1alpha, an ER transmembrane kinase-endoribonuclease (RNase). IRE1alpha promotes adaptation through splicing Xbp1 mRNA or apoptosis through incompletely understood mechanisms. Here, we found that sustained IRE1alpha RNase activation caused rapid decay of select microRNAs (miRs -17, -34a, -96, and -125b) that normally repress translation of Caspase-2 mRNA, and thus sharply elevates protein levels of this initiator protease of the mitochondrial apoptotic pathway. In cell-free systems, recombinant IRE1alpha endonucleolytically cleaved microRNA precursors at sites distinct from DICER. Thus, IRE1alpha regulates translation of a proapoptotic protein through terminating microRNA biogenesis, and noncoding RNAs are part of the ER stress response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Upton, John-Paul -- Wang, Likun -- Han, Dan -- Wang, Eric S -- Huskey, Noelle E -- Lim, Lionel -- Truitt, Morgan -- McManus, Michael T -- Ruggero, Davide -- Goga, Andrei -- Papa, Feroz R -- Oakes, Scott A -- DK063720/DK/NIDDK NIH HHS/ -- DP2 OD001925/OD/NIH HHS/ -- DP2OD001925/OD/NIH HHS/ -- GM080783/GM/NIGMS NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 CA136577/CA/NCI NIH HHS/ -- R01 CA136717/CA/NCI NIH HHS/ -- R01 CA140456/CA/NCI NIH HHS/ -- R01 CA154916/CA/NCI NIH HHS/ -- R01 DK080955/DK/NIDDK NIH HHS/ -- R01 GM080783/GM/NIGMS NIH HHS/ -- R01CA136577/CA/NCI NIH HHS/ -- R01CA136717/CA/NCI NIH HHS/ -- R01CA140456/CA/NCI NIH HHS/ -- R01CA154916/CA/NCI NIH HHS/ -- R01DK080955/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):818-22. doi: 10.1126/science.1226191. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042294" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Apoptosis ; Brefeldin A/pharmacology ; Caspase 2/*genetics/*metabolism ; Cell-Free System ; Cells, Cultured ; Cysteine Endopeptidases/*genetics/*metabolism ; Down-Regulation ; Endoplasmic Reticulum/metabolism ; *Endoplasmic Reticulum Stress ; Endoribonucleases/chemistry/genetics/*metabolism ; Enzyme Activation ; HEK293 Cells ; Humans ; Mice ; Mice, Knockout ; MicroRNAs/*metabolism ; Mutant Proteins ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-03-01
    Description: The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs as the free-energy barrier between two states is crossed. It is a single-molecule property that contains all the mechanistic information on how a process occurs. As a step toward observing transition paths in protein folding, we determined the average transition-path time for a fast- and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule Forster resonance energy transfer experiments. Whereas the folding rate coefficients differ by a factor of 10,000, the transition-path times differ by a factor of less than 5, which shows that a fast- and a slow-folding protein take almost the same time to fold when folding actually happens. A very simple model based on energy landscape theory can explain this result.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878298/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Hoi Sung -- McHale, Kevin -- Louis, John M -- Eaton, William A -- Z99 DK999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD 20892-0520, USA. chunghoi@niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363011" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry ; Carrier Proteins/*chemistry ; Fluorescence Resonance Energy Transfer ; Kinetics ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Photons ; Protein Conformation ; *Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-05
    Description: The telomere end-protection problem is defined by the aggregate of DNA damage signaling and repair pathways that require repression at telomeres. To define the end-protection problem, we removed the whole shelterin complex from mouse telomeres through conditional deletion of TRF1 and TRF2 in nonhomologous end-joining (NHEJ) deficient cells. The data reveal two DNA damage response pathways not previously observed upon deletion of individual shelterin proteins. The shelterin-free telomeres are processed by microhomology-mediated alternative-NHEJ when Ku70/80 is absent and are attacked by nucleolytic degradation in the absence of 53BP1. The data establish that the end-protection problem is specified by six pathways [ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) signaling, classical-NHEJ, alt-NHEJ, homologous recombination, and resection] and show how shelterin acts with general DNA damage response factors to solve this problem.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM49046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 CA076027/CA/NCI NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):593-7. doi: 10.1126/science.1218498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Nuclear/genetics/metabolism ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/metabolism ; DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; DNA Ligases/metabolism ; DNA Repair ; DNA-Binding Proteins/genetics/metabolism ; Homologous Recombination ; Mice ; Mice, Knockout ; Poly(ADP-ribose) Polymerases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Signal Transduction ; Telomere/*metabolism/ultrastructure ; *Telomere Homeostasis ; Telomere-Binding Proteins/genetics/*metabolism ; Telomeric Repeat Binding Protein 1/genetics/metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-10-23
    Description: Growing RNA chains fold cotranscriptionally as they are synthesized by RNA polymerase. Riboswitches, which regulate gene expression by adopting alternative RNA folds, are sensitive to cotranscriptional events. We developed an optical-trapping assay to follow the cotranscriptional folding of a nascent RNA and used it to monitor individual transcripts of the pbuE adenine riboswitch, visualizing distinct folding transitions. We report a particular folding signature for the riboswitch aptamer whose presence directs the gene-regulatory transcription outcome, and we measured the termination frequency as a function of adenine level and tension applied to the RNA. Our results demonstrate that the outcome is kinetically controlled. These experiments furnish a means to observe conformational switching in real time and enable the precise mapping of events during cotranscriptional folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frieda, Kirsten L -- Block, Steven M -- R37 GM057035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):397-400. doi: 10.1126/science.1225722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087247" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*chemistry/metabolism ; Bacillus subtilis/genetics ; Base Sequence ; Kinetics ; Molecular Sequence Data ; *Optical Tweezers ; *RNA Folding ; Riboswitch/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-06-09
    Description: Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Osterloh, Jeannette M -- Yang, Jing -- Rooney, Timothy M -- Fox, A Nicole -- Adalbert, Robert -- Powell, Eric H -- Sheehan, Amy E -- Avery, Michelle A -- Hackett, Rachel -- Logan, Mary A -- MacDonald, Jennifer M -- Ziegenfuss, Jennifer S -- Milde, Stefan -- Hou, Ying-Ju -- Nathan, Carl -- Ding, Aihao -- Brown, Robert H Jr -- Conforti, Laura -- Coleman, Michael -- Tessier-Lavigne, Marc -- Zuchner, Stephan -- Freeman, Marc R -- 5R01-NS050557-05/NS/NINDS NIH HHS/ -- AI030165/AI/NIAID NIH HHS/ -- R01NS059991/NS/NINDS NIH HHS/ -- R01NS072248/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- U54NS065712/NS/NINDS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):481-4. doi: 10.1126/science.1223899. Epub 2012 Jun 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678360" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Apoptosis ; Armadillo Domain Proteins/analysis/*genetics/*physiology ; Axons/*physiology/ultrastructure ; Axotomy ; Cell Survival ; Cells, Cultured ; Cytoskeletal Proteins/analysis/*genetics/*physiology ; Denervation ; Drosophila/embryology/genetics/physiology ; Drosophila Proteins/analysis/*genetics/*physiology ; Mice ; Mutation ; Neurons/*physiology ; Sciatic Nerve/injuries/physiology ; Signal Transduction ; Superior Cervical Ganglion/cytology ; Tissue Culture Techniques ; *Wallerian Degeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelkmans, Lucas -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):425-6. doi: 10.1126/science.1222161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. lucas.pelkmans@imls.uzh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Biology ; Cell Communication ; *Cell Physiological Processes ; Cells, Cultured ; *Cellular Microenvironment ; *Cytological Techniques ; Humans ; Molecular Biology/methods ; Phenotype ; *Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keller, Ray -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):201-3. doi: 10.1126/science.1230718.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Virginia, Charlottesville, VA 22903, USA. rek3k@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23066066" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/anatomy & histology/embryology ; *Biophysical Phenomena ; Cell Adhesion/genetics ; Cell Culture Techniques ; *Cell Movement ; Cells, Cultured ; Cytoskeleton/physiology/ultrastructure ; Embryo, Nonmammalian/cytology/drug effects/physiology ; Gastrulation ; Green Fluorescent Proteins/analysis ; *Morphogenesis ; Recombinant Fusion Proteins/analysis ; Sodium Chloride/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-07-24
    Description: Evidence from confocal microscopic reconstruction of maize anther development in fertile, mac1 (excess germ cells), and msca1 (no germ cells) flowers indicates that the male germ line is multiclonal and uses the MAC1 protein to organize the somatic niche. Furthermore, we identified redox status as a determinant of germ cell fate, defining a mechanism distinct from the animal germ cell lineage. Decreasing oxygen or H(2)O(2) increases germ cell numbers, stimulates superficial germ cell formation, and rescues germinal differentiation in msca1 flowers. Conversely, oxidizing environments inhibit germ cell specification and cause ectopic differentiation in deeper tissues. We propose that hypoxia, arising naturally within growing anther tissue, acts as a positional cue to set germ cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101383/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101383/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelliher, Timothy -- Walbot, Virginia -- 5-T32-GM008412-17/GM/NIGMS NIH HHS/ -- T32 GM008412/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 20;337(6092):345-8. doi: 10.1126/science.1220080.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA. tkellih1@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22822150" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Cell Hypoxia ; Cells, Cultured ; Germ Cells/metabolism ; *Meiosis ; Oxygen/*metabolism/pharmacology ; Plant Epidermis/cytology/drug effects/metabolism ; Water/metabolism/pharmacology ; Zea mays/*cytology/drug effects/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-12-12
    Description: Platelets restrict the growth of intraerythrocytic malaria parasites by binding to parasitized cells and killing the parasite within. Here, we show that the platelet molecule platelet factor 4 (PF4 or CXCL4) and the erythrocyte Duffy-antigen receptor (Fy) are necessary for platelet-mediated killing of Plasmodium falciparum parasites. PF4 is released by platelets on contact with parasitized red cells, and the protein directly kills intraerythrocytic parasites. This function for PF4 is critically dependent on Fy, which binds PF4. Genetic disruption of Fy expression inhibits binding of PF4 to parasitized cells and concomitantly prevents parasite killing by both human platelets and recombinant human PF4. The protective function afforded by platelets during a malarial infection may therefore be compromised in Duffy-negative individuals, who do not express Fy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMorran, Brendan J -- Wieczorski, Laura -- Drysdale, Karen E -- Chan, Jo-Anne -- Huang, Hong Ming -- Smith, Clare -- Mitiku, Chalachew -- Beeson, James G -- Burgio, Gaetan -- Foote, Simon J -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1348-51. doi: 10.1126/science.1228892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia. brendan.mcmorran@mq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23224555" target="_blank"〉PubMed〈/a〉
    Keywords: Blood Platelets/*immunology ; Cells, Cultured ; Duffy Blood-Group System/genetics/*immunology ; Erythrocytes/*parasitology ; Humans ; *Malaria, Falciparum/blood/immunology/parasitology ; Plasmodium falciparum/drug effects/growth & development/*immunology ; Platelet Factor 4/genetics/*immunology/pharmacology ; Receptors, Cell Surface/genetics/*immunology ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2012-12-01
    Description: Notch signaling affects many developmental and cellular processes and has been implicated in congenital disorders, stroke, and numerous cancers. The Notch receptor binds its ligands Delta and Serrate and is able to discriminate between them in different contexts. However, the specific domains in Notch responsible for this selectivity are poorly defined. Through genetic screens in Drosophila, we isolated a mutation, Notch(jigsaw), that affects Serrate- but not Delta-dependent signaling. Notch(jigsaw) carries a missense mutation in epidermal growth factor repeat-8 (EGFr-8) and is defective in Serrate binding. A homologous point mutation in mammalian Notch2 also exhibits defects in signaling of a mammalian Serrate homolog, Jagged1. Hence, an evolutionarily conserved valine in EGFr-8 is essential for ligand selectivity and provides a molecular handle to study numerous Notch-dependent signaling events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamoto, Shinya -- Charng, Wu-Lin -- Rana, Nadia A -- Kakuda, Shinako -- Jaiswal, Manish -- Bayat, Vafa -- Xiong, Bo -- Zhang, Ke -- Sandoval, Hector -- David, Gabriela -- Wang, Hao -- Haltiwanger, Robert S -- Bellen, Hugo J -- 1RC4GM096355-01/GM/NIGMS NIH HHS/ -- 5K12GM084897/GM/NIGMS NIH HHS/ -- 5P30HD024064/HD/NICHD NIH HHS/ -- 5R01GM061126-12/GM/NIGMS NIH HHS/ -- 5R01GM067858/GM/NIGMS NIH HHS/ -- 5T32-HD055200/HD/NICHD NIH HHS/ -- K12 GM084897/GM/NIGMS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 GM061126/GM/NIGMS NIH HHS/ -- R01 GM067858/GM/NIGMS NIH HHS/ -- RC4 GM096355/GM/NIGMS NIH HHS/ -- T32 HD055200/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1229-32. doi: 10.1126/science.1228745.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197537" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Calcium-Binding Proteins/*metabolism ; Cells, Cultured ; DNA Mutational Analysis ; Drosophila Proteins/*genetics/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Epidermal Growth Factor/genetics ; Evolution, Molecular ; Humans ; Intercellular Signaling Peptides and Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins/*metabolism ; Ligands ; Male ; Membrane Proteins/*metabolism ; Methionine/genetics ; Molecular Sequence Data ; Mutation ; Receptor, Notch2/genetics/metabolism ; Receptors, Notch/*genetics/*metabolism ; Tandem Repeat Sequences/genetics ; Valine/genetics ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2012-09-08
    Description: Spontaneous electrical signals in the retina's photoreceptors impose a limit on visual sensitivity. Their origin is attributed to a thermal, rather than photochemical, activation of the transduction cascade. Although the mechanism of such a process is under debate, the observation of a relationship between the maximum absorption wavelength (lambda(max)) and the thermal activation kinetic constant (k) of different visual pigments (the Barlow correlation) indicates that the thermal and photochemical activations are related. Here we show that a quantum chemical model of the bovine rod pigment provides a molecular-level understanding of the Barlow correlation. The transition state mediating thermal activation has the same electronic structure as the photoreceptor excited state, thus creating a direct link between lambda(max) and k. Such a link appears to be the manifestation of intrinsic chromophore features associated with the existence of a conical intersection between its ground and excited states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gozem, Samer -- Schapiro, Igor -- Ferre, Nicolas -- Olivucci, Massimo -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1225-8. doi: 10.1126/science.1220461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Isomerism ; Kinetics ; Models, Chemical ; Photochemical Processes ; Quantum Theory ; Retinal Rod Photoreceptor Cells/*chemistry/physiology ; Rhodopsin/*chemistry/*physiology ; Rod Opsins/chemistry/physiology ; Schiff Bases ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-12-07
    Description: The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/beta-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Xinhong -- Tan, Si Hui -- Koh, Winston Lian Chye -- Chau, Rosanna Man Wah -- Yan, Kelley S -- Kuo, Calvin J -- van Amerongen, Renee -- Klein, Allon Moshe -- Nusse, Roel -- 1R01DK085720/DK/NIDDK NIH HHS/ -- 1U01DK085527/DK/NIDDK NIH HHS/ -- 5K08DK096048/DK/NIDDK NIH HHS/ -- K08 DK096048/DK/NIDDK NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 DK085720/DK/NIDDK NIH HHS/ -- U01 DK085527/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1226-30. doi: 10.1126/science.1239730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autocrine Communication ; Axin Protein/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epidermis/*cytology/injuries/metabolism ; Epithelial Cells/cytology/metabolism ; Gene Expression ; Homeostasis ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/cytology/metabolism ; Mice ; Regeneration ; Skin/injuries ; Stem Cell Niche ; Stem Cells/cytology/*physiology ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wound Healing ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2012-06-23
    Description: Transcription factors (TFs) are proteins that regulate the expression of genes by binding sequence-specific sites on the chromosome. It has been proposed that to find these sites fast and accurately, TFs combine one-dimensional (1D) sliding on DNA with 3D diffusion in the cytoplasm. This facilitated diffusion mechanism has been demonstrated in vitro, but it has not been shown experimentally to be exploited in living cells. We have developed a single-molecule assay that allows us to investigate the sliding process in living bacteria. Here we show that the lac repressor slides 45 +/- 10 base pairs on chromosomal DNA and that sliding can be obstructed by other DNA-bound proteins near the operator. Furthermore, the repressor frequently (〉90%) slides over its natural lacO(1) operator several times before binding. This suggests a trade-off between rapid search on nonspecific sequences and fast binding at the specific sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammar, Petter -- Leroy, Prune -- Mahmutovic, Anel -- Marklund, Erik G -- Berg, Otto G -- Elf, Johan -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1595-8. doi: 10.1126/science.1221648.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723426" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromosomes, Bacterial/metabolism ; DNA, Bacterial/*metabolism ; Escherichia coli/genetics/*metabolism ; Escherichia coli Proteins/*metabolism ; Facilitated Diffusion ; Kinetics ; *Lac Operon ; Lac Repressors/*metabolism ; *Operator Regions, Genetic ; Protein Binding ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1436. doi: 10.1126/science.342.6165.1436-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation ; Cloning, Organism/*methods ; Female ; Humans ; *Induced Pluripotent Stem Cells ; Nuclear Transfer Techniques ; Pregnancy ; *Research Embryo Creation ; Surrogate Mothers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-12-07
    Description: In individual cells, transcription is a random process obeying single-molecule kinetics. Often, it occurs in a bursty, intermittent manner. The frequency and size of these bursts affect the magnitude of temporal fluctuations in messenger RNA and protein content within a cell, creating variation or "noise" in gene expression. It is still unclear to what degree transcriptional kinetics are specific to each gene and determined by its promoter sequence. Alternative scenarios have been proposed, in which the kinetics of transcription are governed by cellular constraints and follow universal rules across the genome. Evidence from genome-wide noise studies and from systematic perturbations of promoter sequences suggest that both scenarios-namely gene-specific versus genome-wide regulation of transcription kinetics-may be present to different degrees in bacteria, yeast, and animal cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Alvaro -- Golding, Ido -- R01 GM082837/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1188-93. doi: 10.1126/science.1242975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Escherichia coli/genetics/metabolism ; Eukaryota/genetics/metabolism ; *Gene Expression Regulation ; Genome ; Kinetics ; Models, Genetic ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; Single-Cell Analysis ; Stochastic Processes ; *Transcription, Genetic ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-03-02
    Description: Prenatal infection and exposure to traumatizing experiences during peripuberty have each been associated with increased risk for neuropsychiatric disorders. Evidence is lacking for the cumulative impact of such prenatal and postnatal environmental challenges on brain functions and vulnerability to psychiatric disease. Here, we show in a translational mouse model that combined exposure to prenatal immune challenge and peripubertal stress induces synergistic pathological effects on adult behavioral functions and neurochemistry. We further demonstrate that the prenatal insult markedly increases the vulnerability of the pubescent offspring to brain immune changes in response to stress. Our findings reveal interactions between two adverse environmental factors that have individually been associated with neuropsychiatric disease and support theories that mental illnesses with delayed onsets involve multiple environmental hits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovanoli, Sandra -- Engler, Harald -- Engler, Andrea -- Richetto, Juliet -- Voget, Mareike -- Willi, Roman -- Winter, Christine -- Riva, Marco A -- Mortensen, Preben B -- Feldon, Joram -- Schedlowski, Manfred -- Meyer, Urs -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1095-9. doi: 10.1126/science.1228261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/immunology ; Disease Models, Animal ; Female ; Humans ; Mental Disorders/*immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology/pharmacology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology/virology ; Puberty/*immunology ; Stress, Physiological/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-05-21
    Description: Lazic criticizes the statistical analyses used to support the conclusions in our mouse model. His theory-biased criticism is disproportionate in view of the robustness of our findings (even if different statistical methods are applied) and falls short in explaining the postpubertal onset of effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovanoli, Sandra -- Meyer, Urs -- New York, N.Y. -- Science. 2013 May 17;340(6134):811. doi: 10.1126/science.1238060.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Humans ; Mental Disorders/*immunology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology ; Puberty/*immunology ; Stress, Physiological/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiss, Robin A -- Stoye, Jonathan P -- MC_U117512710/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 May 17;340(6134):820-1. doi: 10.1126/science.1235148.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK. rweiss@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687035" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA, Viral/genetics ; Endogenous Retroviruses/*genetics ; Female ; Genome, Human/*genetics ; Humans ; Placenta/virology ; Pregnancy ; Promoter Regions, Genetic ; Proviruses/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-03-09
    Description: RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grohman, Jacob K -- Gorelick, Robert J -- Lickwar, Colin R -- Lieb, Jason D -- Bower, Brian D -- Znosko, Brent M -- Weeks, Kevin M -- GM031819/GM/NIGMS NIH HHS/ -- GM064803/GM/NIGMS NIH HHS/ -- GM072518/GM/NIGMS NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM064803/GM/NIGMS NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):190-5. doi: 10.1126/science.1230715. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470731" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Dimerization ; Guanosine/chemistry/*metabolism ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry/metabolism ; Inosine/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Moloney murine leukemia virus/genetics/*metabolism ; Nucleic Acid Conformation ; Nucleocapsid Proteins/chemistry/*metabolism ; Protein Binding ; RNA, Viral/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-10
    Description: Tree-building with diverse data maximizes explanatory power. Application of molecular clock models to ancient speciation events risks a bias against detection of fast radiations subsequent to the Cretaceous-Paleogene (K-Pg) event. Contrary to Springer et al., post-K-Pg placental diversification does not require "virus-like" substitution rates. Even constraining clade ages to their model, the explosive model best explains placental evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Leary, Maureen A -- Bloch, Jonathan I -- Flynn, John J -- Gaudin, Timothy J -- Giallombardo, Andres -- Giannini, Norberto P -- Goldberg, Suzann L -- Kraatz, Brian P -- Luo, Zhe-Xi -- Meng, Jin -- Ni, Xijun -- Novacek, Michael J -- Perini, Fernando A -- Randall, Zachary -- Rougier, Guillermo W -- Sargis, Eric J -- Silcox, Mary T -- Simmons, Nancy B -- Spaulding, Michelle -- Velazco, Paul M -- Weksler, Marcelo -- Wible, John R -- Cirranello, Andrea L -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):613. doi: 10.1126/science.1238162.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, HSC T-8 (040), Stony Brook University, Stony Brook, NY 11794-8081, USA. maureen.oleary@stonybrook.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; *Fossils ; *Mammals ; *Phylogeny ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-04-06
    Description: A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fang -- Travins, Jeremy -- DeLaBarre, Byron -- Penard-Lacronique, Virginie -- Schalm, Stefanie -- Hansen, Erica -- Straley, Kimberly -- Kernytsky, Andrew -- Liu, Wei -- Gliser, Camelia -- Yang, Hua -- Gross, Stefan -- Artin, Erin -- Saada, Veronique -- Mylonas, Elena -- Quivoron, Cyril -- Popovici-Muller, Janeta -- Saunders, Jeffrey O -- Salituro, Francesco G -- Yan, Shunqi -- Murray, Stuart -- Wei, Wentao -- Gao, Yi -- Dang, Lenny -- Dorsch, Marion -- Agresta, Sam -- Schenkein, David P -- Biller, Scott A -- Su, Shinsan M -- de Botton, Stephane -- Yen, Katharine E -- New York, N.Y. -- Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, MA 02139-4169, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558173" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Antineoplastic Agents/chemistry/metabolism/pharmacology ; Catalytic Domain ; Cell Line, Tumor ; Cell Proliferation ; Cells, Cultured ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Erythropoiesis/drug effects ; Gene Expression Regulation, Leukemic ; Glutarates/metabolism ; Hematopoiesis/*drug effects ; Humans ; Isocitrate Dehydrogenase/*antagonists & inhibitors/chemistry/*genetics/metabolism ; Leukemia, Erythroblastic, Acute ; Leukemia, Myeloid, Acute/drug therapy/*enzymology/genetics/pathology ; Molecular Targeted Therapy ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Phenylurea Compounds/chemistry/metabolism/*pharmacology ; Point Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Small Molecule Libraries ; Sulfonamides/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, X Sunney -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1457-9. doi: 10.1126/science.1248859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357307" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Enzymes/*chemistry ; Fluorescence ; Kinetics ; Molecular Imaging ; Optical Imaging
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-10
    Description: O'Leary et al. (Research Article, 8 February 2013, p. 662) examined mammalian relationships and divergence times and concluded that a single placental ancestor crossed the Cretaceous-Paleogene (K-Pg) boundary. This conclusion relies on phylogenetic analyses that fail to discriminate between homology and homoplasy and further implies virus-like rates of nucleotide substitution in early Paleocene placentals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Springer, Mark S -- Meredith, Robert W -- Teeling, Emma C -- Murphy, William J -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):613. doi: 10.1126/science.1238025.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Riverside, CA 92521, USA. mark.springer@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929967" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; *Fossils ; *Mammals ; *Phylogeny ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-10-12
    Description: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the beta-hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, Daniel E -- Kamran, Sophia C -- Lessard, Samuel -- Xu, Jian -- Fujiwara, Yuko -- Lin, Carrie -- Shao, Zhen -- Canver, Matthew C -- Smith, Elenoe C -- Pinello, Luca -- Sabo, Peter J -- Vierstra, Jeff -- Voit, Richard A -- Yuan, Guo-Cheng -- Porteus, Matthew H -- Stamatoyannopoulos, John A -- Lettre, Guillaume -- Orkin, Stuart H -- 123382/Canadian Institutes of Health Research/Canada -- K08 DK093705/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30 DK049216/DK/NIDDK NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 HG005085/HG/NHGRI NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HL032259/HL/NHLBI NIH HHS/ -- U54HG004594/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Erythroid Cells/*metabolism ; Fetal Hemoglobin/*biosynthesis/genetics ; *Gene Expression Regulation ; Gene Targeting ; Genetic Engineering ; Genetic Variation ; Genome-Wide Association Study ; Hemoglobinopathies/*genetics/therapy ; Humans ; Mice ; Nuclear Proteins/*genetics ; Precursor Cells, B-Lymphoid/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-12-15
    Description: Actin and spectrin play important roles in neurons, but their organization in axons and dendrites remains unclear. We used stochastic optical reconstruction microscopy to study the organization of actin, spectrin, and associated proteins in neurons. Actin formed ringlike structures that wrapped around the circumference of axons and were evenly spaced along axonal shafts with a periodicity of ~180 to 190 nanometers. This periodic structure was not observed in dendrites, which instead contained long actin filaments running along dendritic shafts. Adducin, an actin-capping protein, colocalized with the actin rings. Spectrin exhibited periodic structures alternating with those of actin and adducin, and the distance between adjacent actin-adducin rings was comparable to the length of a spectrin tetramer. Sodium channels in axons were distributed in a periodic pattern coordinated with the underlying actin-spectrin-based cytoskeleton.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ke -- Zhong, Guisheng -- Zhuang, Xiaowei -- R01 GM096450/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):452-6. doi: 10.1126/science.1232251. Epub 2012 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239625" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Capping Proteins/chemistry/ultrastructure ; Actin Cytoskeleton/chemistry/ultrastructure ; Actins/chemistry/*ultrastructure ; Animals ; Axons/*chemistry/*ultrastructure ; Calmodulin-Binding Proteins/chemistry/*ultrastructure ; Cells, Cultured ; Cytoskeleton/*chemistry/*ultrastructure ; Dendrites/chemistry/ultrastructure ; Hippocampus/ultrastructure ; Image Processing, Computer-Assisted ; Microscopy, Fluorescence/methods ; Neurons/chemistry/ultrastructure ; Protein Multimerization ; Rats ; Rats, Wistar ; Sodium Channels/chemistry/ultrastructure ; Spectrin/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-10-05
    Description: Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a(-/-)V1b(-/-)). Nevertheless, the behavior of V1a(-/-)V1b(-/-) mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Yoshiaki -- Suzuki, Toru -- Mizoro, Yasutaka -- Kori, Hiroshi -- Okada, Kazuki -- Chen, Yulin -- Fustin, Jean-Michel -- Yamazaki, Fumiyoshi -- Mizuguchi, Naoki -- Zhang, Jing -- Dong, Xin -- Tsujimoto, Gozoh -- Okuno, Yasushi -- Doi, Masao -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):85-90. doi: 10.1126/science.1238599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidiuretic Hormone Receptor Antagonists ; Body Temperature/genetics ; CLOCK Proteins/genetics ; Cell Communication/drug effects/genetics ; Cells, Cultured ; Circadian Rhythm/genetics ; Gene Expression Regulation ; Jet Lag Syndrome/*genetics/physiopathology ; Mice ; Mice, Knockout ; Motor Activity/genetics ; Receptors, Vasopressin/*genetics ; Suprachiasmatic Nucleus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-01-12
    Description: The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Michal -- Lottersberger, Francisca -- Buonomo, Sara B -- Sfeir, Agnel -- de Lange, Titia -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):700-4. doi: 10.1126/science.1231573. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; DNA/metabolism ; *DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Mice ; Replication Protein A/metabolism ; Telomere/*metabolism ; Telomere-Binding Proteins/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...