ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-15
    Description: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, Laura -- Tripathy, Sucheta -- Ishaque, Naveed -- Boot, Nico -- Cabral, Adriana -- Kemen, Eric -- Thines, Marco -- Ah-Fong, Audrey -- Anderson, Ryan -- Badejoko, Wole -- Bittner-Eddy, Peter -- Boore, Jeffrey L -- Chibucos, Marcus C -- Coates, Mary -- Dehal, Paramvir -- Delehaunty, Kim -- Dong, Suomeng -- Downton, Polly -- Dumas, Bernard -- Fabro, Georgina -- Fronick, Catrina -- Fuerstenberg, Susan I -- Fulton, Lucinda -- Gaulin, Elodie -- Govers, Francine -- Hughes, Linda -- Humphray, Sean -- Jiang, Rays H Y -- Judelson, Howard -- Kamoun, Sophien -- Kyung, Kim -- Meijer, Harold -- Minx, Patrick -- Morris, Paul -- Nelson, Joanne -- Phuntumart, Vipa -- Qutob, Dinah -- Rehmany, Anne -- Rougon-Cardoso, Alejandra -- Ryden, Peter -- Torto-Alalibo, Trudy -- Studholme, David -- Wang, Yuanchao -- Win, Joe -- Wood, Jo -- Clifton, Sandra W -- Rogers, Jane -- Van den Ackerveken, Guido -- Jones, Jonathan D G -- McDowell, John M -- Beynon, Jim -- Tyler, Brett M -- 079643/Wellcome Trust/United Kingdom -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E007120/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024815/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024882/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F0161901/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G015244/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- EP/F500025/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- T12144/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1549-51. doi: 10.1126/science.1195203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148394" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Arabidopsis/*parasitology ; Enzymes/genetics ; *Evolution, Molecular ; Gene Dosage ; Genes ; *Genome ; Host-Pathogen Interactions ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Oomycetes/*genetics/*growth & development/pathogenicity/physiology ; Phytophthora/genetics ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Spores/physiology ; Synteny ; Virulence Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-30
    Description: Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Xiangchao -- Stegle, Oliver -- Behr, Jonas -- Steffen, Joshua G -- Drewe, Philipp -- Hildebrand, Katie L -- Lyngsoe, Rune -- Schultheiss, Sebastian J -- Osborne, Edward J -- Sreedharan, Vipin T -- Kahles, Andre -- Bohnert, Regina -- Jean, Geraldine -- Derwent, Paul -- Kersey, Paul -- Belfield, Eric J -- Harberd, Nicholas P -- Kemen, Eric -- Toomajian, Christopher -- Kover, Paula X -- Clark, Richard M -- Ratsch, Gunnar -- Mott, Richard -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- BB/D016029/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F019793/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F020759/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F022697/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2011 Aug 28;477(7365):419-23. doi: 10.1038/nature10414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21874022" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/classification/*genetics ; Arabidopsis Proteins/genetics ; Base Sequence ; *Gene Expression Profiling ; Gene Expression Regulation, Plant/*genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Haplotypes/genetics ; INDEL Mutation/genetics ; Molecular Sequence Annotation ; Phylogeny ; Polymorphism, Single Nucleotide/genetics ; Proteome/genetics ; Seedlings/genetics ; Sequence Analysis, DNA ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-12
    Description: The obligate biotrophic lineages of the white blister rusts (Albuginales, Oomycota) are of ancient origin compared to the rather recently evolved downy mildews, and sophisticated mechanisms of biotrophy and a high degree of adaptation diversity are to be expected in these organisms. Speciation in the biotrophic Oomycetes is usually thought to be the consequence of host adaptation or geographic isolation. Here we report the presence of two distinct species of Albugo on the model plant Arabidopsis thaliana, Albugo candida and Albugo laibachii, the latter being formally described in this manuscript. Both species may occupy the same host within the same environment, but are nevertheless phylogenetically distinct, as inferred from analyses of both mitochondrial and nuclear DNA sequences. Different ways of adapting to their host physiology might constitute an important factor of their different niches. Evidence for this can be gained from the completely different host range of the two pathogens.\nWhile Albugo candida is a generalist species, consisting of several physiological varieties, which is able to parasitize a great variety of Brassicaceae, Albugo laibachii has not been found on any host other than Arabidopsis thaliana.\nTherefore, Albugo laibachii belongs to a group of highly specialised species, like the other known specialist species in Albugo s.s., Albugo koreana, Albugo lepidii and Albugo voglmayrii. The comparative investigation of the effector genes and host targets in the generalist and the specialist species may constitute a model system for elucidating the fundamental processes involved in plant pathogen co-adaptation and speciation.
    Keywords: Albuginales ; effector gene ; oospore morphology ; phylogeny ; plant pathogen ; speciation
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...