ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-04
    Description: By combining targeted mutagenesis, computational refinement, and directed evolution, a modestly active, computationally designed Diels-Alderase was converted into the most proficient biocatalyst for [4+2] cycloadditions known. The high stereoselectivity and minimal product inhibition of the evolved enzyme enabled preparative scale synthesis of a single product diastereomer. X-ray crystallography of the...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-16
    Description: Genetic selection was exploited in combination with structure-based design to transform an intimately entwined, dimeric chorismate mutase into a monomeric, four-helix-bundle protein with near native activity. Successful reengineering depended on choosing a thermostable starting protein, introducing point mutations that preferentially destabilize the wild-type dimer, and using directed evolution to optimize an inserted interhelical turn. Contrary to expectations based on studies of other four-helix-bundle proteins, only a small fraction of possible turn sequences (fewer than 0.05 percent) yielded well-behaved, monomeric, and highly active enzymes. Selection for catalytic function thus provides an efficient yet stringent method for rapidly assessing correctly folded polypeptides and may prove generally useful for protein design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacBeath, G -- Kast, P -- Hilvert, D -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1958-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Chorismate Mutase/*chemistry/genetics/*metabolism ; Circular Dichroism ; Cloning, Molecular ; Dimerization ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Recombinant Proteins/chemistry/metabolism ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-12-22
    Description: The crystal structure of an efficient Diels-Alder antibody catalyst at 1.9 angstrom resolution reveals almost perfect shape complementarity with its transition state analog. Comparison with highly related progesterone and Diels-Alderase antibodies that arose from the same primordial germ line template shows the relatively subtle mutational steps that were able to evolve both structural complementarity and catalytic efficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, J -- Deng, Q -- Chen, J -- Houk, K N -- Bartek, J -- Hilvert, D -- Wilson, I A -- CA27489/CA/NCI NIH HHS/ -- GM38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600746" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/genetics/*metabolism ; Binding Sites, Antibody ; Catalysis ; Chemistry, Physical ; Crystallography, X-Ray ; *Evolution, Molecular ; Haptens/chemistry/metabolism ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/metabolism ; Ligands ; Models, Molecular ; Mutation ; Physicochemical Phenomena ; Progesterone/immunology ; Protein Conformation ; Solubility ; Temperature ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-30
    Description: Catalytic antibody technology has been used to explore the contribution of medium effects to the overall rate of an enzyme-catalyzed reaction. An antibody generated against a derivative of 2-acetamido-1,5-napthalenedisulfonate efficiently catalyzes the decarboxylation of 5-nitro-3-carboxybenzisoxazole. This unimolecular reaction is not susceptible to general acid-base catalysis but is highly sensitive to microenvironment; thus, it provides a simple chemical model for biologically important decarboxylations. The 10(4)-fold rate acceleration observed for the antibody reflects the kinetic advantage of the low-dielectric environment of the binding pocket acting to destabilize the substrate by desolvation and to stabilize the charge-delocalized transition state through dispersion interactions. These results are pertinent to an understanding of solvent effects in enzymic reactions in general and suggest approaches for developing antibody catalysts for numerous other reactions that involve large changes in charge distribution as the reaction coordinate is traversed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewis, C -- Kramer, T -- Robinson, S -- Hilvert, D -- GM38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 30;253(5023):1019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887215" target="_blank"〉PubMed〈/a〉
    Keywords: Anilino Naphthalenesulfonates/pharmacology ; Antibodies/*metabolism ; Binding, Competitive ; Calorimetry ; Fluorescent Dyes ; Isoxazoles/*metabolism ; Kinetics ; Models, Theoretical ; Naphthalenesulfonates/immunology ; Solvents ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-03-08
    Description: The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Lin -- Althoff, Eric A -- Clemente, Fernando R -- Doyle, Lindsey -- Rothlisberger, Daniela -- Zanghellini, Alexandre -- Gallaher, Jasmine L -- Betker, Jamie L -- Tanaka, Fujie -- Barbas, Carlos F 3rd -- Hilvert, Donald -- Houk, Kendall N -- Stoddard, Barry L -- Baker, David -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323453" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/metabolism ; *Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-22
    Description: The Diels-Alder reaction is a cornerstone in organic synthesis, forming two carbon-carbon bonds and up to four new stereogenic centers in one step. No naturally occurring enzymes have been shown to catalyze bimolecular Diels-Alder reactions. We describe the de novo computational design and experimental characterization of enzymes catalyzing a bimolecular Diels-Alder reaction with high stereoselectivity and substrate specificity. X-ray crystallography confirms that the structure matches the design for the most active of the enzymes, and binding site substitutions reprogram the substrate specificity. Designed stereoselective catalysts for carbon-carbon bond-forming reactions should be broadly useful in synthetic chemistry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Justin B -- Zanghellini, Alexandre -- Lovick, Helena M -- Kiss, Gert -- Lambert, Abigail R -- St Clair, Jennifer L -- Gallaher, Jasmine L -- Hilvert, Donald -- Gelb, Michael H -- Stoddard, Barry L -- Houk, Kendall N -- Michael, Forrest E -- Baker, David -- R01 GM075962/GM/NIGMS NIH HHS/ -- T32 GM008268/GM/NIGMS NIH HHS/ -- T32 GM008268-24/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):309-13. doi: 10.1126/science.1190239.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647463" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylamides/chemistry ; Algorithms ; Butadienes/chemistry ; Carbon/*chemistry ; Catalysis ; Catalytic Domain ; Computer Simulation ; *Computer-Aided Design ; Crystallography, X-Ray ; Enzymes/*chemistry/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutagenesis ; Physicochemical Processes ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics ; Software ; Stereoisomerism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-05
    Description: Confinement of enzymes in protein nanocompartments represents a potentially powerful strategy for controlling catalytic activity in cells. By using a simple electrostatically based tagging system for protein encapsulation, we successfully sequestered HIV protease, a toxic enzyme when produced cytoplasmically, within an engineered lumazine synthase capsid. The growth advantage resulting from protecting the Escherichia coli host from the protease enabled directed evolution of improved capsids. After four rounds of mutagenesis and selection, we obtained a variant with a 5- to 10-fold higher loading capacity than the starting capsid, which permitted efficient growth even at high intracellular concentrations of HIV protease. The superior properties of the evolved capsid can be ascribed to multiple mutations that increase the net negative charge on its luminal surface and thereby enhance engineered Coulombic interactions between host and guest. Such structures could be used for diverse biotechnological applications in living cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worsdorfer, Bigna -- Woycechowsky, Kenneth J -- Hilvert, Donald -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):589-92. doi: 10.1126/science.1199081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Organic Chemistry, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA Shuffling ; *Directed Molecular Evolution ; *Escherichia coli/genetics/growth & development ; HIV Protease/chemistry/*metabolism ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/genetics ; Point Mutation ; *Protein Engineering ; Selection, Genetic ; Static Electricity ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-18
    Description: The Journal of Physical Chemistry B DOI: 10.1021/acs.jpcb.6b01464
    Electronic ISSN: 1520-5207
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-18
    Description: Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 x 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 A resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blomberg, Rebecca -- Kries, Hajo -- Pinkas, Daniel M -- Mittl, Peer R E -- Grutter, Markus G -- Privett, Heidi K -- Mayo, Stephen L -- Hilvert, Donald -- England -- Nature. 2013 Nov 21;503(7476):418-21. doi: 10.1038/nature12623. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland [2] Corporate RD Division, Firmenich SA, 1211 Geneva, Switzerland (R.B.); Protabit, Pasadena, California 91101, USA (H.K.P.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132235" target="_blank"〉PubMed〈/a〉
    Keywords: *Biocatalysis ; Carbon/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; *Directed Molecular Evolution ; Enzymes/*chemistry/genetics/*metabolism ; Kinetics ; Models, Molecular ; *Protein Engineering ; Protons ; Triazoles/chemistry/metabolism ; Triose-Phosphate Isomerase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-02-04
    Description: The three-dimensional structure of a catalytic antibody (1F7) with chorismate mutase activity has been determined to 3.0 A resolution as a complex with a transition state analog. The structural data suggest that the antibody stabilizes the same conformationally restricted pericyclic transition state as occurs in the uncatalyzed reaction. Overall shape and charge complementarity between the combining site and the transition state analog dictate preferential binding of the correct substrate enantiomer in a conformation appropriate for reaction. Comparison with the structure of a chorismate mutase enzyme indicates an overall similarity between the catalytic mechanism employed by the two proteins. Differences in the number of specific interactions available for restricting the rotational degrees of freedom in the transition state, and the lack of multiple electrostatic interactions that might stabilize charge separation in this highly polarized metastable species, are likely to account for the observed 10(4) times lower activity of the antibody relative to that of the natural enzymes that catalyze this reaction. The structure of the 1F7 Fab'-hapten complex provides confirmation that the properties of an antibody catalyst faithfully reflect the design of the transition state analog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haynes, M R -- Stura, E A -- Hilvert, D -- Wilson, I A -- AI-23498/AI/NIAID NIH HHS/ -- GM-38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):646-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303271" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/metabolism ; Bacillus subtilis/enzymology ; Binding Sites ; Binding Sites, Antibody ; Catalysis ; Chorismate Mutase/*chemistry/metabolism ; Chorismic Acid/metabolism ; Crystallization ; Haptens ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/metabolism ; Models, Molecular ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...